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ABSTRACT This paper proposes an end-to-end Learnable Edge-Attention Map (LEAM) method to assist
image inpainting. To achieve a better-recovered effect, we design an edge attention module, which extracts
the feature information of the edge map and re-normalizes the image feature information when automatically
updating the edge map. And the information of known regions is adopted to assist the decoder generates
semantically consistent results. A dual-discriminator structure consisting of the local discriminator and
global discriminator is proposed to generate realistic texture details and improve the consistency of the
overall structure. Experiments show that our method can obtain higher image inpainting quality than the
existing state-of-the-art approaches, which improves PSNR by 3.58%, SSIM by 2.27%, and reduce MAE by
9.21% on average.

INDEX TERMS Image inpainting, attention module, edge map, dual-discriminator.

I. INTRODUCTION
Image inpainting aims at reconstructing missing regions of
images according to the known content [1]. These algo-
rithms have a wide range of applications in image editing,
such as completing occluded regions [1], removing unwanted
objects [32], and restoring damaged areas [2], [3]. The main
challenge of image inpainting is to generate realistic texture
details in the missing areas and maintain the semantic struc-
ture of global images [4], which can effectively affect the
visual quality of images.

Traditional studies perform well to handle small holes
using diffusion-based methods, which extract features from
the hole boundaries and select matching textures to fill in the
missing holes. These methods can generate texture details,
but the complex structure in the missing areas of images,
when filling large holes, might fail to be recovered [5].
Patch-based algorithms [2], [6], [17], [18] copy information
from similar exemplar patches or image collections to fill
in the missing holes. However, without a high-level under-
standing of the image contents and structures, these methods
usually struggle to reconstruct the semantically meaningful
content of locally unique regions.
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Deep learning-based approaches learn the mapping of non-
linear complex relations among training samples through
training of massive data, which can achieve good results,
especially for large missing holes produce a plausible struc-
ture [24], [25], [27]. However, despite the merits of these
approaches, earlier methods [7], [8] cannot efficiently use
context information to generate meaningful content, which
often leads to fuzzy results.

Some recent approaches try to use contextual information
to obtain inpainting results [20]–[22]. Some methods with
spatial attention [9], [10] use the surrounding image features
to recover the missing area. These methods can ensure the
semantic consistency of the generated content, but they only
focus on rectangular holes.When dealingwith irregular areas,
pixel discontinuities often occur, which is an obvious seman-
tic gap.

To effectively deal with irregular holes and reduce ambi-
guity. Nazeri et al. [11] proposed a model termed EdgeCon-
nect, a two-stage model comprised of an edge generation
network followed by an image completion network. The edge
generation network estimates the possible edges as the prior
information of the image completion network and then gen-
erates the final recovered image together with the distorted
information. However, the edge map of EdgeConnect is only
used in the first layer of the image completion network,
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which cannot directly propagate to the deep network layers
to describe the edges in highly textured regions accurately.
When most areas are missing, the recovered images tend to
appear structural confusion. By the image completion net-
work of EdgeConnect, the generated edge information would
not be learned and updated during the training process.

In this paper, we propose a learnable edge-attention map
method, which aims to utilize feature information for generat-
ing credible content effectively. To avoidmisusing edge infor-
mation, we design an edge attention module to extract the
feature information of the edge map and re-normalize the
image feature information. The attention module makes
the most of the information of the known regions to enhance
details better and restore the structure. In the meantime,
U-Net [12] is used as the backbone of our generator to
retain the different information of different layers by the
skip-connect. Benefiting from end-to-end training, the edge
attention module can effectively adapt to the irregular
holes and propagation of convolutional layers. Moreover,
more feature information can be retained to the deep net-
work layers by the attention module, thus providing pos-
sible preconditions for the reasonable structure information
generation.

For effectively handling the irregular holes, we introduce a
dual-discriminator consisting of the global discriminator and
the local discriminator. The global discriminator focuses on
the overall image that improves the consistency of the overall
structure. Simultaneously, the local discriminator focuses on
the missing regions, which can further improve the quality of
detail and reduce the generation of artifacts.

EdgeConnect builds the generator by the residue blocks,
which may suffer limitation propagating the feature informa-
tion of different layers to the deep layers in the image com-
pletion network. And the single discriminator of this method
could not sufficiently handle the irregular holes, especially
for large areas missing. Based on these insights, U-Net [12]
is used as the backbone of our generator to retain sufficient
feature information of each layer. In the meantime, we use
the attention module to better incorporate edge information
for providing preconditions into the successive image com-
pletion process. Moreover, the dual-discriminator improves
the quality of recovered images.

