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ABSTRACT In this paper, vertical motions of sparse linear arrays (SLAs) are utilized to generate equivalent
synthetic planar arrays for two-dimensional (2D) direction-of-arrival (DOA) estimation. The proposed array
geometry named vertical synthetic planar array (VSPA) consists of an arbitrary SLA on the x-axis and a series
of its time-shifted arrays in the vertical orientation.With the original linear array and the moving trail known,
the difference coarray of VSPA can be easily obtained. By utilizing both the synthetic aperture processing
and the coarray technique, VSPA has the ability to construct a synthetic planar array with only an SLA used.
Compared with the traditional sparse planar arrays (SPAs), such as 2D nested array and 2D coprime array,
VSPA can achieve higher degree-of-freedom and improved 2D DOA estimation performance with the same
number of sensors. Moreover, as different original linear arrays and moving trails can be chosen for different
applications, the construction of VSPA is of high flexibility. Numerical simulations are presented to verify
the superiority of the proposed VSPA geometry over other typical SPAs.

INDEX TERMS Difference coarray, DOA estimation, sparse planar array, synthetic aperture, vertical
motion.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation has been playing a
significant role in array signal processing for various appli-
cations, such as radar, sonar, communication and satel-
lite navigation [1]–[4]. Compared with uniform arrays,
sparse arrays can detect more sources and reach higher
degree-of-freedom (DOF) by using the coarray technique [5].

In the previous works, several coarray-based sparse lin-
ear arrays (SLAs) are proposed to increase the virtual DOF
and obtain better DOA estimation performance. The min-
imum redundancy arrays (MRAs) [6] and minimum hole
arrays (MHAs) [7] are proposed to minimize the redun-
dant virtual sensors and the holes in the difference coarray
(DcA). However, both of them suffer from the absence of
closed-form expressions and the need of exhaustive search-
ing. Recently, nested arrays (NAs) [8] and coprime arrays
(CAs) [9] have attracted much attention for their superior-
ity in DOF enhancement. By using O(N ) physical sensors,
O(N 2) impinging sources can be detected with the covari-
ance matrix of the received signals considered. Based on the
coarray concept, some more effective SLAs were developed
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to further enhance the DOF or reduce the mutual coupling
effects. These SLAs include super nested arrays (SNAs)
[10], [11], augmented nested arrays (ANAs) [12], general-
ized coprime arrays [13], and NAs/CAs with difference-sum
coarray [14], [15].

Note that the above SLAs are placed in a stationary envi-
ronment with sensors fixed. Recent works have shown that
array motions make it possible to further increase the DOF
by utilizing the synthetic aperture (SA) processing technique
[16]–[18]. Array motions are usually realized by mounting
arrays to a moving platform which can be air-borne, vehicle-
attached or ship-based. In [19], SA processing is applied to
CAs with coprime integers M ,N . By moving N/2(N > M )
half wavelengths, the CA along with its shifted array can
generate a hole-free DcA. However, the stationary of the
signal environment is hard to be guaranteed over such a
long time period. Thus in [20], a short translation motion of
the array (merely one half wavelength) is assumed so that
the environment can be considered unchanged. And then the
inter-sensor spacing of NAs is expanded r times to construct
the dilated nested arrays (DNAs). It is shown that the DNAs
can provide a hole-free DcA with such short motion. Further-
more, the authors analyze the DOA estimation performance
of other moving SLAs, such as CAs, NAs, MRAs, MHAs
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and sparse ULAs (SULAs), with the same short translation
assumption [21]. Recently, based on the fact that longer syn-
thetic distance can be realized when the signal environment
changes sufficiently slowly [22], the multi-level DNA is pro-
posed to futher increase the array DOF bymoving the arrayK
times [23]. Besides, [24] provides the maximummoving time
at a slowmoving speed to hold the signal environment station-
ary. Consequently, the final DOF of the synthetic array can be
tripled without increasing the inter-sensor spacing as DNAs
do. Moreover, the possible errors brought in by the array
motion in the presence of phase noise have also been taken
into consideration [25]. Although motions of different SLAs
along the direction of the array layout have been discussed
and analyzed, array motions along the vertical direction are
still rarely mentioned.

In this paper, we provide the geometry of the vertical syn-
thetic planar array (VSPA) for two-dimensional (2D) DOA
estimation. By moving an one-dimensional (1D) linear array
on the x-axis vertically along the y-axis direction, a synthetic
planar array is formed by the original linear array and a
series of its time-shifted arrays. By combining all the received
data of each measurement during the motion, the equivalent
signal model can be established through the SA process-
ing. Besides, in order to increase the DOF for better DOA
estimation performance, the coarray technique is applied to
generate the DcA. Properties of the DcA of VSPA are then
provided. Moreover, the closed-form expressions of the holes
and sensor positions of different VSPA-based structures, such
as CA, NA and MRA, are provided. The main advantages of
the VSPA geometry include the high virtual DOF with small
sensor number, and the flexibility in array design. Simula-
tions verify that the VSPA-based structures can detect more
sources and reach higher performance in 2D DOA estimation
with the same number of physical sensors as typical sparse
planar arrays (SPAs). The main contributions of our work are
listed as follows.

