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ABSTRACT In wireless sensor networks, sensor nodes, the miniature embedded devices, have limitation
of energy, storage, computing, and etc. One of the tasks of the nodes is to use their limited resources to
complete work efficiently. Choosing high quality link communication can effectively save energy. In this
paper, we propose a link quality estimation model that is based on deep forest. To avoid a noise sample
becoming a center point in the clustering, we use an improved K-medoids algorithm based on step increasing
and optimizing medoids (INCK) when dividing the link quality grades. During the sample preprocessing
stage, the Pauta criterion is used to delete the noise link samples, and we fill the mean value of each grade
into the missing values. The feature extraction performance of deep forest is improved by combining the
stratified sampling to change the unbalance distribution of link quality samples. And then the Stratified
Sampling Cascade Forest link quality estimation (SCForest-LQE) is constructed by combining stratified
sampling with cascade forest. The experiments are conducted in three real application scenarios. Compared
with the existing six link quality estimation models, SCForest-LQE has better estimation performance and
stability.

INDEX TERMS Wireless sensor networks, link quality estimation, deep forest, stratified sampling.

I. INTRODUCTION
Wireless sensor networks (WSNs) are formed by self-
organizing multiple sensor nodes through wireless commu-
nication technology. The nodes are organized into a sensor
network in a certain way to cover the monitoring scope,
and the sensor nodes calculate the collected information and
transmit it to the sink node. In WSNs, the quality of the link
communication can reflect the real state of the link, and the
selection of high quality for wireless link communication
can avoid the energy consumption of rerouting and data
retransmission caused by the influence of the environment
on the sensor nodes. It can improve the reliability of the
network protocol and algorithm by applying it to the actual
industrial Internet of things, agricultural monitoring, location
perception and so on. The nodes are distributed in a complex
and diverse environment, for example, a grove where there
are stones and trees blocking the nodes, an office covered by
Bluetooth and Wi-Fi, a road with a flow of people and vehi-
cles, and so on. These barriers will lead tomultipathweakness
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and path loss of radio signal propagation, which will result
in fluctuations in the link communication quality. In addi-
tion, climate factors will also affect node communications.
Weather changes have a negative correlation on the signal
strength, especially the effect of temperature and humidity
on the Packet Received Rate (PRR) and Received Signal
Strength Indicator (RSSI) [1]. A good link quality estimation
(LQE) model can be built to accurately evaluate the current
link status, which can improve the packet transmission effi-
ciency, decrease the energy consumption of sensor nodes, and
prolong the network service life. The link quality distribution
is defined as three regions: the connected region, the transi-
tional region and the disconnected region [2]. The link quality
in the transitional region is not stable in the long-term process
of link communication, and it is easy for it to be disturbed and
generate dynamic fluctuations, which increases the difficulty
of accurate evaluation. The range of the transitional region
depends on the external environment and the characteristics
of the radio hardware. In WSNs, the link quality distribution
usually presents an unbalanced state, and the links in the
transitional region account for more than half of the total
number of links [3].
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In this paper, a link quality estimation model based on deep
forest is proposed, so as to reduce the impact of an unbalanced
link quality distribution on the estimator and improve the
accuracy of the estimation. The major contributions of this
article are summarized as follows:

(1) The improved K-medoids algorithm based on step
increasing and optimizing medoids (INCK) is utilized to
divide the link quality grades. The INCK optimizes the clus-
tering performance of PRR, so that the division accuracy of
link quality grades is improved.

(2) A Link quality estimation model based on improved
deep forest algorithm (stratified sampling cascade forest,
SCForest) is proposed. The stratified sampling of SCForest
can reduce the impact of unbalanced data on the estimator,
the accuracy of link quality estimation is further improved.

(3) To verify the performance of the proposed LQE
method, we carry out experiments in three real campus sce-
narios and the results show that our method is more accurate
and stable in comparison with other LQE methods.

The remainder of this paper is structured as follows.
Section II introduces the related research on link quality
estimation and deep forest. Section III addresses the method
of dividing the link quality grades. The link quality estimation
approach for WSNs is proposed in section IV. Section V veri-
fies the performance of the proposed method. We summarize
the work in section VI.

II. RELATED WORK
After the development of sensor networks theory and technol-
ogy, although it has been widely used in all walks of life, but
most applications are still limited to a small scale. Accurate
estimation of the link quality and reasonable allocation of
the resources are still key issues that limit the development
of WSNs in large areas. Complex interference sources in
the transmission scenario will also reduce the wireless signal
strength. This concern makes obtaining an accurate estima-
tion of the link quality more challenging, attracting extensive
attention and in-depth research from domestic and foreign
scholars. Currently, research on the link quality estimation
can fall into link parameter-based, link characteristics-based
and machine learning-based methods. The link quality esti-
mation model proposed in this paper belongs to machine
learning-based methods.

