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ABSTRACT It is very important to predict the long-term shutdown karst tunnel water inrush for preventing
tunnel construction accidents. However, it is urgent to study a new prediction model to solve the problems
of insufficient sample size and low prediction accuracy for long-term shutdown karst tunnel water inrush
prediction. In this study, the water inrush and atmospheric rainfall in a tunnel project in China were
monitored for over five months. By adopting hybrid grey wolf optimization (HGWO) algorithm and support
vector regression (SVR) method, the HGWO-SVR tunnel water inrush prediction model was proposed. The
atmospheric rainfall of the day and yesterday and yesterday’s water inrush were considered in the HGWO-
SVR model, and the model was used to predict the tunnel water inrush. The results show that the predicted
water inrush value is basically consistent with the measured value. After the parameters of SVR model are
optimized by HGWO algorithm, the HGWO-SVR prediction model has the advantages of high precision
and less sample demand. The model is more suitable for the prediction of long-term shutdown tunnel water
inrush with less measured sample. Thus, the proposed prediction model can effectively be used as a new
approach for tunnel water inrush in some similar projects.

INDEX TERMS Karst tunnel, water inrush, long-lasting shutdown, hybrid gray wolf optimization, support
vector regression, predictive analysis.

I. INTRODUCTION
Due to the development of construction for highway tunnels
in China gradually advanced to the southwest, a large number
of water inrush problems are becoming increasingly serious.
Tunnel water inrush risk is throughout the whole life cycle
from design, construction to operation management [1]. The
uncertainty of water inrush leads to the risk of repeated
stoppages and resumption. Long-time shutdown will delay
the construction progress, and the huge scale of water inrush
is easy to form secondary accidents such as collapse, sudden
mud and even threatens the workers’ life. For example, two
major water inrush occurred in the Malujing Tunnel in Enshi,
Hubei Province on January 21, 2006 and April 11, 2008, sep-
arately, resulted in 15 deaths and more than 2 years’ delays.
The Zhongjiashan Tunnel of the Jilian expressway in Jiangxi
Province experienced 14 consecutive water inrush with a total
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volume of over 20,000 cubic meters from July to the end
of October 2012. Therefore, the research on the influencing
factors of water inrush and water volume prediction in long-
time shutdown karst tunnel is of great practical significance
and application value. Therefore, it is necessary to carry out
water inrush prediction in long-time shutdown tunnel.

To control the safety risks induced by tunnel inrush, schol-
ars have carried out many related academic studies on tun-
nel inrush prediction. For example, X. H. Xu proposed a
deterministic mathematical model for the prediction of water
inrush in a fissure enclosure tunnel under the seepage and
stress coupled environment based on the theory of equiv-
alent treatment of the permeability properties [2]. M. Jun
used a dynamic design and information-based construction
methods, distinguishing between the forward evolution of
the design phase and the inverse method of the construction
phase for the calculation of water inrush [3]. S.S. Shi revealed
the mechanism that karst areas is prone to water inrush
from the perspective of storage patterns. He systematically
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analyzed the advantages and disadvantages of each prediction
method and the applicable conditions [4]. Then, the different
water-bearing geological formations of the karst zone was
divided, and a more reasonable tunnel inrush prediction was
proposed. R. Liu proposed a combination of experimental
and numerical calculations to establish and analyze an evo-
lutionary model of the permeability characteristics during
the destruction of the surrounding rock [5]. He simulated
the blasting process and water ingress in a submarine tunnel
and successfully predicted the water inrush under blasting
vibration. In view of the complicated mechanism of tunnel
water inrush and the difficulty of quantitative prediction,
X. Kang has realized the dynamic evaluation of water inrush
in the gradual process of tunnel construction by various theo-
retical methods [6]. Fuzzy mathematical analysis was used to
analyze thewater inrush content of seven common ions, based
on real-time monitoring data. Then, the groundwater types
were classified and a hydrogeological model of the tunnel
was developed to successfully predict the probability and
volume of inrush. Y. Yang proposed an online discriminatory
model for influxwater using laser-induced fluorescence (LIF)
and convolutional neural network (CNN) [7]. The model was
used to automatically discriminate the influx water source.
Based on this, K. Bian used the support vector machine
model of cuckoo search optimization (CS-MSVM) to recon-
struct the spectral signal at different stages [8]. The CEEMD
signal processing method combined with LIF spectroscopy
was used to effectively identify the source of influx water.
H. N. Wu et al. proposed a new numerical method to simu-
late local water seepage in the lining of a shield tunnel by
using a one-dimensional seepage unit in AQAQUS software,
to simulate long-term seepage in the tunnel joints [9]. The
method overcomes the limitations of the solid grid division
of the seepage unit and reduces the calculation errors caused
by the size difference between the seepage unit and the lining
unit. Based on the control point source theory, X. X. Liu
et al. proposed an anisotropic and isotropic groundwater
flow prediction calculation method for tunnels in pressurized
aquifers, taking various factors into consideration [10]. The
method is well applied to actual projects for water inrush
prediction. Y. X. Wu et al. established a three-dimensional
flow-solid coupled finite element model to analyze the effects
of the seepage of water-bearing barrier below the excavation
surface [11]. Under the condition of constant flow rate and
fixed pressure drop, they simulated the uniform and local
weir wall leakage of the confined aquifer. This facilitates
the understanding of the effects of diaphragm leakage on
groundwater seepage and soil deformation.