1) We derive the method of VSPA construction, which uti-
lizes the array vertical motions to construct a synthetic
planar array with merely a linear array.

2) The proposed VSPA structure can achieve dramatically
high uniformDOFwith only a few physical sensors and
the concept of difference coarray.

3) The structure of a VSPA is of very high flexibility
in design with different combinations of the original
linear arrays and the moving trails.

The remainder of this paper is organized as follows. The
basic structure of some typical SPAs and the concept of DcA
are reviewed in Section II. In Section III, the signal model of
theVSPAs and synthetic aperture processing are summarized,
and the computational complexity is analyzed. Next, some
main properties of the DcA of VSPAs are disscussed in
Section IV. The closed-form expressions of DcAs of several
VSPA-based structures as well as the performance analysis
of them are then presented. In Section V, the number of
detectable sources of some typical SPAs and VSPA-based
structures are given. Then, the performance of 2D DOA

estimation are evaluated with the same number of physical
sensors, demonstrating the superiority of the proposed VSPA
geometry. Section VI concludes the paper.
Notations:We use lower-case (upper-case) boldface sym-

bols to represent vectors (matrices). (·)T implies the trans-
pose, whereas (·)∗ and (·)H denotes complex conjugation and
complex conjugate transpose of a matrix or vector, respec-
tively. vec(·) denotes the vectorization operator that turns a
matrix into a vector. diag(x) denotes a diagonal matrix with
the elements of x as the diagonal elements. tr(·) denotes the
trace of a matrix. ⊗ implies the Kronecker product and �
implies the Khatri-Rao (KR) product. bac rounds a to the
nearest integer no more than a, while dae rounds a to the
nearest integer no less than a.

II. REVIEW OF SPAs AND COARRAY
In this section, the concept of DcA is given first. Then
brief review of two most commonly used SPAs, namely the
2D nested array (2D-NA) [26], [27] and 2D coprime array
(2D-CA) [28], [29], as well as their corrsponding DcAs are
provided.
Definition 1 (Difference Coarray): For an array whose

sensor positions are specified by set S, the DcA is defined
as the set of differences between every two sensor positions
in S, i.e.,

D = {p1 − p2 |p1,p2 ∈ S}. (1)

�
Note that for some SPAs, their DcAs are not com-

pletely consecutive. Generally, the largest uniform rectan-
gular array (URA) in the DcA is extracted to execute the
subspace-based DOA estimation methods. For the sake of
evaluating the performance of arrays, the definitions of array
virtual aperture as well as DOF are given as follows:
Definition 2 (Array Virtual Aperture): For a planar array

S with an rectangular DcA D, suppose p1 = (x1, y1) and
p2 = (x2, y2) are two furthest virtual sensors in D. Then,
the array virtual aperture (AVP) is the product of the absolute
differences in two coordinates between p1 and p2, denoted as
A = |x1 − x2| × |y1 − y2|. �
Definition 3 (Degree-of-Freedom): For an array S, let D

denote the corresponding DcA, andU denote the largest URA
area available for DOA estimation in D. Then, the cardinali-
ties ofD andU are respectively called DOF and uniformDOF
(uDOF), denoted as D and U . �

A 2D-NA consists of a dense uniform array and a sparse
uniform array which share the first sensor at the origin. The
dense array is ofN1×N1 sensors with the inter-sensor spacing
of d = λ

2 , where λ denotes the wavelength. And the sparse
array is of N2 × N3 sensors with the inter-sensor spacing of
N1d . The total number of sensors is Ns = N 2

1 + N2N3 − 1.
For simplicity, the unit inter-sensor spacing d is omitted in the
rest of this paper. The sensor positions of 2D-NA are given by

S2D-NA = {(x, y) | x, y ∈ [0 : 1 : (N1 − 1)]}

∪ {(x, y) | x ∈ [0 : N1 : (N2 − 1)N1],

y ∈ [0 : N1 : (N3 − 1)N1]}, (2)
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where [a : s : b] represents the values in the range of
[a, b] sampled by step s. The corresponding AVP and uDOF
of 2D-NA are

A2D-NA = 2N1(N2 − 1)× 2N1(N3 − 1),

U2D-NA = N1N2 × N1N3. (3)

Notice that the uDOF is much lower than the AVP because
of the existence of holes in the DcA. Only the virtual sensors
in the largest URA within DcA can be used in the 2D DOA
estimation.

An example of 2D-NA is depicted in Fig. 1, whereN1 = 3,
N2 = N3 = 4, and the number of sensors is totally Ns = 24.
It can be seen from Fig. 1(b) that the DcA of 2D-NA contains
two URAs of the same size, which are marked out by the
dashline. The AVP and uDOF are A2D-NA = 18 × 18 and
U2D-NA = 12 × 12, respectively. One of the URA is in the
area of U2D-NA = {(x, y) | x, y ∈ [−2 : 1 : 9]}. The other is
symmetric about the origin. Since only one of the two URAs
can be fully used, the performance of 2D DOA estimation is
limited.

FIGURE 1. Example of a 2D-NA with N1 = 3,N2 = N3 = 4. (a) The
physical array. (b) The DcA. The blue and red bullets denote sensors in the
two subarrays, and the black crosses denote positions without sensors.