In early LQE studies, scholars use physical layer param-
eters to estimate the link quality, such as RSSI, signal-to-
noise ratio (SNR) and link quality indicator (LQI)[4]–[6].
However, a wireless channel has a time-varying nature, and
hence, the relationship between the link parameters is not
suitable for all scenarios. In a dynamic environment, the reli-
ability of estimation models based on link parameters will
be reduced. The existing estimation methods based on link
characteristics mainly analyze the characteristics of the phys-
ical layer and the data link layer in WSNs. The scholars
apply the complex model theory and link characteristics to
the study of LQEs [7], [8]. They periodically analyze the effi-
ciency of data packet transmission in the wireless channels.

This approach uses an approximate mapping function to map
the link parameters to the link quality, and then, it obtains the
link quality change trend. According to this strategy, the spa-
tial, temporal and asymmetry characteristics of the link are
addressed, and thus the link quality estimation model based
on link characteristics can be applied in many dynamically
changing network environments.

The above research provides relevant experience for cur-
rent studies on link quality estimation. In recent years, some
scholars have discovered the potential of applying machine
learning to link quality estimation [9]. On the one hand,
machine learning-based methods can find the best overall
correlation between the PRR and physical layer parameters
by analyzing the error between the packets sent amount and
the actual received amount. Liu and Cerpa [10], [11] trains
Bayesian, neural network, and logistic regression algorithms
to establish a link quality evaluation model. They propose
4C to calculate the probability of the next packet being suc-
cessfully transmitted. Sun et al. [12] uses a wavelet neu-
ral network to estimate the link quality, and it provide a
guarantee for the development of the WSN routing proto-
col by analyzing whether link quality meet the communica-
tions standard. Liu et al. [13] uses the lightweight weighted
Euclidean distance to fuse SNR and LQI. Then, the link
quality estimation model is constructed by logistic regression
to reflect the link quality. Xue et al. [14] decomposes the raw
SNR sequence into the time-varying sequence and stochastic
sequence. A random-vector-functional-link-based algorithm
is used to predict the two sequences separately. On the other
hand, the hierarchical structure of the deep learning network
can enhance its learning efficiency on link quality data. There
are many different deep learning networks, like dynamic
convolution neural network (DCNN) [15], spatiotemporal
attention-based long-short-term-memory (STA-LSTM) [16]
and layer-wise data augmentation-based stacked autoencoder
(LWDA-SAE) [17].With the characteristics of layer-by-layer
processing, deep learning is able to extract features of higher
levels, which is of benefit to feature learning of link quality.
For example, Sun et al. [18] uses LSTM to determine the link
reliability confidence interval, which is used to express the
link quality in worst case. In addition, in some link quality
estimation studies, such as those in [19] and [20], they turn the
link quality estimation problem into a classification problem.
Machine learning can help the link quality estimation model
to continuously adapt to changes in the network environment,
and to reduce the impact of interference on the link quality
estimation through a feature processing technique. People
using machine learning to solve the problem of link quality
estimation is a development trend of future research.

Deep forest is also known as the multi-grained cascade
forest (gcForest)[21]. The learning performance of traditional
deep network algorithms depend on careful hyperparame-
ter adjustment. Furthermore, before training the networks,
its architecture has to be determined, and thus, the model
complexity is determined in advance. Different from tradi-
tional neural networks, the performance of gcForest is quite
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robust to hyperparameter settings. Moreover, gcForest can
automatically determine the number of cascading layers, and
adjust the model complexity through data-related methods to
make it adaptable to different datasets. Compared with the
deep neural networks, gcForest has fewer hyperparameters
and it is easier to train, which can control the training cost
of model according to the available computational resources.
The multi-grained scanning of gcForest is powerful in pro-
cessing the feature relationships in image data, and then
gcForest builds a deep model by introducing a cascade struc-
ture to enhance its feature learning ability. In addition, due
to the characteristics of decision trees, the cascade forest
of gcForest also has good performance in the multiclassi-
fication of nonimage fields. At present, good results have
been achieved in the application of malicious code clas-
sification [22], anomaly detection [23], and multi-instance
learning [24].

In this paper, on the basis of studying the relationships of
the link parameters, we use the INCK algorithm to divide the
link quality grade and use the grades as the classification label
for the link quality. The Pauta criterion is used to remove the
highly abnormal data from the samples and we fill the mean
value of each grade into the missing values. At the same
time, considering that the unbalanced data set makes the
models less accurate when estimating the minority samples,
the majority samples will dominate the final accuracy[25].
By combining the link quality distribution regions, we use
the stratified sampling method to process the samples of each
grade, so as to optimize the data training stage of deep forests.
During the construction of the SCForest estimation model
(SCForest-LQE), the unbalanced distribution of the original
link quality samples is improved to reduce the impact of the
unbalanced nature of the dataset on the performance of the
SCForest-LQE.