Many scholars have also started to apply the machine
learning algorithms to predict time series data. For exam-
ple, the bidirectional long short-term memory (Bi-LSTM)
network proposed by Shen S.L. et al., predicts the future
series of data based on the observational learning before
the model, and performs its learning process to integrate
the time sequence [12]. The proposed model can effectively
predict the diameter of jet grouted columns in soft soil in real

time, which is helpful for engineering construction. Based
on the transitional Markov chain and Monte Carlo method,
Mnasri S. et al. improved the Bayesianmethod for evaluating
the generalization ability of prediction models and model
selection [13]. The method effectively helps researchers to
find the most appropriate model in terms of predictive ability,
generalization ability, and model complexity. In addition,
they propose a multi-step automatic model selection EPR
technique based on multi-objective optimization [14]. The
technique consists of two stages: intelligent rough model
selection and model fineness identification. The technique
can effectively address the difficulties of existing multi-
objective evolutionary polynomial regression methods for
optimal evolutionary polynomial model decision making.
However, the above-mentioned machine learning research
methods are applicable to large numbers of samples. When
the number of study samples is limited, accuracy is difficult
to guarantee. This article focuses on the problem of water
inrush prediction under long-lasting shutdown, which has
rarely been addressed by scholars. In addition, the actual data
obtained from the project is limited in time span, which is not
conducive to accurate prediction. Therefore, it is necessary to
conduct further research on the prediction of water inrush in
karst tunnels under long-lasting shutdown.

In this article, a mixed gray wolf optimization support vec-
tor regression (HGWO-SVR) prediction model is proposed,
choosing the three factors of yesterday’s rainfall, today’s
rainfall and yesterday’s water inrush. Considering that the
parameter establishment of the support vector machine is the
key to its model building, the artificial intelligence optimiza-
tion algorithm can better help the support vector machine
to establish the model parameters compared to other search
methods such as traditional mesh search [15], [16]. In this
article, we use the global search optimization of differential
evolution mixed with the local search of the gray wolf algo-
rithm, the hybrid gray wolf optimization algorithm (HGWO),
to optimize the parameters of the time series prediction
supporting vector regression model. The prediction algo-
rithm effectively avoids the inefficiency and subjectivity of
traditional parameter search and other intelligent algorithm
selections, and improves the training speed and scalability
of the prediction model. The model is applied to the inrush
prediction of a long-lasting downtime tunnel in Guizhou
province, which provides a powerful reference for the scien-
tific resumption and drainage organization.

II. THEORETICAL BASIS
A. HYBRID GRAY WOLF OPTIMIZATION ALGORITHM
The gray wolf algorithm is a global stochastic optimization
method, inspired by the leadership hierarchy and hunting
mechanism elements of the gray wolf in the natural environ-
ment. Through the testing of 29 known functions, it has been
documented that the algorithm performs better than other
heuristics (e.g., PSO, GSA, DE, EP, ES) in terms of spatial
exploration, local optimization avoidance, and convergence
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performance [17]. It exhibits excellent performance in single-
peak, multimodal, and composite functions. It has been
proven to work well in areas such as power dispatching and
multiple input/output system optimization [18], [19]. The
gray wolf’s attacking behavior in the gray wolf algorithm is
similar to local search, and deviating from the current prey to
find better prey is similar to global search. Therefore, when
the gray wolf attacks the prey, the gray wolf optimization
(GWO) can easily come to a standstill. The DE algorithmwas
first proposed by Storn for solving global optimization prob-
lems [20]. Since the DE algorithm is a simple and powerful
stochastic algorithm with few control parameters, it has been
widely used in various engineering fields.