A 2D-CA consists of two uniform subarrays with the first
sensors overlapped. One subarray has N × N sensors with
inter-sensors spacing of Md . The other one has M × M
sensors with inter-sensor spacing ofNd .M andN are coprime
integers. The total number of sensors is Ns = M2

+ N 2
− 1.

Without loss of generality, we assumeM < N . Then, the sen-
sor positions of 2D-CA are given by

S2D-CA = {(x, y) | x, y ∈ [0 : M : (N − 1)M ]}

∪ {(x, y) | x, y ∈ [0 : N : (M − 1)N ]}. (4)

The corresponding AVP and uDOF of 2D-CA are

A2D-CA = 2M (N − 1)× 2M (N − 1),

U2D-CA = (2M + N − 1)× (2M + N − 1). (5)

Fig. 2 shows an example of 2D-CA forM = 3,N = 4. The
total number of sensors is Ns = 24. The URAs in DcA locate
in U2D-CA = {(x, y) | x ∈ [−6 : 1 : 2], y ∈ [−2 : 1 : 6]} and
the mirrored area, as shown in Fig. 2(b). The corresponding
AVP and uDOF are A2D-CA = 18× 18 and U2D-CA = 9× 9,

respectively. Although the sensor number and AVP are the
same as that of the above example of 2D-NA, the uDOF
of 2D-CA is lower, which leads to worse 2D DOA estimation
performance.

FIGURE 2. Example of a 2D-CA with M = 3,N = 4. (a) The physical array.
(b) The DcA.

III. THE PROPOSED METHOD
A. THE DERIVATION OF VSPA
Consider a linear array with Ns sensors placed horizontally
(on the x-axis) moving at a constant velocity vy vertically
(along the y-axis). Let po = [p1, p2, . . . , pNs ] denote the
1D sensor positions of the original linear array, and the first
sensor is assumed as the reference, i.e., p1 = 0. Then the
array sensors are positioned at S1 = {(x, 0) | x ∈ po}.
Let τ denote the unit time interval for the array to move a
distance of d , i.e., vyτ = d . Assume totally Ms measure-
ments are taken when the array moves vertically and arrives
at positions {(x, li) | x ∈ po, i = 1, 2, . . . ,Ms}, then the
set pm = {l1, l2, . . . , lMs} is called the moving trail. The
schematic is illustrated in Fig. 3 where a nested array is taken
as an example. The solid blue circles and dotted red circles
represent the sensor positions of the original and the shifted
arrays, respectively.

FIGURE 3. The schematic diagram of a vertically moving linear array.

Suppose that the received signals are from Q far-field
uncorrelated narrowband sources, which are described as
sq(t), t = Ts, 2Ts, . . . ,KsTs, for q = 1, 2, . . . ,Q, where
Ts and Ks represent the sampling interval and the number
of snapshots respectively. The power of the qth source is
σ 2
q . The arrival azimuth angle and elevation angle of the
qth source are denoted as θq ∈ [0, 2π ] and φq ∈ [0, π2 ]
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respectively. Define cos(αq) = cos(θq)sin(φq) and cos(βq) =
sin(θq)sin(φq). Then, the output of the receive array at
moment t is expressed as

x(t) =
Q∑
q=1

sq(t)exp
(
−j2π

vyt
λ
cos(βq)

)
aq + n(t)

= As(t)+ n(t), (6)

where

aq =
[
1, exp(−j2π

d
λ
(x2cos(αq)+ y2cos(βq))),

. . . , exp(−j2π
d
λ
(xNscos(αq)+ yNscos(βq)))

]T
(7)

is the steering vector and

s(t) =
[
s1(t)exp(−j2πvytcos(β1)/λ),

s2(t)exp(−j2πvytcos(β2)/λ)

, . . . , sQ(t)exp(−j2πvytcos(βQ)/λ)
]T (8)

is the signal vector. A = [a1, a2, . . . , aQ] ∈ CNs×Q denotes
the array manifold matrix, and n(t) is the zero-mean complex
additive white Gaussian noise vector with power σ 2

n .
Similarly, at moment t + liτ , the received signal changes

into

x(t + liτ ) =
Q∑
q=1

sq(t + liτ )exp(−j2π
vyt
λ
cos(βq))

· exp(−j2π
vyliτ
λ

cos(βq))aq + n(t + liτ )

= Bis̄(t + liτ )+ n(t + liτ ), (9)

where Bi = [bi,1,bi,2, . . . ,bi,Q] ∈ CNs×Q,B1 = A with

bi,q = exp(−j2π
vyliτcos(βq)

λ
)aq

=
[
exp(−jπ licos(βq)),

exp(−jπ(x2cos(αq)+ (y2 + li)cos(βq))), . . . ,

exp(−jπ(xNscos(αq)+ (yNs + li)cos(βq)))
]T
, (10)

and

s̄(t + liτ ) =
[
s1(t + liτ )exp(−j2πvytcos(β1)/λ),

s2(t + liτ )exp(−j2πvytcos(β2)/λ), . . . ,

sQ(t + liτ )exp(−j2πvytcos(βQ)/λ)
]T
. (11)