We experimented with standard datasets Paris
StreetView [13] and Places [14]. The qualitative and quan-
titative tests show that our approach can obtain higher quality
inpainting results compared with the existing methods.

Overall, the main contributions in this paper are summa-
rized as follows:

1. We propose a Learnable Edge-Attention Maps
method (LEAM) for improving color consistency, texture
fidelity, and semantic coherence. When adapting to irregular
holes, it can effectively utilize edge feature information of
images and feature information of known regions.

2. We design an edge attention module to extract the
feature information of the edge map and re-normalize the
image feature information. The edge attention module assists

the decoder in generating a consistent semantic structure by
utilizing information of known regions.

3. We introduce a dual-discriminator network that can
help the network generating recovered images with overall
consistency and realistic details.

4. Experiments on two datasets show that our method
achieves higher-quality results than the existing state-of-the-
art approaches.

This paper is organized as follows: in Section II, we give
the related work of image inpainting; Section III describes the
proposed method details; Section IV shows the experimental
results and analysis; Section V summarizes the paper and
prospects the future work.

II. RELATED WORK
Previous research methods for image inpainting can be
roughly divided into two groups: traditional methods and
learning-based methods.

A. TRADITIONAL METHODS
Image inpainting has already appeared before the wide
application of deep learning technology. These traditional
image inpainting methods can also be divided into two parts:
diffusion-based and patch-based. Diffusion-based meth-
ods [5], [15], [16] extract the features from the image back-
ground and select the matching texture to synthesize the
missing regions. However, these methods could not capture
global information to generate meaningful structures in the
missing parts. Patch-based methods [2], [6], [17], [18] fill in
the missing regions by copying information from the same
patches in the image background areas or image collections.
However, these methods are not effective for the image where
the background and the image dataset have lower similarity
with the missing regions. Traditional approaches have a com-
mon problem: they could not catch the high-level semantics
to producemeaningful content and are not suitable for dealing
with large missing areas.

B. LEARNING-BASED METHODS
Learning-based methods usually use generative adversarial
networks (GAN) [19] to generate information in the missing
holes. Context Encoder [20] used a deep neural network for
image inpainting, introduced an encoder-decoder network to
output the prediction of the missing regions, which improves
the visual and semantic rationality of the recovered image.
However, the results often lack fine-detailed textures and
contain visible artifacts. Shortly thereafter, Iizuka et al. [21]
suggested a local and global context discriminator (Global &
Local) improves detail quality and ensures the consistency
of generated images. However, the sharpness level of details
needs improvement, and this method is not suitable for gen-
erating complex structural textures.

Yang et al. [22] further proposed an inpainting model
of multi-scale neural patch synthesis (MNPS) based on the
Context Encoder, composed of a content constraint model
and a local texture constraint model. It can work well for
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high-resolution images. However, this method significantly
increases the computational cost due to the complexity of the
optimization process. Yu et al. [23], [29] proposed Contex-
tual Attention and Gated Convolution, which consist of two
stages. In the first stage, the network adopts the reconstruction
loss to obtain the coarse results. The second stage uses the
contextual attention layer to complete the fine details. The
image inpainting results have a more reasonable structure and
texture in a visual sense by using these methods. However,
these two methods require the coarse estimate at the first
stage must be reasonably accurate. Besides, Gated Convolu-
tion [29] needs the accurate result of Holistically-nested Edge
Detection (HED) [30] edge detector to guide the network to
generate the mask regions.

Most of the inpainting methods are aimed at rectangular
missing. In real-world applications, these holes are usually
irregular. To better handle irregular holes, Liu et al. [24]
presented Partial Convolutions (PConv) with an automatic
mask update. This method can effectively suppress image
blurriness and generate realistic textures. However, PConv
adopts the fixed feature re-normalization may unreasonably
extract the image features, resulting in the limitation of this
method in handling the color difference.