Hybrid gray wolf optimization (HGWO) is a combination
of the graywolf algorithm and differential evolution proposed
by Zhu in 2015 [21], to artificially reduce the limitations
of the gray wolf optimization (GWO). Differential evolution
is used to start from a randomly generated population and
generate the next generation of populations throughmutation,
crossover and selection operations. It ensures that the gray
wolf algorithm jumps out of the local optimum and improves
the convergence speed of the optimization process [22].

The principle was used to establish a wolf pack rank system
and hunting process [23], with the following steps.

First, initialize the wolf pack via equation (1). The indi-
viduals are uniformly distributed in the space defined by the
objective function.

Xk,p(0) = Xminp + rand(0, 1)× (Xmaxp − Xminp ) (1)

where Xk,p (0) is the p-dimensional position of the search
space for the kth wolf in the initial pack, rand(0,1) is a random
constant between [0,1], Xmaxp and Xminp are the upper and
lower limits of the p-dimensional search space respectively.

Based on the above steps, an initialized wolf pack is
formed. And a social hierarchy model of the wolf pack is
developed based on the adaptation ranking of each wolf.
Appoint wolf Xα as the largest ranking, wolf Xβ as the second
ranking, and wolf Xδ as the third ranking.
Second, use equation (2) - equation (4) to update each wolf

position.
EDα = | ECα · EXα − EX (t)|
EDβ = | ECβ · EXβ − EX (t)|
EDδ = | ECδ · EXδ − EX (t)|

(2)


EX1(t + 1) = EXα(t)− EA1 · EDα
EX2(t + 1) = EXβ (t)− EA2 · EDβ
EX3(t + 1) = EXδ(t)− EA3 · EDδ

(3)

EX (t + 1) =
EX1(t + 1)+ EX2(t + 1)+ EX3(t + 1)

3
(4)

where t is the current iterations, the initial generation t=1;
EX is a vector of individual wolf positions relative to prey; EC
is a random vector between 0 and 2; EA is a dynamic random
vector between -2 and 2 contracting progressively towards 0,
when |EA| <1, thewolves attack the prey, otherwise thewolves
move away from the prey and look for more suitable prey.

Then, use equation (5) for differential evolution to generate
mutant individual.

Pt+1i = X tk1 + Z (X
t
k2 − X

t
k3) (5)

where Z is a scaling factor between 0.2 and 0.8; X tk1, X
t
k2,

X tk3 are three different random individuals in the t generation
population.

Next, use crossover manipulation to generate test individ-
uals U t+1

ij .

U t+1
ij = {

Pt+1ij , rand (0, 1) ≤ CR or j = randn(i)
X tij, rand (0, 1) > CR and j 6= randn(i)

(6)

where j is the jth variable of the test individual; randn(i) ∈ [1,
2, . . . , D] represents a randomly selected index of dimensional
variables, D is the dimension of the trial individual; X tij is the
target individual; Pt+1ij is the variant individual and CR is the
crossover probability, CR ∈ [0, 1].
The generated test individuals are then competed by selec-

tion through equation (7) to determine whether the individual
is passed on to the next one.

X t+1i = {
U t+1
i , f (U t+1

i ) < f (X ti )
X ti , f (U t+1

i ) ≥ f (X ti )
(7)

where f is the adaptation function of the optimization objec-
tive.

Finally update wolves Xα , Xβ and Xδ of the wolf pack
according to the order of adaptation. Proceed with the next
iteration of the cycle in sequence, i.e., t= t+1, to determine
the location of the prey.

X t+1 =
X t+11 + X t+12 + X t+13

3
(8)

Repeatedly carry out differential, crossover, and inter-
individual competition to keep up with the new wolf pack
rank. Until the maximum cycle algebra is reached, the Xα
is returned. Finally, the selected alpha wolf is the optimal
solution space of the problem.

B. THE PRINCIPLE OF SUPPORT VECTOR MACHINE
REGRESSION
Support Vector Machine (SVM) is an approach based on
the statistical theory of the VC dimension and the principle
of structural risk minimization proposed by Vapnik [24].
It addresses the problems such as small samples, nonlinearity,
high dimensionality, and local minima. The aim is to find
the maximum spaced hyperplane that minimizes the distance
between all sample points and the hyperplane. The input
variables are mapped to a high-dimensional feature space by
appropriate nonlinear function transformations, and a linear
regression optimal hyperplane is sought in this space. Ulti-
mately, the regression is attributed to the convex planning
problem to find the global optimal solution. Its mathematical
description is given in Eq. (9), as shown at the bottom of the
next page, where αi, , α∗i , αj, α