As we have assumed that the signals are narrowband with
carrier frequency fc, sq(t + liτ ) = exp(j2π fcliτ )sq(t) holds.
Thus, (9) can be rewritten as

x(t + liτ ) = exp(j2π fcliτ )Bis(t)+ n(t + liτ ). (12)

By utilizing the following phase correction technique [30]
with the factor exp(−j2π fcliτ ), we can obtain the phase syn-
chronized received signal vector as

x̃(t + liτ ) = x(t + liτ )exp(−j2π fcliτ )

= Bis(t)+ ñ(t + liτ ), (13)

where ñ(t+liτ ) = exp(−j2π fcliτ )n(t+liτ ). Note that during
the entire period of motion, since the signals are from far-field
sources, the signal environment and source directions with
respect to the array are assumed to be unchanged.

Stacking all the signals received in each measurement into
a single vector yields

y(t) =



x(t)
x̃(t + l2τ )
...

x̃(t + liτ )
...

x̃(t + lMsτ )


=



As(t)+ n(t)
B2s(t)+ ñ(t + l2τ )
...

Bis(t)+ ñ(t + liτ )
...

BMss(t)+ ñ(t + lMsτ )


= Cs(t)+ n̂(t), (14)

where

C =
[
AT ,BT2 , . . . ,B

T
Ms

]T
= [c1, c2, . . . , cQ]

and

n̂(t) = [nT (t), ñT (t + l2τ ), . . . , ñT (t + lMsτ )]
T .

y(t) can be equivalently treated as the data received by
a synthetic planar array at the moment t . This kind of syn-
thetic planar array constructed upon moving a specific linear
array in a specific trail vertically is named as VSPA. Due to
the assupmtion that the sources and noise are uncorrelated,
the covariance matrix of y(t) can be expressed as

Ry = E[y(t)yH (t)] = CRsCH
+ σ 2

n INSA , (15)

where E(·) is the statistical expectation operator, Rs =

E[s(t)sH (t)] = diag([σ 2
1 , σ

2
2 , . . . , σ

2
Q]) is the source covari-

ance matrix, and INSA is an identity matrix withNSA being the
total number of sensors in VSPA. In practice, since the true
statistics of Ry is unavailable, it is usually estimated from the
Ks snapshots by R̂y =

1
Ks

∑Ks
k=1 y(t)y

H (t).
Vectorizing Ry yields

z = vec(Ry) = (C∗ � C)p̃+ σ 2
n i, (16)

where the qth column of C∗ � C is c∗q ⊗ cq, p̃ =

[σ 2
1 , σ

2
2 , . . . , σ

2
Q]

T , and i = vec(INSA ). By extracting all the
consecutive unique elements of the DcA from z and applying
the 2D spatial smoothing technique [31], the full rank matrix
Rz can be constructed. Then, the subspace-based 2D DOA
estimation methods can be executed to Rz. In this paper,
we utilize the 2D unitary ESPRIT algorithm [32].

B. COMPUTATIONAL COMPLEXITY ANALYSIS
In the following, we will analyze the computational complex-
ity of our proposed method. Note that only the real multipli-
cations in the method are taken into account. The additions
and other low-complexity operations are ignored. The com-
putations mainly appear in the following three stages.

1) The covariance matrix Ry. Since y(t) is a NsMs × 1
vector of VSPA, Ry need N 2

s M
2
s multiplications for
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each snapshot. Therefore, for allKs snapshots, there are
totally N 2

s M
2
s Ks multiplications.

2) The 2D spatial smoothing. Vectorizing Ry yields the
N 2
s M

2
s × 1 vector z. Suppose that the uDOF of VSPA

is U = Lux × Luy. Thus, the equivalent single snap-
shot data vector of the central URA extrated from
the unrepeated elements of z is zu ∈ CLuxLuy×1.
Denote L̃x =

Lux+1
2 and L̃y =

Luy+1
2 . After spatial

smoothing, an L̃x L̃y × L̃x L̃y covariance matrix Rz with
full-rank can be obtained. This process needsO(̃L3x L̃

3
y )

multiplications.
3) The 2D Unitary ESPRIT algorithm. Finally, based

on Rz we conduct 2D Unitary ESPRIT algorithm for
2D DOA estimation. According to [33], during the
algorithm about O((̃Lx L̃y)3 + L̃3x + L̃3y + (̃Lx L̃y)2Q +
L̃x L̃yQ2

+ Q3) real multiplications are needed.
As a result, the total computational complexity of our pro-
posed method is the sum of the above three parts. Notice
the fact that O(̃Lx L̃y) ≈ O(N 2

s M
2
s ) and Q � L̃x L̃y. Thus,

when the number of snapshots Ks is infinite, the complexity
is approximate to O(̃L3x L̃

3
y ).