Some deep learning methods also introduce prior infor-
mation for inpainting, such as semantic structure, con-
tour, and edge information, producing more impressive
results [11], [25]–[29]. Nazeri et al. [11] used the edge
information to image inpainting, but the edge generation
network may not accurately describe the edges in highly
textured regions. Wang et al. [25] introduce a multistage
attention module. This module can flexibly use the feature
map of different layers to obtain information at various scales,
improving the structural consistency of the results. However,
the module may cause unwanted artifacts. Li et al. [26]
proposed Visual Structure Reconstruction (VSR), which can
gradually add image structure information in image inpaint-
ing. However, it is not effective in the image of large irreg-
ular holes. Yang et al. [27] suggested a multi-task learning
framework. This framework can learn the relevant structural
information and integrate it with the image inpainting pro-
cess through the parametric shared generator. However, this
method might lead to unreasonable details due to a lack of
consideration of the local feature information.

III. APPROACH
The framework of our method is shown in Fig.1. The inputs
of the image completion network include the edge map, input
image, and mask. We first use the edge attention module,
in the encoder segment, to extract effective edge feature infor-
mation and re-normalize the image feature information. And
then, in the decoder segment, the edge attention module can
further extract information of the known regions to generate
the output image. Finally, we use the dual-discriminator to
improve the final quality.

The edge map is generated by the edge generation net-
work of EdgeConnect [11], which consists of an encoder

that down-samples twice followed by eight residual modules
and a decoder which up-samples twice to generate images of
the original size [11]. GEC denotes the generator of the edge
generation network. And DEC denotes the discriminator of
this network, which is the 70×70 PatchGANarchitecture [31]
to determine whether the image module with size 70× 70 is
real or not. The following processes describe how to generate
the edge map.

The original image is denoted as Igt. And Cgt denotes the
edge of the original image. M = (1 − m) is the mask (m is
the ground-truth mask). Denote by Imgt = I � M the input
image and Cm

gt denotes the edge image of the input image.
The grayscale of input image is represented by Ig. Then, the
generated edgemap isCpred = GEC(Ig,Cm

gt). Besides, Cgt and
Cpred conditioned on Ig are used as inputs of the discriminator
DEC that predicts whether the edge map is true or not by the
adversarial loss LEC and feature-matching loss LFM [11]:

min
GEC

max
DEC

LGEC = min
GEC

(αECmax
DEC

LEC + αFMLFM ) (1)

where αEC and αFM are hyper-parameters which balance the
contributions of the two loss. For our experiments, we set
αEC = 1, αFM = 10. The adversarial loss LEC is expressed
as [19]:

LEC = E(Cgt,Ig)[logDEC(Cgt, Ig)]

+EIg [log(1− DEC(Cpred, Ig))] (2)

The feature-matching loss LFM is used to compare the
activationmaps in the intermediate layers of the discriminator
to improve the quality of the edge map. The feature-matching
loss LFM is defined as [11]:

LFM = E[
F∑
i=1

1
Ni

∥∥∥DiEC(Cgt)− DiEC(Cpred)
∥∥∥
1
] (3)

where F is the final convolutional layer of the discriminator,
Ni is the number of elements in the i-th activation layer, and
DiEC is the weight matrix of the discriminator at the i-th layer
of DEC.

A. GENERATOR OF IMAGE COMPLETION NETWORK
1) ENCODER
The convolution layer without bias is widely used in
U-Net [12] for image color filling [31], image style trans-
fer [31], and image inpainting [10], [32], which layer is
used to build the generator of our network. This generator
includes the encoder, decoder, and attention module, in which
attention module helps the network improve the quality of
recovered images by using a different strategy in the encoder
segment and the decoder segment. The encoder details are
shown in Fig.1 (marked by the green dotted box) and Fig.2.

Let Fin be an input image or feature map in the U-Net and
W be a convolution filter. The convolution of the input image
or feature map is defined as:

Fconv = W TFin (4)
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FIGURE 1. The overview of our method. The network reconstructs the missing regions of the input image is named as image completion network.

We use the local edge map EL as input of the encoder
attention module:

EL = (M ,Cpred,M , (1−M + Cpred,M )) (5)

where M represents the mask. The network should be told
where the mask is to avoid the misuse of invalid data during
convolution.Cpred,M = Cpred�(1−M) denotes the generated
edgemap of the missing areas, which can help the completion
network to extract effective information reasonably. How-
ever, the generated edge map is inevitably different from the
mask map of real images when dealing with the large missing
holes. To improve this situation, we add (1 −M + Cpred,M ),
which treats the map as an unknown part to help the network
accurately exact the features of images.