∗

j are Lagrange multipliers,
yi is observed value, c is error penalty parameter, ε is the
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upper error limit, and K(xi,xj) is the nuclear function. There
are three types of nuclear functions in common use: poly-
nomial nuclear functions k(xi,xj) =(xixj+1)d, d=1,2, . . . ;
radial basis nuclear function (RBF) k(xi, xj) =exp(-γ xi-x2j );
Sigmoid nuclear function k(xi, xj) =tanh[β(xixj)+c].
The RBF kernel function is widely used in low-

dimensional, high-dimensional, small-sample and large-
sample datasets with wide convergence domain. Therefore,
it is chosen as the SVR kernel function in this article.

C. SUPPORT VECTOR MACHINE PREDICTION MODEL
OPTIMIZED BY HYBRID GRAY WOLF ALGORITHM
The choice of parameters affects the prediction performance
of the SVR. The values of the penalty factor C and the RBF
kernel parameter g directly determine the prediction accuracy
and the speed of the SVR. Therefore, the rational combination
of C and g is the key to perform model building [25], [26].

Intelligent algorithms widely used for SVR parameter opti-
mization include ant colony algorithm, gravity algorithm, and
simulated annealing algorithm [27]. However, these algo-
rithms have such drawbacks as precocious convergence, low
solution accuracy, and slow convergence speed. Therefore,
they cannot meet the convergence speed and accuracy of
high-dimensional problems.

In contrast, the hybrid gray wolf algorithm uses an evo-
lutionary, displacement model to achieve the entire solution
space for optimal search. The parallel global search strat-
egy based on the wolf pack is easy to implement and does
not require complicated parameter adjustment. Therefore,
it converges quickly and has a strong advantage in high-
dimensional problems [28], [29].

To obtain the best combination of penalty factor C and
kernel parameter g, the HGWO algorithm is employed to
perform a fast global optimization search. It can reduce the
blindness of trial calculations and improve the accuracy of
model prediction. The implementation steps of the HGWO-
SVM model are shown in Fig.1.

Step 1: Enter the time series of factors related to the target
to form a multidimensional time series set. Set up a training
set and a prediction set for the SVR. Initialize the SVR
penalty factor C and the range of the kernel parameter g. Set
up the HGWO-related parameters, including population size
NP, scaling factor upper and lower bounds βmax and βmin,
cross probability CR, and evolutionary algebra N_iteration.

Step 2: Generate the initial parent wolf pack according
to the initial C and g. The training set is learned and the

adaptation degree of each wolf is calculated. The wolves
are divided into three levels: α, β, and δ according to the
adaptation values. According to equations (2)-(4), each indi-
vidual position in the new parent wolf pack is followed. After
that, perform variation, crossover, and selection operations
of differential evolution according to Eqs. (5)-(7) to produce
a variant wolf pack and a daughter wolf pack. The adapta-
tion of each individual gray wolf to the new location was
calculated and compared with the best adaptation Fg of the
previous iteration. If the adaptation degree is better than Fg,
the individual gray wolf replaces the group’s best adapta-
tion degree, otherwise the original best adaptation degree is
kept. If the number of iterations exceeds the set evolutionary
algebra N_iteration, the training ends with the output of the
global optimal position, i.e., the optimal combination of C
and g parameters of the SVR model, otherwise the parameter
optimization continues.

Step 3, choose the best combination of (C, g) parameters to
build the prediction model, and perform prediction and result
analysis on the validation set. If the error does not meet the
requirement, skip to step 1.

III. ENGINEERING APPLICATION
A. ENGINEERING BACKGROUND
Relying on the right line of a two-lane highway tunnel
project in Guizhou province, this article carried out a spe-
cific investigation and analysis. According to the hydro-
logical conditions, geological structure and the degree of
karst development in the tunnel site area, the right tunnel
is divided into three sections. They are YK20+480 (tun-
nel entrance)∼YK21+100, YK21+100∼YK21+960 and
YK21+960∼YK24+300 (tunnel exit). The risk of water
intrusion is low in the first and last sections of the tunnel.
YK20+480 (tunnel entrance) to YK21+100 (tunnel exit) is
the middle and upper Silurian (S2+3), which mainly consists
of purple-red and gray-green medium-thickness siltstone,
siltstone shale, shale and limestone lenses, and yellow-gray
thin to medium-thickness quartz sandstone, siltstone and silt-
stone shale at the upper part, which is a water-insulating rock
layer. The YK21+960∼YK24+300 (tunnel exit) section at
the end of the tunnel includes the Upper Intermediate Ordovi-
cian (O2+3) and the Lower Shillouian (S1). The upper and
middle Ordovician mainly consists of gray-green shale, gray-
purple thin to medium-thickness limestone, mudstone, marl,
and calcareous shale, with black carbonaceous shale at the
top, and the formation is a water-insulating layer. The Lower