IV. DIFFERENCE COARRAY OF VSPA
As described in Section III-A, a VSPA is the equivalent
synthetic planar array of an arbitrary linear array moving in
vertical trail. The sensor positions of the linear array in the ith
measurement are expressed as

Si = {(x, li) | x ∈ po, li ∈ pm}. (17)

Combining the sensor positions of the original linear array
and all the shifted arrays, the entire set of sensor positions of
VSPA is expressed as

SVSPA = S1 ∪ S2 ∪ . . . ∪ SMs . (18)

Thus, the DcA of VSPA has the form of

DVSPA =

Ms⋃
i,j=1

Si − Sj. (19)

The following properties hold for the DcA of VSPA.
Proposition 1 (Consecutive Area in DcA): Let Dpo =

po−po andDpm = pm−pm denote the 1DDcAs of the original
linear array and the moving trail, respectively. Moreover,
Apo , Apm , Upo and Upm are the corresponding AVPs and
uDOF. Then, the relationships among the DcAs of SVSPA,
po and pm can be concluded as follows.
1) Each row and column of DVSPA have the same geome-

tries as Dpo , and Dpm , respectively, i.e., DVSPA =

{(x, y) | x ∈ Dpo , y ∈ Dpm}.
2) Subsequently, the largest URA in the DcA is formed

by both the largest ULA parts in the DcA of the orig-
inal linear array and the moving trail, i.e., UVSPA =

{(x, y) | x ∈ Upo , y ∈ Upm}.
3) Finally, the AVP of VSPA isAVSPA = Apo×Apm , and

the corresponding uDOF is UVSPA = Upo × Upm .
�

As each row and each column of VSPA are respectively
identical, the above properties can be easily proved by the
geometric relations. Next, we take some examples to help
illustrate the characteristics of VSPA. Note that we name a
certain VSPA structure in the form of ‘‘VSPA-origin-trail’’.
Themiddle affix origin represents the structure of the original
linear array, and the suffix trail represents the structure of the
moving trail.

A. VSPA-CA-CA
AVSPA-CA-CAderives from aCAwithNs = M+N−1 sen-
sors moving in the trail of another CA. For simplicity, we let
the trail have the identical geometry with the original CA.
Note that the geometry of VSPA-CA-CA is different from the
2D-CA. Each row and column of the VSPA-CA-CA is a CA,
while the 2D-CA is formed by two uniform planar subarrays
with only the first row and the first column being CAs. It is
known that the DcA of CA has holes. We can directly obtain
the positions of holes in the DcA of VSPA-CA-CA expressed
as [14]

HVSPA-CA-CA = {(x, y) | x, y = ±(aM + bN ), a ≥ 0, b > 0,

0 < aM + bN < M (N − 1)}. (20)

The corresponding AVP and uDOF of VSPA-CA-CA are

A2D-CA = 2M (N − 1)× 2M (N − 1),

UVSPA-CA-CA = (2M + 2N − 1)× (2M + 2N − 1). (21)

The AVP of VSPA-CA-CA is the same as that of the
2D-CA while the uDOF of VSPA-CA-CA is higher than
that of 2D-CA. As a result, the VSPA-CA-CA uses only
Ns = M+N−1 physical sensors to reachO(4M2N 2) uDOF.
Another advantage of this structure comes from the sparse
distribution of CA which brings less mutual coupling effect.
However, the holes still limit the uDOF as well as the number
of detectable sources.

Note that we always aim at maximizing the final uDOF.
Therefore, the optimum values of coprime integersM ,N are
selected as close as possible.

Fig. 4 shows a VSPA-CA-CA with M = 3,N = 4,
which are selected properly to obtain the optimum uDOF.
The total number of physical sensors is Ns = 6. Fig. 4(a)
shows the physical geometry where the solid blue circles
denote the original CA and the dashed red circles denote the
moving trail. Fig. 4(b) draws the cooresponding DcA. In this
case, the AVP is AVSPA-CA-CA = 18 × 18 and the uDOF is
UVSPA-CA-CA = 13×13. Compared with the 2D-CA in Fig. 2,
the VSPA-CA-CA can obtain the same AVP but higher uDOF
with fewer physical sensors.

B. VSPA-NA-NA
Similarly, a VSPA-NA-NA comes from an 1D NA moving
along the trail of 1D NA vertically. Thus, each row and
column of VSPA-NA-NA is an NA, whereas neither of the
rows or columns in 2D-NA is ofNA structure. Note that in this
paper we only consider the case of two-level NA since its DcA
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FIGURE 4. The VSPA-CA-CA for M = 3,N = 4. (a) The synthetic array.
(b) The DcA.

is hole-free. The K-level NA combined with the proposed
VSPA concept still holds the above properties. Suppose that
the moving trail has the same structure as the original NA.
According to Proposition 1, the DcA of VSPA-NA-NA is
completely consecutive, i.e.,

DVSPA-NA-NA

= UVSPA-NA-NA

= {(x, y) | x, y ∈ [−N2(N1 + 1) : 1 : N2(N1 + 1)]}. (22)

In other words, the entire virtual aperture can be used and the
DOF of VSPA-NA-NA is equal to its uDOF, i.e.,

AVSPA-NA-NA = 2(N2(N1 + 1)− 1)× 2(N2(N1 + 1)− 1),

DVSPA-NA-NA = UVSPA-NA-NA

= (2N2(N1 + 1)− 1)× (2N2(N1 + 1)− 1).

(23)

The optimum parameters to maximize the uDOF are
N1 = b

Ns
2 c,N2 = d

Ns
2 e.