We use a learnable convolution filterKme with size 4×4 to
learn the edge and mask feature information from local edge
mapEL and generate the convolved local edgemap. Formally,
the convolved local edge map Ec is defined as:

Ec = EL ⊗ Kme (6)

Then, the extracted map is used for image feature re-
normalization. � is interpreted as the element-wise produc-
tion of the image feature map and the edge feature map, Fout
represents the output feature map:

Fout = Fconv � gA(Ec)⊗ Km3 (7)

where ⊗ denotes the convolution operator, Km3 denotes a
convolution kernel with size 3× 3. The subscript of convolu-
tion Km3 denotes the convolution size. Our method uses the
element-wise to re-normalize edge features and image fea-
tures. The combination of them is relatively rough. To solve
this problem, the convolution operation of Km3, which does
not change the size of the feature map, is adopted to further
extract the feature information in the feature map and ensure
a small number of operations. Moreover, Km3 can effectively
improve the ability to obtain deep semantic information [4].

gA(Ec) denotes the edge feature map. The step of extract-
ing features from convolved local edge map and updating to
generate the edge feature map is defined as:

gA(Ec) = ga(Ec)⊗ Km1 (8)

where Km1 is a learnable convolution filter with a size of
1 × 1. ga(Ec) is the activation function for the edge feature
map, formulated as:

ga(Ec) =

{
α exp[−(E2

c − µ)/σ
2] fEc ≥ µ

1+ (α − 1) exp[−(E2
c − µ)/σ

2] else

(9)

where α,µ, σ are learnable parameters, we set them
as α = 1.1, µ = 2.0, σ = 1.

gA(Ec) can further increase network depth, enhance the
nonlinearity of network [33], [34], and improve the ability
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FIGURE 2. The generator architecture of image completion network.

to obtain deep semantic information. Km1 is the same as that
of Km3 to extract features further.

To make edge map adapt to irregular holes and propagate
with layers in the edge attention module, the convolved edge
map Ec needs to be updated reasonably. Eout denotes the
updated edge map:

Eout = gE(Ec) (10)

The activation function used for generating the updated
edge map step is defined as:

gE(Ec) = [ReLU(Ec)]θ (11)

where θ is a hyper-parameter and we set θ = 0.8.

2) DECODER
Most learning-based methods adopt standard convolution to
treat known regions and missing holes, but it might lead
to color difference and blurring inevitably [11], [20]–[23].
Focusing the decoder on filling the irregular holes with edge
feature information and the information of known regions,
we introduce the learnable edge attention map to avoid the
misuse of invalid data and replace the standard convolution.
The decoder details are shown in Fig.1 (marked by the red
dotted box) and Fig.2.

We use global edge map EG as the input of the decoder
attention module:

EG = (1−M ,C, (1−M )× (1− C)) (12)

where 1−M represents the known regions. Image inpainting
requires that the result generated is highly consistent with

the known regions in quality and vision. The decoder of the
image completion network needs to pay more attention to
the known regions and extract feature information. C denotes
the global edge, which is composed of the actual edge of the
know regions and the edge generated by the edge generation
network of the missing areas. The global edgeC is defined as:

C = Cm
gt
�M + Cpred,M (13)

which can further extract the semantic structure feature of
the whole image, not just the missing area. This can improve
semantic consistency and reduce the color difference in the
results. (1−M )× (1−C) denotes the complementation of C
in the known regions, which can help the network make use
of the edge feature information reasonable.

The convolved edge map of the decoder is denoted as Edc ,
which extracts the reasonable features of edge information
and structure information of known regions. Formally, Edc is
defined as:

Edc = EG ⊗ Kmd (14)

where the learnable convolution filter Kmd learns the mask
and edge feature information from global edge map EG to
generate the convolved edge map Edc . The convolution kernel
size of Kmd is 4× 4.
Fdout denotes the operation of feature re-normalization

using feature map extracted from local edge map and global
edge map:

Fd
out
= W TFin � gA(Ec)+W TFd

in
� gA(Ed

c
) (15)
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where gA(Ed
c
) denotes the steps of extracting features from

global edge map. gA(Ed
c
) helps the network obtain high-level

semantics.
Fdout can combine features reasonably to improve the uti-

lization of information [35] for avoiding generate unwanted
content.