{
max
aia∗
−

[
1
2

l∑
i=1

l∑
j=1

(
ai − a∗i

) (
aj − a∗j

)
K
(
xi, xj

)
−

l∑
i=1

(
ai + a∗i

)
ε +

l∑
i=1

(
ai − a∗i

)
yi

]

s.t.


l∑
i=1

(
ai − a∗i

)
= 0

0 ≤ ai ≤ C
0 ≤ a∗i ≤ C

(9)
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FIGURE 1. Flowchart of the HGWO-SVR algorithm.

Silurian (S1) mainly consists of gray siltstone, carbonaceous
shale with calcareous siltstone and sandy limestone, marl
or limestone, and the whole stratum is a water-insulating
rock layer, in which the limestone interlayer contains a small
amount of fissure water. Among them, the first and last
sections are the Shillou system insulation layers. They pre-
vent the movement of groundwater, thus the possibility of
water inrush is extremely low. The middle section of the tun-
nel YK21+100∼YK21+960 crosses the water-bearing karst
layer of the Permian system, Sumida-Maukou group (P1q+m)
in the oblique core. The strong soluble rocks in the region
have a high CaCO3 content, so there is a high risk of water
inrush disaster. The geological and hydrological conditions
of the study area and its sections are shown in Fig.2.

The YK21+100∼YK21+960 interval in the middle of the
tunnel is the Lower Permian Qixia-Maukou Group (P1q+m).
The lower part is mainly grayish-black thin-layered carbona-
ceous tumbrous limestone and limestone with carbonaceous
shale, containing a large number of flint nodules, while
the middle part is dark gray to gray medium-thick to thick
laminated flint-bearing mass limestone, and the upper part
is grayish-white massive limestone. The stratum thickness
of the Qixia Group (P1q) is about 150-160m, which is a

FIGURE 2. Hydrogeological map of the study site.

FIGURE 3. Water inrush from the upper left of the palm surface at
YK21+122.8.

strong karst aquifer. The stratum thickness of Maukou Group
(P1m) is about 130∼221m, which is an extremely strong karst
aquifer. The saturation compressive strength of the surround-
ing rocks in this section is low, only 12.3Mpa, which is about
1/5 of the strength of the surrounding rocks in other sections
of this section. The surrounding rock body is relatively bro-
ken, so it is presumed that the tunnel arch and side walls are
less self-stable. Then, the tunnel is prone to accidents such as
falling blocks and collapsing during excavation. Therefore,
the risk of water inrush is higher. According to the prelim-
inary geological investigation, there are a number of karst
channels in the rock body that are approximately parallel to
each other and rich in groundwater. The water-bearing rock
body is easy to be uncovered and destroyed, resulting in water
inrush accident. In the actual excavation, the first occurrence
of water inrush in the tunnel right line YK21+122.8 is above
the left side of the palm surface, as shown in Fig.3.

As the tunnel palm face advances, the carbonaceous
perimeter rock behind the initial support is lost with
water, resulting in concrete stripping. The left arch foot of
YK21+128 is the main gushing point, as shown in Fig.4.

With the excavation to YK21+139, a vertically developed
cave about 2.2m×2.2m was found on the left side of the
palm surface. Through the field observation, the height of
the cave from the upper step upward development is not yet
identified, but there is no filler and water inrush phenomenon.
After part of the cave slag fell into the cave during the
blasting, the depth of the cave is about 7m from the upper step
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FIGURE 4. Concrete stripping due to water inrush.

FIGURE 5. Cave development at YK21+139, left is up view and right is
down.

downward through the probe rope. The cave site conditions
are shown in Fig.5.

The severe water inrush brought the tunnel to shutdown for
nearly 10months from late September 2018 tomid-July 2019.
It resulted in delays and a sharp increase in personnel and
equipment costs. As a result, a more accurate prediction of
water inrush during the downtime is a key to ensure safe
working environment and can guide workers to resume work
in a scientific manner.