III. DIVISION OF LINK QUALITY GRADE
Selecting a high-quality link for communication can improve
the transmission efficiency of the data packets. Link quality
estimation provides a basis for the route to select communi-
cation links. Using the link quality grade rather than specific
scores as the link quality estimation index will help to sim-
plify the process of routing. At the same time, the link quality
grade can be used as the classification index of the estimation
model. In experimental scenarios, a node periodically sends
probe packets to calculate the PRR, and the link quality
is directly reflected in the successful reception rate of the
probe packets. We take PRR as the measurement of the link
quality grade, and we set the division level to the category
of the SCForest-LQE classification. In the existing research,
the divisions of the link quality grades are determined by
a subjective decision. The clustering algorithm divides the
data into different clusters based on similarity. Compared
with a subjective partitioning method, a clustering algorithm
is more accurate, but it is sensitive to initial medoids. Due
to interference from the environmental, the collected link
quality samples have noise and isolated values, which will

affect the performance of clustering algorithm. We use the
INCK algorithm[26] to divide the link quality grades. This
approach obtains a subset of candidate medoids based on the
deviations of the PRR samples, which can avoid an isolated
point becoming a medoids. Based on this principle, the over-
all deviations state of the PRR samples can be measured
according to the variance σ of the sample set. The variance σ
is shown in Equation (1).

σ =

√√√√ 1
n− 1

n∑
i=1

(xi − x)2 (1)

where x =
∑n

i=1 xi
n is the mean of all objects in the dataset.

Because noise data is usually far away from the central
region, there is a large deviation between the noise sample and
other PRR samples. The variance σi of one PRR is defined as

σi =

√√√√√ 1
n− 1

1∑
j=1

dist(xi, xj)2 (2)

where dist(xi, xj) is expressed as the distance between object
xi and object xj.

According to the definition of the variance σ and variance
σi, the candidate medoids subset S of PRR can be defined
as in Equation (3). The stretch factor λ excludes link out-
liers from clustering effects. Here, λ is selected based on
experience.

S = {xi|σi ≤ λσ, i = 1, . . . , n} (3)

The selection of clustering medoids will have a significant
impact on the final clustering effect. If the medoids are
randomly selected in a cluster, the algorithm could fall into
a local optimum. Hence, we use the INCK method, which
optimizes the K-medoids clustering methods by increasing
the number of link quality clusters from 2 to the expected
number in a stepwise fashion. To obtain the medoids of
the PRR cluster, two initial medoids are selected first. It is
assumed that the first initial medoid o1 is located in the largest
density region of S, thenwe can obtain the first medoid o1 that
satisfies Equation (4).

o1 = argmin
xi∈Sm

{di |i = 1, . . . , n } (4)

where di is the total distance from object xi to all objects.
To ensure that the boundary samples in the real dataset are
divided into different link quality grades, the second initial
medoid o2 is the point in S that has the largest distance from
o1, as shown in Equation (5). We distribute the remaining
objects in the cluster in which they are closest to the medoids.

o2 = argmax
xi∈S

{dist(xi, o1) |i = 1, . . . , n } (5)

For the subsequent growth of the medoids, a point farthest
from the initial center point oα in each existing cluster group
should be selected as the candidate medoid o′α . Choosing the
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Algorithm 1 Link Quality Grades Division Algorithm
Input: PRR data set: XPRR = [x1, x2, . . . , xn], the number of
link quality grades: G, the stretch factor: λ.
Output: PRR medoids: o = [o1, o2, · · · ·, oG], the range of
PRR clusters: C = {C1,C2, . . . ,CG}.
Process:

1: Get σ according to Equation (1).
2: Get σi according to Equation (2).
3: if σi < λσ then
4: Add xi to S.
5: end if
6: Compute the distance of PRR samples.
7: Get o1 according to Equation (4).
8: Get o2 according to Equation (5).
9: Assign the remaining PRR samples to cluster C1 or C2.
10: while k ≤ G do
11: Compute the new medoid o′α = max(dist(o′α, oα)).
12: o.append(o′α).
13: Assign the remaining PRR samples to cluster

C1,C2 · · · ,Ck .
14: k = k+ 1.
15: end while

16: Compute the cost E =
G∑

G=1

∑
x∈CG

dist(oG, x)
2.

17: Update o to make E become minimum.
18: return C .

pair of oα and o′α with the farthest distance, makes the o′α
become new medoid.

In the INCK algorithm, the medoids updating method for
the PRR clusters is similar to that of FastK[27], and thus it can
maintain the calculation efficiency. The process of dividing
link quality grades base on INCK is shown in algorithm 1.

IV. LINK QUALITY ESTIMATION
The link quality data set is obtained from the office, parking
lot and road scenarios on campus. Multiple link parameters
are selected as the input features of the link quality estimation
model. Some noise data exist in the data set due to the inter-
ference in the experimental scenarios. Therefore, the Pauta
criterion is used to remove the noise data from the sample
set. We use the mean value of each grade to fill in the missing
values. Stratified sampling is used to improve the unbalanced
distribution of the original link samples, and the preprocessed
link samples are used as the input of SCForest-LQE. The link
quality grades are classified as a category of cascading forest
output to assess the link quality of the current period.