Although VSPA-NA-NA can reach higher DOF than
VSPA-CA-CA with the same Ns, it suffers more severe
mutual coupling effect because of the dense part in the orig-
inal NA. Moreover, it consumes more time to complete the
motion and sampling since the moving trail in this case is
longer than that of VSPA-CA-CA.

Fig. 5 shows an example of VSPA-NA-NA for N1 =

N2 = 3. Fig. 5(a) and 5(b) illustrate the physical geometry
and the corresponding DcA, respectively. It can be seen that
the hole-free DcA of VSPA-NA-NA reaches high uDOF of
DVSPA-NA-NA = 23 × 23 with the same number of physical
sensors Ns = N1 + N2 = 6.

C. VSPA-CA-NA/VSPA-NA-CA
From the above two examples, we can figure out that given the
original linear array and the moving trail, the VSPA is easy to
construct with few physical sensors. Different combinations
of the original linear array and the moving trail can result in
different DcAs. Take VSPA-CA-NA and VSPA-NA-CA as
examples for comparison. The holes locate in their DcAs can
be expressed as

HVSPA-CA-NA = {(x, y) | x = ±(aM + bN ),

y ∈ [−N2(N1 + 1) : 1 : N2(N1 + 1)]},

FIGURE 5. The VSPA-NA-NA for N1 = N2 = 3. (a) The synthetic array.
(b) The DcA.

HVSPA-NA-CA = {(x, y) | x∈ [−N2(N1+1) : 1 : N2(N1+1)],

y = ±(aM + bN )}. (24)

where a ≥ 0, b > 0, 0 < aM + bN < M (N − 1). And the
AVP and uDOF for each array are

AVSPA-CA-NA = 2M (N − 1)× 2(N2(N1 + 1)− 1),

UVSPA-CA-NA = (2M + 2N − 1)× (2N2(N1 + 1)− 1),

(25)

and

AVSPA-NA-CA = 2(N2(N1 + 1)− 1)× 2M (N − 1),

UVSPA-NA-CA = (2N2(N1+1)−1)×(2M+2N−1). (26)

It can be figured out that both the physical sensor positions
and the DcAs of the two structures are different. The VSPA-
CA-NA is physically sparser while the moving distance of
VSPA-NA-CA is shorter. But the largest number of consec-
utive sensors in the DcAs are the same. This fact reminds us
that when designing a VSPA-based structure for determined
aperture or uDOF, one should make a trade-off between the
sensor distribution and the moving distance, in considera-
tion of the physical aperture, the DOF, the mutual coupling,
the time consumption etc.

In Fig. 6, a VSPA-CA-NA and a VSPA-NA-CA as well
as their DcAs are shown. The array parameters are M = 3,
N = 4,N1 = N2 = 3 for both arrays, and the total number
of physical sensors is Ns = M + N − 1 = N1 + N2 = 6.
The geometries of the synthetic arrays are different but both
of the largest numbers of consecutive sensors are 437. The
uDOFs of the two arrays are UVSPA-CA-NA = 19 × 23 and
UVSPA-NA-CA = 23× 19.

D. VSPA-MRA-MRA
For generality, we also consider the combination of VSPA
and MRA to maximize the achievable uDOF. Table. 1 lists
some of the searching results of MRA. It can be seen that
when Ns = 6, the 1D MRA can generate a hole-free DcA
with UMRA = 27. Thus, the VSPA-MRA-MRA based on this
original MRA can reach UVSPA-MRA-MRA = 27 × 27, which
is higher than that of all the structures mentioned above.
Remarks: Although the geometry of VSPA-NA-NA (or

VSPA-CA-CA) may seem like 2D-NA (or 2D-CA) when
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FIGURE 6. M = 3,N = 4,N1 = N2 = 3. (a) The VSPA-CA-NA. (b) The DcA
of VSPA-CA-NA. (c) The VSPA-NA-CA. (d) The DcA of VSPA-NA-CA.

TABLE 1. Searching results of MRA.

the parameters are similar, the fact is that they are totally
different. Sensor positions of VSPA are determined by the
chosen original linear array and moving trail, while that
of SPAs follow specific closed-form expressions. The main
contribution of VSPA lies on the construction of 2D arrays
with only one 1D arrays used. Thus, for the same aperture,
VSPA needs less physical sensors. With the same number of
sensors, VSPA can reach much higher DOF. As the original
linear array and the moving trail can be arbitrarily chosen,
VSPA has high flexibility and can be customized to meet
different demands. However, VSPA is more time-consuming
and stricter to the signal environment.

E. ACHIEVABLE uDOF
In Table. 2, the parameters for different planar arrays and
the achievable uDOFs of them are presented for Ns = 12.
Besides the 2D-CA and 2D-NA mentioned in Section II,
two more recently proposed planar arrays are also taken into
account, namely the half open box array with two layers
(HOBA-2) [34] and the ladder array (LdA) [35]. Both of
the two structure are improvements of the open box array
(OBA) [36]. The OBA can use Ns = Nx + 2Ny − 2
sensors to generate a hole-free DcA with the uDOF

TABLE 2. Achievable uDOFs comparison of different arrays.