B. DATA COLLECTION
For the time series prediction of water inrush in karst tunnel
during shutdown, rainfall is the main influencing factor [30],
[31]. Following the rainfall in the tunnel area, surface water
eventually becomes tunnel inrush water, after the absorption
and infiltration of the upper overburden and the hydraulic
transport of the lower aquifer. Thus, there is an obvious time
lag between surface rainfall and groundwater inrush. Both
rainfall size and duration have an impact on the water inrush
[32].

The historical mean values of rainfall in this county of
Guizhou Province are shown in Fig.6.

The histogram distribution shows that the county has a high
rainfall period from April to July, with an average monthly

FIGURE 6. Multi-year monthly average precipitation in the county.

FIGURE 7. The on-site rainfall automatic rain gauge layout diagram.

rainfall of 100 mm or more. Therefore, a focused analysis is
required.

In order to carry out long-term dynamic hydrological mon-
itoring of a tunnel in Guizhou province, the experimental
team set up a monitoring device on site to monitor the actual
rainfall in the tunnel area. An automatic rain gauge with a
time step of 10min and a precision of 0.1mm was used to
collect rainfall data directly. The on-site equipment layout is
shown in Figure 7.

The time series of rainfall from February to July 2019 was
obtained through field measurements. The value distribution
is shown in Fig.8.

From Fig.8, it can be seen that April-July are high rain-
fall months during the monitoring period (February-July).
And the maximum daily rainfall is more than 30mm in four
months. Also, the daily rainfall changesmore drastically, with
the maximum value reaching 88.9mm.

On-site monitoring of water inrush is carried out using the
thin-walled rectangular weir flow method. The arrangement
of the weir is shown in Fig.9.

A thin-walled rectangular weir was constructed at the tun-
nel entrance at the drainage culvert. Water level probes were
installed inside the weir to monitor the water level at the
mouth of the weir. The thin-walled rectangular weir flow
formula (10) is used to calculate the daily flow values.

Q = 1000mb
√
2gh

3
2 (10)
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FIGURE 8. Time-series observation of rainfall in a tunnel in Guizhou
province from February to July.

FIGURE 9. The thin wall rectangular weir flow arrangement.

FIGURE 10. Time series of water inrush in a tunnel in Guizhou province
from February to September.

where Q is the water flow rate (l/s); m is the flow coefficient;
b is the width of the weir; h is the thickness of the water layer
at the mouth of the weir; and g is the gravity acceleration.

The time series of water inrush from February to
July 2019 was obtained from field measurements. The dis-
tribution of their values is shown in Fig.10.

FIGURE 11. Fit of the linear relationship between rainfall and water
inrush.

As can be seen in Fig.10, the February-July water inrush
time series is roughly about 500m3/h. As a result of increased
rainfall fromMay to July, the value from themiddle to the end
of the month are showing a cumulative increase to the peak
and then cumulative decline. In terms of days, there is still
an overall time dependence in the amount of water inrush.
The amount of the current day’s inrush is influenced by the
magnitude of the previous. The linear fit analysis was plotted
as shown in Fig.11, with the sum of the current day, yesterday
and the previous day’s rainfall as the horizontal coordinate
and the same-day inrush as the vertical coordinate.

The linear fit analysis consists of 181 sample points from
February to July 2019, and the fitted R2 is 0.63616. A clear
linear relationship between precipitation and the amount of
water inrush in the tunnel area can also be seen in the figure.

C. DATA PROCESSING AND ANALYSIS
1) DATA PREPROCESSING
The noisy data collected are cleaned and abnormal data are
processed. The rainfall is mainly monitored by the automatic
rain gauge. When there is a malfunction of the gauge or the
data deviates greatly due to other reasons, the weather station
is used to monitor the rainfall data for correction. The daily
gush of water is monitored by a thin-walled rectangular weir,
and the first record is made at 6:00 a.m. and the second
record is made every four hours. When there is a significant
deviation in the data, the data at that time is discarded and the
mean value is filled in.

2) CORRELATION ANALYSIS
In order to analyze whether there is a correlation between the
tunnel rainfall and the amount of water inrush, the correlation
coefficient is used to quantitatively characterize.

γxy =

∑
(x − x)(y− y)√

(x − x)2(y− y)2
(11)

where the correlation coefficient γxy ranges from [−1,1].
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TABLE 1. Correlation coefficients between precipitation and water inrush
during the downtime of a karst tunnel in Guizhou province from
February to July.

TABLE 2. Time lagged correlation coefficients between precipitation and
water inrush data for April-July.