A. SELECTION OF LINK QUALITY PARAMETERS
Physical layer parameters can respond quickly to the
link quality, they are easy to read and have low over-
head in the CC2420 nodes, and there is a correlation
with the link layer parameter PRR. Multi-index link qual-
ity parameters can reflect the link quality more compre-
hensively and are not easily affected by the deployment

environment noise or by multipath effects during the link
quality estimation. The mean value of LQI, RSSI, SNR
(LQImean,RSSImean, SNRmean) and the coefficient of variation
of LQI, RSSI, SNR (CVLQI ,CVRSSI ,CVSNR) are selected as
the features of the SCForest-LQE. They can be obtained
directly by a simple calculation through the relevant registers
of CC2420 nodes. LQI is used to represent the quality of
the received packets; it provides the wireless signal strength
and quality information for the network layer when receiving
data frames. RSSI represents an indication of the strength of
the received signal. CV represents the link quality stability
of the three hardware parameters. CVLQI is defined as in
Equation (6).

CVLQI =
σ (LQI )
µ(LQI )

(6)

where σ (LQI ) is the standard deviation of a period, and
µ(LQI ) is the mean of a period. The formulas of CVRSSI and
CVSNR are the same as CVLQI .

B. SAMPLE PREPROCESSING
Since the interference in the wireless sensor networks affects
the link communication between the nodes, there will be
noise in the samples obtained in the experimental scenarios.
During the characteristic engineering stage, noise samples
that deviate far from the normal link samples should be
removed to reduce the influence of the noise samples on the
model training efficiency.We use the Pauta criterion to define
the scope of the training samples. The Pauta criterion states
that the values of the samples are almost entirely within 3σ ,
then, the highly abnormal samples, which exceed 3σ are
deleted.

Due to the interference of the experimental scenarios,
data entry errors and hardware damage, it is easy to have
incomplete data collection. The link quality samples with
missing data will affect the accuracy of the model [28]. Some
hardware parameter information that is lost within a probe
period of a node can be processed by filling in the missing
data.When a row of data in a feature of the link quality sample
set is missing, the mean value of each grade is used to fill in
the missing samples. Link quality samples preprocessing is
shown in algorithm 2.

C. STRATIFIED SAMPLING OF SCFOREST
The link quality belongs to the text structure. We take the fea-
tures [LQImean,RSSImean, SNRmean,CVLQI ,CVRSSI ,CVSNR]
as the raw input vector of SCForest-LQE. A multi-grained
scanning method is not conducive to feature extraction of
the link quality, because the important features at the begin-
ning and the end of the dataset can easily to be ignored by
using this method. The characteristic of link asymmetry has
a large impact on the distribution of the link quality data,
with most of them are located in the transitional region. The
existing estimators based on machine learning can easily to
be influenced by the imbalanced data. To solve this problem,
the feature scanning method of gcForest is optimized in this
paper. Based on the distribution area of the link quality,
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Algorithm 2 Link Quality Samples Preprocessing
Input: Link quality samples DLQ = [LQImean,RSSImean,
SNRmean,CVLQI ,CVRSSI ,CVSNR], label.
Output: Processed samples D′LQ = [LQI ′mean,RSSI

′
mean,

SNR′mean,CV
′

LQI
,CV ′

RSSI
,CV ′SNR]

Process:
1: Get σLQ[n] according to Equation (1), n = 1,2,3,4,5,6.
2: Compute the amount = len(DLQ).
3: while j ≤ amount do
4: if σLQ[i, n] ≥ 3σLQ[n] then
5: delete DLQ[i]
6: end if
7: i = i+1
8: end while
9: while j ≤ amount do
10: Compute the mean of a label in DLQ: meanlabel[n].
11: if one of the parameters in DLQ[j, n] is NULL then
12: Use meanlabel[n] fill in DLQ[j, n].
13: end if
14: j = j+1.
15: end while
15: return D′

LQ
.

FIGURE 1. Principle of stratified sampling.

we use stratified sampling to stratify the link quality samples,
and the features of each of the link quality distribution regions
are extracted evenly.

If the sample numbers of the three regions obtained from
an experimental scenario are unbalanced, then multi-grained
scanning will lead to model training bias. Therefore,
we divide the three regions samples according to the asymme-
try characteristics of the link. Asymmetrical links are mainly
located in the transitional region of medium link quality,
while connected and disconnected regions with high or very
low PRR tend to be symmetrical [2]. Therefore, according
to the PRR labels that are divided by INCK, the medium
grade link samples with higher asymmetry can be set to be
the transitional region samples ϕt . The good grade samples
are set to be the connected region samples ϕc. The bad grade
samples are set to be the unconnected region sample ϕu.
We obtain three layers of feature vectors at the end. The

principle of the stratified sampling of the SCForest-LQE is
shown in Figure.1. According to the proportion of each layer,
the feature vectors of each layer are randomly extracted to
form multiple sets of sequence data. Three layers of feature