For adapting the propagate with layers, the convolved edge
map updated of the decoder is defined as:

Ed
out
= gE(Edc ) (16)

We use the learnable convolution filters Kme and Kmd ,
which change the size of the feature map to learn extract
feature information from the feature map. On the one hand,
Kme and Kmd enable the attention module to update the size
of feature map synchronously with U-Net [12] to learn and
utilize the feature information of different feature levels effec-
tively. On the other hand, for each feature layer, these learn-
able convolution filters help the network to distinguish, learn,
and process regions with different states (including known
background and unknown foreground regions), avoiding the
abuse of invalid data in the process of convolution. The learn-
able convolution filters Km3 and Km1, which do not change
the size of the feature map, are used to improve the ability to
obtain deep information. Km3 and Km1 respectively extracts
information from the feature map after feature normalization
and the edgemap. Km3 uses a 3×3 convolution filter because
a sufficient receptive field is required for network inpainting.
Km1 uses a 1 × 1 convolution filter to increase the network
depth further for extracting edge information better.

B. DISCRIMINATOR OF IMAGE COMPLETION NETWORK
The marked region by the blue dotted box in fig.1 is
the discriminator, and details of the structure are show-
ing in fig.3. Based on the Global & Local [21], we pro-
pose the dual-discriminator strategy, which can be suitable
for the irregular holes while the discriminator of Global
& Local is only working well for rectangular holes. Our
method utilizes a local discriminator to focus on the miss-
ing regions, which can effectively handle irregular holes
and generate high-frequency detail results. In the mean-
time, we use a global discriminator to improve the consis-
tency between missing regions and known parts. The fol-
lowing processes describe global discriminator and local
discriminator.

Input image Imgt and global edge C are used as inputs of the
generator of image completion network. Fill in the missing
area, the image completion network could finally generate
the inpainting image Ipred = G(Imgt ,C). The adversarial loss
of global discriminator D1 of image completion network is
expressed as:

Ladv,1 = E(Igt,C)[logD1(Igt,C)]

+EC [log(1− D1(Ipred,C))] (17)

Let’s IM = Igt � (1 − M ) be input image of the local
discriminator D2. Cpred,M = Cpred � (1 − M ) denotes the

FIGURE 3. The structure of the dual-discriminator of image completion
network.

corresponding edge map in missing regions and Ipred,M =
Ipred � (1 − M ) denotes the image prediction map in the
missing areas. The adversarial loss of local discriminator D2
is defined as:

Ladv,2 = E(IM ,C)[logD2(IM ,Cpred,M )]

+EC [log(1− D2(Ipred,M ,Cpred,M ))] (18)

C. LOSS FUNCTIONS
For better recovery of semantics and realistic details, we train
our network with Adversarial loss [19], Pixel Reconstruction
loss, Perceptual loss [37], Style loss [38].

1) ADVERSARIAL LOSS
Adversarial loss [19] can improve the visual quality of gener-
ated images, which is often used for image generation [39]
and image style transfer [40]. Moreover, Adversarial loss
makes the generator and discriminator optimized continu-
ously, improving the detail quality of generated images [41].
The total adversarial loss [36] of our image completion net-
work is computed by:

Ladv = αadv,1Ladv,1 + αadv,2Ladv,2 (19)

where αadv,1 and αadv,2 are pre-definedweights to balance the
two learning tasks. For our experiments, we set αadv,1 = 0.8,
αadv,2 = 0.2.

2) PIXEL RECONSTRUCTION LOSS
The l1 -norm error of pixel reconstruction loss is denoted by:

Ll1 =
∥∥Ipred − Igt∥∥1 (20)

where pixel reconstruction loss Ll1 [37] measures the per-
pixel difference between the inpainting images Ipred and the
original images Igt.

3) PERCEPTUAL LOSS
Adversarial loss improves texture quality, but this loss is
limited in learning structural information. In some recent
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FIGURE 4. Qualitative comparisons of results on places [14] by Global & Local (GL) [21], Context Attention (CA) [23], EdgeConnect
(EC)[11], and ours. (a) (b) (c) are divided into two parts: the lower part is the enlarged image of the upper image’s corresponding
red rectangle area.

methods, Adversarial loss and Pixel Reconstruction loss
are used to train a network for improving image quality.
However, these losses still could not capture high-level
semantics and are not suitable for generating images
consistent with human perception [38]. Perceptual loss, dif-
ferent from these, compares the features obtained by convo-
lution with the ground-truth image. This loss can measure
the similarity of high-level semantics between images [42],
effectively improving the structure of the inpainting results.
The Perceptual loss of the image inpainting network is formed
as [37]:

Lperc = E

[∑
i

1
Ni

∥∥φi(Igt)− φi(Ipred)∥∥1
]

(21)

where φi is the activation map of i-th layer of a pre-trained
network. In our implementation, φi corresponds to activation
maps from layers relu1-1, relu2-1, relu3-1, relu4-1, relu5-1 of
VGG-16 network pre-trained on the ImageNet dataset [43].