FIGURE 7. CRB vs. Q for different structures where SNR is 10dB and
Ks = 1000.

of UOBA = (2Nx − 1) × (2Ny − 1). HOBA-2 and LdA can
generate the same URA in DcA as their base OBA. From
Table. 2 it is clear that when the total number of physical
sensors is the same, the uDOFs of VSPA-based arrays are
much higher than that of the other planar arrays. And with
such high uDOF, more sources can be detected and higher
performance of 2D DOA estimation can be achieved.

F. Cramér–Rao BOUND
The Cramér–Rao bound (CRB) offers a lower bound on the
variances of unbiased estimates of parameters, which in our
case refer to the 2D DOAs. In the following, we derive
the 2D DOA CRB expression for VSPA according to [37].
Under the unconditional model assumption (UMA) [38] and
further assuming that the sources are known a priori to be
uncorrelated, the CRB for coarray-based DOA estimators can
be derived.

Recall from (15) and (16) that we have obtained the covari-
ance matrix of the synthetic receiving data, Ry, as well as its
vectorized form, z. Define ζ as the 3Q×1 unknown parameter
vector:

ζ = [2T , p̃T , σ 2
n ]
T , (27)
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FIGURE 8. DOA estimation results for different Ns = 12 arrays using SS-UESPRIT. (a) 2D-CA with M = 2,N = 3 for Q = 4. (b) 2D-NA with
N1 = 2,N2 = N3 = 3 for Q = 4. (c) HOBA-2 with Nx = 6,Ny = 4 for Q = 6. (d) LdA with Nx = 6,Ny = 4 for Q = 6. (e) VSPA-CA-CA with
M = 6,N = 7 for Q = 20. (f) VSPA-NA-NA with N1 = N2 = 6 for Q = 64. (g) VSPA-CA-NA with M = 6,N = 7,N1 = N2 = 6 for Q = 36.
(h) VSPA-MRA-MRA for Q = 100.

where 2 = [cos(α1), . . . , cos(αQ), cos(β1), . . . , cos(βQ)]T

is the vector of the normalized 2D DOAs, and p̃ is the vector
of source power defined in (16). Then, the Fisher Information
Matrix (FIM) is given by

F(ζ ) = Kstr
(
R−1y

∂Ry

∂ζ
R−1y

∂Ry

∂ζ

)
= Ks

[
vec

(
∂Ry

∂ζ

)]H (
R−Ty ⊗ R−1y

)
vec

(
∂Ry

∂ζ

)
= Ks

[(
RT
y ⊗ Ry

)− 1
2 ∂z
∂ζ

]H [(
RT
y ⊗ Ry

)− 1
2 ∂z
∂ζ

]
,

(28)

where the partial derivation ∂z/∂ζ is given by

∂z
∂ζ
=

[
∂z
∂2

,
∂z
∂p̃
,
∂z
∂σ 2

n

]
=

[
∂(C∗ � C)

∂2
Rs, C∗ � C, i

]
. (29)

Let

M2 =

(
RT
y ⊗ Ry

)− 1
2 ∂z
∂2

,

M1 =

(
RT
y ⊗ Ry

)− 1
2
[
∂z
∂p̃
,
∂z
∂σ 2

n

]
, (30)
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then (28) can be expressed as

F(ζ ) = Ks

[
MH
2M2 MH

2M1

MH
1M2 MH

1M1.

]
(31)

Consequently, the CRB of 2D DOAs can be obtained by the
block-wise inversion:

CRB(2) =
1
Ks

[
MH
25
⊥

M1
M2

]
, (32)

where5⊥M1
= I−M1

(
M1

HM1

)−1
M1.

In Fig. 7 we examine the dependence of CRB(2) on the
source number Q for 2D-CA, 2D-NA, HOBA-2, LdA and
the VSPA-based structures mentioned earlier in this section.
For all arrays, the total number of sensors is Ns = 12
(see Table 2), the signal-to-noise ratio (SNR) is 10dB, and the
number of snapshots is Ks = 1000. First of all, it can be seen
that all the VSPA-based structures have much lower CRBs
than other planar arrays. This can sufficiently validate the
effectiveness of our proposed method in 2D DOA estimation.
Furthermore, the VSPA-MRA-MRA has the lowest CRB
among the VSPA-based structures, since the uDOF of it is
the highest.

V. SIMULATION RESULTS
In this section, we present some simulations to validate the
superiority of the proposed VSPA geometry. All the DOA
estimation results are through Nm = 100 times of indepen-
dent Monte Carlo trials among 8 array structures, namely
2D-CA, 2D-NA, HOBA-2, LdA, VSPA-CA-CA, VSPA-NA-
NA, VSPA-CA-NA and VSPA-MRA-MRA. For fair compar-
ison, the total number of physical sensors for all arrays is set
to beNs = 12, and the detailed array parameters can be found
in Table. 2. For all arrays, the 2D DOA estimation method is
chosen to be the 2D unitary ESPRIT with spatial smoothing.

A. DETECTABLE NUMBER OF SOURCES
In the first simulation, we examine the number of detectable
sources for each array. In all cases, the input SNR is 10dB
and Ks = 1000. The true 2D DOAs of the Q sources are
set to be uniformly distributed in the range {(θ, φ) | θ ∈
[−60◦, 60◦], φ ∈ [10◦, 80◦]}.
Fig. 8 illustrates the 2DDOA estimation results of all trials.