vectors extracted from the stratified sampling will be treated
as positive/negative instances, which will be used for training
a completely random tree forest and a random forest, and
then for generating class vectors. We connect all of the class
vectors to form the transformed features to be the input
of the cascade forest. For example, there are three layers
of link samples. Suppose that we extract a 70-dimensional
feature vector in each layer. Randomly extracting 50 times
on the scale of 3 × 70, there are then 210-dimensional fea-
tures randomly extracted from the original feature vectors
each time, and we use them to form an instance; in total,
50 instances are generated. Assuming that the link quality
grade is divided into 3 classes, and the instances are trained
with a completely-random tree forest and a random forest,
then 50 three-dimensional class vectors are produced by each
forest. Since the link samples of each layer are randomly
selected, the feature vectors of each link quality distribution
region have the same number; thus, the samples in each link
quality distribution region are trained in a balanced way using
the forest.

D. LINK QUALITY ESTIMATION MODEL
SCForest-LQE consists of stratified random and cascade
forest. Stratified sampling combines the characteristics of
the wireless link quality distribution regions to transform the
original input samples. It fuses the link characteristics to pro-
cess the samples, and it enhances the estimation performance
of the SCForest-LQE on a few types of connected and uncon-
nected area link samples. Cascade forest is the integration of
multiple forests, with training samples in each layer of the
cascade structure. Every forest uses cross validation to reduce
the risk of overfitting which can improve the accuracy of the
model.

Figure.2 summarizes the overall procedure of SCForest-
LQE. There are three sizes of samples that are used
for stratified sampling. Assuming that the 3 × 40-
dimensional link features are randomly sampled 100 times,
the 3× 70-dimensional link features are randomly sampled
50 times; and the 3 × 100-dimensional link features are
randomly sampled 25 times, then, it can generate 75, 150 and
300-dimensional transformed feature vectors, connecting all
of them as input vectors of the cascade forest.

In ensemble learning, the accuracy and diversity of indi-
vidual learners can improve the performance of the over-
all model. Adding randomness to the training process can
enhance the diversity of SCForest-LQE. Therefore, we adopt
three methods to enhance the diversity of SCForest-LQE.
First, we use completely random tree forests and random
forests to form cascading forests, so as to encourage the
diversity of internal estimators in SCForest-LQE. Second, the
estimated class distribution forms a class vector, which is then
concatenated with the original feature vector to be input to the
next level of the cascade, which allows it to enhance the diver-
sity of the samples. Third, because the completely-random
tree forest divides the nodes by randomly selecting features
until the tree grows to the leaf nodes, the method of randomly
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FIGURE 2. Structure of SCForest link quality estimation model.

selecting the features also leads to the different growth rules
of each tree. By randomly selecting

√
d features (d is the total

number of input features), the random forest takes the highest
Gini coefficient as the attribute value of the node splitting in
each tree. The Gini coefficient calculation formula is shown
in Equation (7).

Gini(D) = 1−
G∑
i=1

P2i (7)

where D represents the total link quality samples, Pi refers
to the probability of link quality grade i, and G represents
the number of link quality grades. In cascade forest, each
forest generates a link quality estimate class distribution by
calculating the percentage of training samples at different
link quality grades that fall on the leaf nodes of a decision
tree, taking the average of all statistical results. Finally, a
G-dimensional class vector is obtained.

To reduce the risk of overfitting, the link quality class vec-
tor is generated by K-fold cross-validation. In detail, we split
instances into K subsamples, and keep one subsample as the
test data to verify the model. Then, the other K-1 samples are
used for training, with the average value of the K-1 results
as the enhancement feature of the next cascade. There
are two ways to terminate the training of SCForest-LQE:
(1) The maximum of the cascade structure is set initially,
when the cascade forest reaches its value, the cascade forest
will stop training, and it will output the maximum average
class vector of that layer as the link quality estimation result;
(2) SCForest-LQE automatically adjusts the layer number of
the cascade forest, and we set the round of stopping growth
rounds. At the end of each level of training, subsamples
are used to verify the estimation performance of the model.
If there is no gain in the link quality estimation performance
of each layer within the period (round), the training process
will terminate. Therefore, SCForest-LQE can adjust its com-
plexity and maintain the generalization of the model training
automatically by adaptive expansion or reduction of its own
structure according to the size of the link quality data set.

V. DESIGN AND ANALYSIS OF EXPERIMENTS
To verify the validity of the model, the link quality data are
acquired frommultiple application scenarios. This paper uses

FIGURE 3. The testing platform of the wireless sensor network link
quality.

the TelosB node created by Crossbow to send and receive
packets, and it collects the link quality information by a
wireless sensor network link quality testbed (WSNs-LQT)
that was developed by the Institute of Internet of Things
and Big Data Technology. WSNs-LQT is shown in Figure.3.
We analyze the link quality information and implement a
link quality estimation model on the PyCharm platform and
Jupyter notebook.