4) STYLE LOSS
Although Adversarial loss and Perceptual loss can effectively
improve texture quality and enhance detail recovery, they
could not avoid creating visual artifacts. Therefore, Style loss
is added here to improve the overall consistency. We use the

feature maps from the pooling layers of VGG-16 pre-trained
on the ImageNet dataset [43]. For our experiments, we use
relu2-2, relu3-3, relu4-4, relu5-2. The Style loss is defined as:

Lstyle = Ej
[∥∥∥Gφj (Ipred)− Gφj (Igt)∥∥∥1] (22)

where Gφj () is a Gram matrix constructed by the pre-trained
network [38], and its construction is defined as:

Gφj (x)c,c1 =
1

CjHjWj

Hj∑
h=1

Wj∑
w=1

φj(x)h,w,cφj(x)h,w,c1 (23)

5) MODEL OBJECTIVE
Taking the above loss functions, the overall objective of our
model is formed as:

LG = αLadv + αpLperc + αsLstyle + αl1Ll1 (24)

where α, αp, αs,and αl1 are hyper-parameters that balance the
contributions of different loss terms. In our implementation,
we set α = 0.1, αp = 1, αs = 250, αl1 = 1 according to the
literature [11].

IV. EXPERIMENTS AND ANALYSIS
We conduct experiments to evaluate our LEAM method on
two datasets: Paris StreetView [13] and Places365-standard
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FIGURE 5. Qualitative comparisons of results on Paris StreetView [14] by Global & Local (GL) [21], Context Attention (CA) [23],
EdgeConnect (EC) [11], and ours. (a), (b) are divided into two parts: the lower part is the enlarged image of the upper image’s
corresponding red rectangle area.

(the core set of Place [14]). For Paris StreetView, we use all
the images (the total number 14900) in the original training
set for training. And for Place, we select 10 categories from
365 categories in Places365-standard, with a total of 50,000
images for training. The masks used for training comes from
Pconv [24], a total of 12,000 images. The size of the masks
and images for training and testing is 256 × 256 pixels. We
use the Adam algorithm to optimize themodel with a learning
rate of 0.0001, and the training iterations are 200 epochs. All
experiments are conducted on a PC equipped with a single
NVIDIA Quard T4000 GPU.

A. QUANTITATIVE COMPARISON
We compare our method quantitatively with Global & Local
(GL) [21], Context Attention (CA) [23], Partial Convolutions
(Pconv) [24], and EdgeConnect (EC) [11] on images from the
validation set. Since Liu et al. do not give the official source,
the results of Pconv are taken from the paper [24]. The mask
ratios are (0.1,0.2], (0.2,0.3], (0.3,0.4], and (0.4,0.5] which
are classified based on different hole-to-image area ratios.
We use the widely used evaluation metrics PSNR, SSIM, and
MAE to evaluate the performance of different methods.

As shown in Table 1, the performances of all methods
on all metrics deteriorate gradually with the missing areas
increasing. Compared with the four methods, our method
performs the highest PSNR, SSIM, and lowest MAE, which
indicates that recovered images have the highest definition,
best quality, and lowest distortion. Specifically, our method
improves PSNR by 3.58% and SSIM by 2.27% and reduces
MAE by 9.21%.

To quantitatively investigate the effectiveness of color
restoration in our method, we calculate the mean color dif-
ference between the original images and generated images.

TABLE 1. Quantitative comparison on places.

The smaller color difference demonstrates, the more color
similarity between the restored image and original image.
We use CIE Lab chromatic aberration formula to evaluate
the performance of different methods. Table 2 shows that our
method has the smallest color difference and strongest color
restoration ability among all the test images.