The water inrush during shutdown is influenced by atmo-
spheric evaporation, environmental conditions and other fac-
tors, so the water inrush and rainfall does not exist an absolute
correlation. Therefore, we set that the two are not correlated
when |γxy| < 0.1, weakly correlated when 0.1 ≤ |γxy| < 0.3,
strongly correlated when 0.3 ≤ |γxy| < 0.5, and highly
correlated when |γxy| ≥ 0.5 in this article. According to
equation (10), the correlation coefficient value of the tunnel’s
February-July rainfall and water inrush was calculated as
shown in Table 1.

Based on the multi-year average monthly rainfall distribu-
tion in the region as shown in Fig.8, and the correlation coef-
ficients mentioned above, specific analyses were performed.
Compared to the rainy season (April-July), the dry season
(November-March) has relatively little rainfall. The rainfall is
scattered and only wets the surface soil after a single rainfall.
Even if there is an occasional heavy rainfall, the amount of
rainfall infiltrated by the infiltration and recharge of the sur-
face air pocket is negligible, which will not have a significant
impact on the change of water inrush in the tunnel. Therefore,
when examining the correlation between rainfall and water
inrush in the tunnel, only specific analyses of the rainfall and
water inrush during the rainy season (April-July) are available
in this article.

According to equation (11), the time-lagged correlation
between the precipitation and the water inrush in the tunnel
from April to July is calculated, and the results are shown
in Table 2. As can be seen from the table, the number of corre-
lations between the amount of water inrush and precipitation
on the day and the day before is significantly greater than the
number of other days with a lag.

Therefore, the long-term downtime tunnel inrush predic-
tion model is constructed in this article by selecting three
factors: the day’s rainfall, yesterday’s rainfall, and yesterday’s
water inrush. Also, from the parameter sensitivity analysis,
the order of the importance for the results was as follows:
the day’s rainfall, yesterday’s water inrush and yesterday’s
rainfall.

3) SELECTION OF TRAINING SETS
Based on the above model construction, each factor was
quantitatively generalized. The sample from April-June was
selected as the training set and the sample from July was used
as the test set. The training sample set is shown in Fig.12.

FIGURE 12. Training samples set.

FIGURE 13. Test samples set.

Where yesterday’s rainfall, today’s rainfall and yesterday’s
water inrush are used as model inputs and today’s water
inrush is used as model output.

The set of test samples is constructed according to the same
logic to form a consistent input or output correspondence. The
specific distribution of the test sample set is shown in Fig.13.

4) PARAMETER SELECTION AND OPTIMIZATION
The HGWO-SVR program was written using a program-
ming software. The parameters of the algorithm were set as:
population size nPop=40, independent variable dimension
nVar=2 (penalty factor C and nuclear parameter g respec-
tively), search factor βmin =0.2, βmax =0.8, cross proba-
bility Pcr=0.2, and evolutionary algebra N_iteration=2000.
The specific optimization steps were carried out step
by step according to the algorithm flow Fig. 1. The
model runs for 80.051150 seconds. After the running,
the search yields the optimal parameter of the support
vector machine as C=92.2261 and the kernel parameter
g=42.5804. The adaptation optimization process is shown
in Fig.14.
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FIGURE 14. HGWO-SVR parameter optimization process.

FIGURE 15. Fitting result of the training set based on the HGWO-SVR
model.

It can be seen from Fig.14 that the evolutionary algebra is
selected at 1600 reasonable steps, the population adaptation
tends to stabilize at about the 1200th step, and the target
function fg adaptation value eventually stabilizes at about
0.00504. In addition, as the number of iterations increases and
the parameter search is closer to the target value, the estimated
value becomes more stable, the coefficients of the selected
model become more reliable, and the fitted prediction model
becomes more accurate.

D. ANALISIS OF RESULTS
The best parameters c= 92.2261 and σ = 42.5804 optimized
by HGWO were substituted into the SVR prediction model
for the inrush prediction, and the sample training is shown in
Fig.15.

The running results show that the training set has a mean
square error (MSE) of 8.4557 × 10−5 and a squared correla-
tion coefficient (R2) of 0.99953.
The test set mean square error (MSE) of the HGWO-

SVR model is 1.945 × 10−3, and the test set coefficient of
determination (R2) is 0.97794. The smaller the MSE is, and

FIGURE 16. Predicted result of the test set by three methods.

the closer the R2 is to 1, the better the prediction obtained.
Thus, the HGWO-SVR model results are in good agreement
with the measured data for the inrush prediction of water-rich
karst long-term downtime tunnels. It shows the strong gener-
alization ability and high accuracy in nonlinear prediction.