2D-CA and 2D-NA get similar results of detecting merely
Q = 4 sources as shown in Fig. 8(a) and Fig. 8(b), since both
of their uDOFs are only 6× 6. Obvious errors start to appear
whenQ gets larger than 6 for them. In Fig. 8(c) and Fig. 8(d),
although HOBA-2 and LdA can reach the uDOF of 11 × 7,
Q = 6 sources are almost the extreme for them to distinguish.
Especially when the elevation angle φ is close to 0◦ or 90◦,
the estimation accuracy gets obviously worse. However, for
the VSPA-based structures in Fig. 8(e)-(h), the estimation
results keep precise even when Q is much larger than Ns.
Especially for VSPA-NA-NA and VSPA-MRA-MRA, up to
64 and 100 distinct sources are detected with little bias.
In consequence, for the same Q, the VSPA-based structures
perform outstandingly over typical SPAs in both number of

detectable sources and detection accuracy. This result mainly
owes to the fact that the VSPA-based structures can reach
sufficiently high uDOF.

B. DOA ESTIMATION PERFORMANCE
In this simulation, we examine the Root Mean-Square Error
(RMSE) of different array structures through all trials for
DOA estimation performance comparison. The RMSE is
expressed as

RMSE =

√√√√√ 1
QNm

Nm∑
n=1

Q∑
q=1

(θ̂q(n)− θq)
2
+ (φ̂q(n)− φq)

2
,

(33)

where (θ̂q(n), φ̂q(n)) is the estimated 2D DOA of (θq, φq) for
the nth Monte Carlo trial.

FIGURE 9. RMSE vs. SNR for different arrays where Ks = 1000 and Q = 9.

In Fig. 9, the dependence of RMSE on the input SNR
varying from −10dB to 20dB is examined. The number of
sources is Q = 9 and the number of physical sensors is
Ns = 12 for all arrays. Ks = 1000 snapshots are taken in
each measurement. It can be seen that neither of the 2D-CA
and the 2D-NA has sufficient ability to detect Q = 9 sources,
since both of their uDOFs are 6 × 6 and even lower after
2D spatial smoothing. The performances of HOBA-2 and
LdA are better than 2D-CA and 2D-NA, but the RMSEs
saturate to a relatively high level as SNR increases. As for the
VSPA-based structures, all of them get much more accurate
results than the previous arrays. VSPA-MRA-MRA performs
the best, followed by VSPA-NA-NA, then VSPA-CA-NA,
and finally VSPA-CA-CA. The results completely match the
uDOFs of these structures.

Fig. 10 illustrates the RMSEs for different number of snap-
shots, which varies from 200 to 6000. The SNR is 10dB in all
cases. Similar to the last experiment, both of the 2D-CA and
the 2D-NA fail to accomplish the estimations with Ns = 12.
Errors for HOBA-2 and LdA reduce to an acceptable amount
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when Ks is sufficiently large. The VSPA-based structures
keep performing well throughout all cases, even when Ks
is only 200. The order of their performance still obeys the
order of their uDOFs. This simulation along with the last one
about SNR can verify that the proposed VSPA is effective in
enhancing the performance of 2D DOA estimation.

FIGURE 10. RMSE vs. number of snapshots for different arrays where SNR
is 10dB and Q = 9.

In the above two experiments, the SPAs in previous works
perform not well since the uDOFs of them are not enough.
Thus, in the next simulation we present the RMSE for differ-
ent Q as shown in Fig. 11. Note that Ns = 12, SNR is 10dB
and Ks = 1000 for all arrays in all cases. Q is set to vary
from 1 to 9 because UESPRIT fails to give resolutions to 2D-
CA and 2D-NA for larger Q. The result shows that 2D-CA
and 2D-NA start to make obvious errors when Q > 4, which
is identical to the previous two simulations. The RMSEs of
HOBA-2 and LdA gradually rise as the source number grows.
However, the VSPA-based structures keep high performance
for all cases as the uDOFs of them are much larger than 9.
This result accords with the calculated CRBs in Fig. 7.

FIGURE 11. RMSE vs. source number for different arrays where SNR is
10dB and Ks = 1000.

Consequently, all simulations above verify the superiority
of the proposed VSPA geometry. When designing VSPAs,
the choice of original linear array mainly affects the distri-
bution of physical sensors, while the choice of moving trail
mainly determines the final 2D aperture and brings in the
complexity of sampling.

VI. CONCLUSION
In this paper, we utilize the thought of synthetic aperture
processing to make an arbitrary linear array move vertically
to generate a synthetic planar array, i.e., VSPA geometry. The
VSPA is easy to construct and has high flexibility to design
for specific requirements. The sparsity of array geometry and
high DOF can be satisfied at the same time for proper choice
of the original linear array and the moving trail. Simulation
results have validated the superiority of the VSPA-based
arrays over typical 2D arrays when the number of physical
sensors are the same. The enhanced performance of VSPA
is at cost of extra time consumption. Thus, in practice the
moving distance and velocity should always be taken into
consideration to hold the assumption of stationary signal
environment.
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