B. QUALITATIVE COMPARISON
As shown in Fig.4 and Fig.5 (the red rectangle areas are
inpainting results, and the details are shown in the enlarged
images), GL [21] is effective in generating realistic local
details, but the results present meaningless textures and fuzzy
artifacts. This is mainly due to the fact that this method
could not reasonably separate the foreground and background
boundaries of missing holes and known regions, which leads
to inaccurate filling.
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FIGURE 6. Results on real-world object removal images. From left to right are: original image, input with objects masked (white
area), Global & Local (GL) [21], Context Attention (CA) [23], EdgeConnect (EC) [11], and ours. (a), (b) are divided into two parts:
the lower part is the enlarged image of the upper image’s corresponding red rectangle area.

TABLE 2. Color difference quantization table.

CA [23], compared with GL, can ensure that the inpainting
results have a certain degree of semantic coherence. However,
thismethod still could not avoid generating boundary artifacts
and confusing colors. This is since that CA is not suitable
for the inpainting with irregular holes. Moreover, its coarse
estimate is not reasonably accurate, leading the network to
generate visually implausible structures.

EdgeConnect [11] produces more smooth and reliable
results, but the continuities in color and lines do not hold well,
and a few artifacts still are observed in the results. This is
because EdgeConnect is not a method specifically designed
for handling irregular holes. For the large-area irregular miss-
ing parts, EdgeConnectmay not generate completely accurate
edge information, which leads the network to generate unrea-
sonable content finally. Compared with these methods, our
method handles these problems better, which makes texture
details more realistic and ensures semantic coherence of the
inpainting image. This is mainly due to the fact that our
method extracts effective edge feature information and uses
the information to re-normalize image feature information.
The attention module helps the network utilize known infor-
mation further to generate semantically consistent inpainting

results. Furthermore, the dual-discriminator improves the
quality of details and reduce color difference.

C. OBJECT REMOVAL
We use the model trained on Places to evaluate the effect of
our method on the real-world object removal task. As shown
in Fig.6, we use the white outline shape to cover the target
area. The red rectangle areas are the inpainting results gener-
ated by ours and the competing methods.

When the object is removed, we observe that the results
of GL generate obvious artifacts. The predictions of CA
show the semantic gap. EdgeConnect effectively improves
the overall structure consistency, but this method still gen-
erates noise. In contrast, our method generates credible
content because the edge attention map can help the net-
work extract and represent feature information accurately.
The usage of the dual-discriminator improves the quality of
details.

D. ABLATION STUDY
To illustrate the effectiveness of our method, we analyze how
the proposed modules of our method contribute to the final
performance of image inpainting. We take the U-Net [12]
image generator and a single global discriminator as the
baseline, then gradually add modules until the whole model
is formed. The modules include the edge attention module
in the encoder (ABE), edge attention module in the decoder
(ABD), and a dual-discriminator (DD).

As shown in Table 3, compared with the baseline, our
method can perform better gradually as it progressively inte-
grates each module. With gradual introduction of the edge
attention module and the dual-discriminator, the quality of
generated images is significantly improved.
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FIGURE 7. Qualitative results of the ablation study on Places2. (a), (b) are divided into two parts: the lower part is the enlarged
image of the upper image’s corresponding red rectangle area.

TABLE 3. Quantitative results of the ablation study.

The qualitative comparison is shown in Fig.7. For irreg-
ular holes, the whole module makes the best results.
Specifically, the effects of image inpainting are gradually
improved by gradually adding the attention module and dual-
discriminator.

To further investigate the effectiveness of the dual-
discriminator, we replace the dual-discriminator with the
global and local context discriminators, which are taken from
GL [21], to make a comparison. As shown in Table 4, our
dual-discriminator performances well to improve the quality
of generated images.

TABLE 4. Quantitative results of the discriminator study.

V. CONCLUSION
In this paper, we proposed a novel edge attention mapmethod
of image inpainting based on a learnable attention mod-
ule. The module effectively utilizes edge information in the
encoder and decoder. Specifically, our edge attention module
extracts edge information and utilizes the mask informa-
tion of missing areas. The information of known regions

is adopted for better detail and structure recovery. More-
over, we introduce a dual-discriminator to improve the high-
frequency detail quality and reduce the color difference of
the final generated images. Experimental results demonstrate
the effectiveness of our approach. Compared with the state-
of-the-art methods, our approach improves PSNR by 3.58%,
SSIM by 2.27%, and reduce MAE by 9.21% on average.
In the future, we plan to extend this approach to other image
tasks, such as text-to-image generation and single-image
super-resolution. Moreover, we will investigate the influ-
ence of prior information, especially structure knowledge for
image inpainting.
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