To show the advantages of the model, this article also
uses the traditional grid search method to find the best SVM
and an artificial neural network to compare the prediction
effect. From the prediction curves, the SVM of the ordinary
grid search method for parameter optimization and BP neural
network also show some ability to make predictions for real
problems. However, the accuracy of the prediction results is
limited. In particular, the BP neural network exhibits large
fluctuations and hysteresis near the inflection point, and both
the prediction accuracy and the fitting effect are lacking
compared to the HGWO-SVR model.

In order to further specifically compare the effects of the
three prediction methods, this article introduces three statis-
tical indicators of prediction, mean absolute percentage error
(MAPE), Theil inequality coefficient (TIC), and prediction
direction accuracy (DA) to comprehensively evaluate the pre-
diction results [33].

The smaller the value of the calculated mean absolute
percent error, the higher the accuracy of the prediction results,
via Eq. (12).

MAPE =
1
n

n∑
i=1

|
ŷi − yi
yi
× 100| (12)

The Hill’s inequality coefficient is between 0 and 1. The
smaller the value, the smaller the fit error, via Eq. (13).

TIC =

√
1
n

∑n
i=1 (ŷi − yi)

2√
1
n

∑n
i=1 (ŷi)

2
+

1
n

∑n
i=1 (yi)

2
(13)

The directional accuracy DA is calculated by Eqs. (14-15),
and the closer its value to 1, the better the overall prediction
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TABLE 3. The comparison of predicted effects.

accuracy.

DA =
1
n

n∑
i=1

Ai (14)

Ai = {
1 (y∧i+1 − ŷi)(yi+1 − yi) > 0
0 (y∧i+1 − ŷi)(yi+1 − yi) ≤ 0

(15)

where ŷi is the predicted value and yi is the actual value.
In order to verify the stability of the model results, this

article calculates the mean values of the evaluation indicators
through a ten-fold cross-validation for inter-algorithm com-
parison. The mean values of the above three statistical indi-
cators are used to comprehensively evaluate the prediction
results, see Table 3.

As shown in Fig.16 and Table 3, the prediction curves
of the three methods agree well with the real value curves.
However, the HGWO-SVM prediction curve is closest to
the true value. The evaluation index reflects the closeness of
the prediction data from different aspects. The accuracy and
directional accuracy of HGWO-SVM prediction are higher
than the other, and the overall evaluation degree reaches the
ideal prediction state. Therefore, the HGWO-SVMprediction
is significantly better than the ordinary SVM and BP models.
It not only has strong parametrization and approximation
ability, but also has simple algorithm and good robustness,
which is suitable for practical engineering applications.

IV. CONCLUSION
In this study, an intelligent water inrush prediction algorithm
based on HGWO-SVR is proposed for long-lasting shutdown
tunnel. The method embeds HGWO in support vector regres-
sion, searches for the optimal combination of parameters
(C, g), and performs an error analysis on the results of the
HGWO-SVR model. The generalization ability and predic-
tion accuracy of the model are guaranteed. Then, according
to the data collected from field measurements, the improved
HGWO-SVR intelligent prediction algorithm was used to
predict the water consumption in a long-lasting shutdown
tunnel. The applicability of this method was verified through
a long downtime tunnel project in Guizhou Province. The
results of this study are as follows.

(1) The results of precipitation monitoring data and water
inrush accident analysis show that there is a significant linear
relationship between cumulative rainfall and tunnel water
inrush time series. Through the correlation coefficient, it is
concluded that the current day’s water inrush is affected by

yesterday’s and today’s rainfall and yesterday’s water inrush,
which provides a reference index for the time series predic-
tion.

(2) The HGWO-SVR model is used to predict the water
inrush in a long-lasting shutdown karst tunnel. The results
show that proposed model can improve the search perfor-
mance of the SVR model, as well as having a good ability to
predict the water inrush. Using the obtained hyper-parameter
combination, the prediction results are small in error and high
in accuracy. The prediction error is within the acceptable
range from the engineering point of view.

(3)Moreover, the proposed HGWO-SVR predictionmodel
is better than using any other prediction model(e.g. the ordi-
nary SVM and BP models) in terms of reducing the number
of field tests and improving economic efficiency. According
to the promising results of the proposed approach (HGWO-
SVR) in predicting the water inrush for a long-lasting shut-
down karst tunnel, we will combine this model with real-time
tunnel water inrush monitoring system in future, its real-time
guidance advantages will be highlighted, and the construction
workers will be able to judge the flood risk of the tunnel in a
more timely and effective manner.
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