The precision is the proportion of true positive samples
among all samples which estimate as positive, as shown in
Equation (8). In addition, the recall is the proportion of true
positive samples among all positive samples, as shown in
Equation (9). F1-score is harmonic average of the precision
and recall, which can be calculated by Equation (10). In the
experiment, we use the precision, recall and F1-score to eval-
uate the classification performance of the estimation models.

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

F1− score =
2× Precision× Recall
Precision+ Recall

(10)

In the case of multiclassification, we regard a link quality
grade as positive, and the other grades as negative. TP is

VOLUME 9, 2021 2569



M. He, J. Shu: Link Quality Estimation Method for WSNs Based on Deep Forest

FIGURE 4. Experimental scenarios: (a) Campus parking lot, (b) Office,
(c) Campus road.

the number of true positives, which represents the samples
that are correctly classified as positive. FP is the number of
false positives, which represents the negative samples that
are falsely classified as positive. FN is the number of false
negatives, which represents samples that belong to positive
grade, but the samples are classified as negative grade on
error.

A. EXPERIMENTAL SCENARIO SETTING AND DATA
ANALYSIS
The selection of wireless link communication scenarios is
mainly based on common application scenarios, and it con-
siders possible interference in real WSNs environments.
In this paper, we set up three experimental scenarios on
campus. A parking lot scenario is designed for static obstacles
(parked vehicles, load-bearing columns), an office scenario
is designed for electromagnetic interference (Wi-Fi, Blue-
tooth), and a road scenario is designed for dynamic occlusion
(moving vehicles, pedestrians). A small link quality testing
network is deployed in each experimental scenario. In the
campus parking lot and campus road scenarios, we deploy
seven nodes, including one Sink node and six perception
nodes. We arrange six nodes in the office scenarios, including
one Sink node and five perception nodes. Sensor nodes are
evenly spaced. The specific experimental scenario is shown
in Figure.4.

Table 1 summarizes the experimental parameter settings.
To ensure the diversity and reliability of the data, a series
of link quality data are obtained by measuring nodes in the
same time period for several consecutive days. The PRR is
collected by the WSNs-LQT in three experimental scenar-
ios, which is drawn into a time series diagram, as shown
in Figures.5–7.

Due to different environmental interference sources in
each scenario, the distribution of PRR presents different
regulars. Figure.5 represents link quality for campus park-
ing lot scenario. The PRR is concentrated approximately

TABLE 1. WSNs-LQT parameter settings.

FIGURE 5. Time series diagram of PRR in the campus parking lot scenario.

FIGURE 6. Time series diagram of PRR in the office scenario.

0.6∼0.8. The interference in the parking lot is mostly static
interference, so that the link quality often keeps at a good
grade. If parked vehicles block some nodes, it will cause
slight fluctuations in the link quality between nodes. In some
periods, PRR drop sharply. Such as the time series of 5,
due to vehicles entering and exiting parking lot, wireless
link communication signal strength reduced, the link between
nodes is affected.

As shown in Figure.6, the PRR in office scenario is con-
centrated approximately 0.6∼0.9. The Wi-Fi signal of the
router which is near node 1 causes continuous influence on
the communication link of the node and causes PRR timing
fluctuation. The interference mentioned above makes the
link often in an unstable state, frequently switching between
the transition area and the connected area. The interference
in office scenario are computers and mobile phones, which
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FIGURE 7. Time series diagram of PRR in the campus road scenarios.

FIGURE 8. The accuracy of SCForest-LQE under different λ values.

result in general link mainly for electromagnetic interference
caused by Wi-Fi, Bluetooth of quality large fluctuations.

Figure.7 represents the link quality for the road scenario.
In the road scenario, the transition area is widely distributed.
When the interference source moves continuously, the small
changes in the signal between the nodes will lead to the
conversion of links between good and bad, resulting in a burst
link.

B. THE CLASSIFICATION OF LINK QUALITY BASED ON PRR
We use the INCK algorithm to divide the link quality grade.
By constructing the PRR candidate, the influence of the
noise samples on the division result is eliminated, and the
medoids are selected at the dense part of the PRR candidate
subset. In order to determine the candidate medoids subset S,
we must introduce a stretch factor λ. This λ values have been
experimentally verified in ranging from 1.5 to 2.5 according
to [26]. We compare the accuracy of SCForest-LQE under
different λ values, the results of three datasets are shown
in Figure.8.

Figure.8 shows that stretch factor λ falls into the range of
[1.5, 2.5].When the λ is 1.5, the accuracy of SCForest-LQE is
the highest both in three datasets. Therefore, we set the stretch
factor λ as 1.5.

In this paper, the link quality grade is divided into 3 cat-
egories. It can be seen from Figure.9 that the samples that
belong to Grade 2 have the largest number, followed by

FIGURE 9. The distribution of link quality grades.

TABLE 2. The class proportion of datasets.

Grade 1 samples, which have the best link quality. Due to
the interference effect between the nodes in experimental
environments, wireless links are often in the transitional
region. Therefore, the distribution of the link quality data is
unbalanced. Table 2 depicts the class proportion of selected
datasets in this paper.

C. ANALYSIS OF THE PROPOSED MODEL
The learning performance of SCForest-LQE and gcForest do
not depend seriously on careful parameter tuning, they are
also able to get excellent performance by using the default
setting. The d raw feature of multi-grained scanning takes
the default setting as suggested in [21]. SCForest-LQE has
one stratified sampling stage, three sampling sizes are used.
For M minority samples, we also use the sizes of [M/16],
[M/8], [M/4] for sampling. For each size, we take 25, 50,
100 times sampling respectively. In cascade forest, each layer
consists of 2 completely random forest and 2 random forest,
which will bring greater diversity to our model, as sug-
gested Each layer of the cascade forest is tested with 6-fold
cross validation. Since the amount of link quality samples
used in this paper is not much, the depth of cascading for-
est is reduced. We set the maximum layer of cascade as
40 and set the stop growing rounds as 6. The hyperparameter
default settings of SCForest-LQE and gcForest are shown
in Table 3.

To verify the performance of the improved model, we per-
formed the comparison experiments between SCForest-LQE
and gcForest with the same unbalanced datasets. In all of
the experiments, SCForest-LQE and gcForest share the same
cascade structure.

Figure.10 shows the estimation accuracy of the link qual-
ity estimation model SCForest-LQE and gcForest in each
layer. The accuracy of SCForest-LQE is approximately
10% higher than gcForest in three experimental scenarios.
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TABLE 3. The hyperparameter default setting.

FIGURE 10. The comparison results of SCForest-LQE and gcForest in three
scenarios: (a) Campus parking lot, (b) Office, (c) Campus road.

This finding proves that the SCForest-LQE uses the strat-
ified sampling method to significantly improve the esti-
mation ability by changing the unbalanced distribution of

FIGURE 11. Comparison of the precision and recall in the campus parking
lot scenario.

the link quality samples. From the 0th layer (initial layer)
to the 1st layer of the cascade forest, the training result
of SCForest-LQE is grown. At this time, the accuracy of
SCForest-LQE is improved, and as a result, the amount of
true cascade layers in SCForest-LQE is more than gcForest.
When the accuracy of the model gradually decreases after
6 layers of training, the model terminates its training and
outputs the best link quality estimation result as the final
result. In Figure.9(a), from the 3rd to 4th and from the 5th
to 6th layers, the accuracy of gcForest is also improved by
1%, but it still fails to exceed the accuracy of 86.38% at the
0th layer. Hence, the training is terminated after 6 rounds, and
the link quality estimation result outputs at layer 7. Similarly,
from the 5th to 6th layers, the accuracy does not exceed
87.14% at the 0th layer in Figure.9(c), and therefore gcForest
is also terminated at the 7th layer. In the office scenario,
the link quality is relatively poor. The accuracy of gcForest
has dropped to 74%, while the accuracy of SCForest-LQE
remains above 85%.

D. VERIFICATION AND COMPARISON OF SCFOREST-LQE
To further verify the estimation ability of the link quality
estimation model SCForest-LQE, we conduct more compari-
son experiments, and the results are shown in Figures.11–13.
The gcForest-based model (gcForest), the random forest-
based model [19] (RFC), the wavelet neural network-based
model [13] (WNN-LQE), the naive Bayes-based model [11]
(NB), the stacked autoencoder-based model [20] (LQE-SAE)
and the lightweight, fluctuation insensitive multi-parameter
fusion-based model [14] (LFI-LQE) are chosen to compare
with the proposed estimator.

In all of the experiments, the forest shares the same
parameters. Each experiment is conducted ten times and we
take the average of ten consecutive runs as the final result.

The performance of these estimators under different envi-
ronments is shown Figures.11–13. It can be seen that
SCForest-LQE has better performance compared with other
link quality estimators; especially the precision and recall of
SCForest-LQE reach the highest values 98.87% and 98.83%
in the campus parking lot scenario. Because the nodes in the
office scenario are continuously interfered by other wireless
signals, the link is often in a fluctuating state. Thus, the
performance of some estimators is poor in the office scenario.
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FIGURE 12. Comparison of the precision and recall in the office scenario.

FIGURE 13. Comparison of the precision and recall in the campus street
scenario.

TABLE 4. F1-score comparison result of campus parking.

Compared with the parking lot scenario and road scenario,
the precision and recall of gcForest and RFC in the office
decrease significantly. This finding proves that these mod-
els can distinguish static or short-term dynamic interference
links well, but these models have a weak ability to identify
long-term unstable links. Although SCForest-LQE is also
affected, the recall and precision remain above 92%. NB,
WNN-LQE, LQE-SAE and LFI-LQE have better perfor-
mance in office scenarios and campus road scenarios, but the
precision and recall of them in campus parking lots are poor.
This finding indicates that these models have poor estimation
performance for scenarios with many static obstructions.

More comprehensively, to compare the performance of
these link quality estimators, the F1-score under different link
quality grade is calculated, which is shown in Tables 4–6.
As the link quality data is unbalanced, it causes the evaluator
is easy to ignore the minority class during classification.
In Table 4 and Table 6, the F1-score of gcForest is close to
SCForest-LQE at Grade 2, but the F1-score of gcForest is

TABLE 5. F1-score comparison result of Office.

TABLE 6. F1-score comparison result of campus road.

poor at Grade 3. The reason is that the samples of Grade
1 and Grade 3 is fewer than samples of Grade 2, which affects
the estimation performance of the estimators for minority
link quality samples. In the campus parking lot and road
scenario, LQE-SAE and LFI-LQE have higher F1-score at
the Grade 1 and Grade 2 than Grade 3. It can be concluded
that LQE-SAE and LFI-LQE obtain inaccurate estimations
under bad links. Owing to the high proportion of samples in
transitional region, when the estimation models have higher
accuracy at Grade 2, the final estimation result is better. After
using stratified sampling method to combat class imbalance,
which makes SCForest-LQE performs better on the three
grades. On the other hand, Tables 4–6 show that the F1-score
of models with forest structure is higher than LQE-SAE,
NB and LFI-LQE in three experimental scenarios, indicating
that the forest model is more adaptable to the study of link
quality estimation.

E. STABILITY AND REACTIVITY ANALYSIS
The stability of model refers to the ability to tolerate transient
variations in link quality [2]. Taking the link quality grade
as a benchmark, the deviation between the estimation result
and the real value is observed in scenarios. When a link qual-
ity shows transient degradation or increase, if an estimation
model comparing with other models can ignore this change
to keep estimator stable, its stability is better.

The reactivity of model refers to the ability to quickly react
to persistent changes in link quality [2]. If the estimation
results of the estimators are closer to the real label when link
quality grade changes frequently, its reactivity is better.

Experiments between SCForest-LQE and other estimators
with similar structures at different status of link quality are
conducted to analyze stability and reactivity, which shown in
Figures.14–16.

To compare the stability of the LQEs, we can observe their
sensitivity to transient fluctuations through the link quality
estimating grade. According to the Figure.14, at the 1426th
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FIGURE 14. Comparison of the estimation results in the campus parking
lot scenario.

FIGURE 15. Comparison of the estimation results in the office scenario.

FIGURE 16. Comparison of the estimation results in the campus road
scenario.

estimation result of the real value, the link quality grade is
changed from the second grade to third grade. The SCForest-
LQE model maintains second-grade of the estimation result,
while gcForest and RFC quickly change the estimation result,
and the same situation occurs at the 1453rd and 1474th
estimation result. Hence, we reach conclusion that SCForest-
LQE is more stable than gcForest and RFC, which are more
sensitive to the transient fluctuations.

As shown in Figure.15, from the 10190th to the 10270th
estimation results, the link quality grade fluctuates frequently
between three grades in the office scenario, which indicates
that the link quality is very unstable. By analyzing Figure.15,
it can be seen that the RFC and gcForest model can quickly

respond to frequent changes, while their accuracy is rela-
tively poor. The SCForest-LQE model makes fewer mistakes
when the link quality grade changes suddenly. This finding
shows that SCForest-LQE is more consistent with the ground
truth.

Figure.16 contains a short section of stable link quality
and a section of frequently fluctuating link quality, in such
a way that it can comprehensively evaluate the stability and
reactivity of LQEs. According to this figure, we retain the
following observations. From the 8802nd to the 8816th esti-
mation results, gcForest and RFC are more reactivity than
SCForest-LQE in transient fluctuations. From, the 8833rd to
the 8841st estimation result, there is an unstable link quality,
and the proposed link quality estimationmodel can still stably
and accurately estimate the link quality.

VI. CONCLUSION
In this paper, we propose a link quality estimation based on
SCForest for WSNs. INCK is utilized to divide link quality
grade according to the PRR. The noise values of the link sam-
ples are deleted by the Pauta criterion. Stratified sampling of
the imbalanced link quality samples is conducted according
to the link quality distribution regions, which improves the
accurate estimation capability of SCForest-LQE in a dynamic
transitional region and for minority samples. With the help
of cascade forest layer-by-layer learning, the feature training
is improved. SCForest-LQE adaptively adjusts its cascade
level according to the size of the link quality samples to
achieve better estimation capabilities. We conduct experi-
ments in campus parking lots, road, and office scenarios.
The results show that SCForest-LQE has better estimation
performance than the results of gcForest, RFC, WNN-LQE,
NB, LQE-SAE and LFI-LQE. When the link quality grade
suddenly changes, SCForest-LQE can still estimate the link
quality stably.

One important future issue is to accelerate. As a deep
learning model, SCForest-LQE takes a long time to train
the model, and the structure of deep forest is not suitable to
GPUs. In the future, we will try using distributed computing
to implement SCForest-LQE. Another important future work
is to test SCForest-LQE in other application scenarios of
WSNs and attempt to verify the proposed method in other
domain networks.
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