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ABSTRACT In the decomposition-based multiobjective evolutionary algorithms (MOEA/Ds), a set of
subproblems are optimized by using the evolutionary search to exploit the feasible regions. In recent
studies of MOEA/Ds, it was found that the design of recombination operators would significantly affect
their performances. Therefore, this paper proposes a novel genetically hybrid differential evolution strategy
(GHDE) for recombination in MOEA/Ds, which works effectively to strengthen the search capability.
Inspired by the existing studies of recombination operators in MOEA/Ds, two composite operator pools
are introduced, each of which includes two distinct differential evolution (DE) mutation strategies, one
emphasizing convergence and the other focusing on diversity. Regarding each selected operator pool, two
DEs are applied on parents’ genes to hybridize offspring by adaptive parameters tuning. Moreover, a
fitness-rate-rank-based multiarmed bandit (FRRMAB) is embedded into our algorithm to select the best
operator pool by collecting their recently achieved fitness improvement rates. After embedding GHDE into
an MOEA/D variant with dynamical resource allocation, a variant named MOEA/D-GHDE is presented.
Various test multiobjective optimization problems (MOPs), i.e., UF, F test suites, and MOPs with difficult-
to-approximate (DtA) PF boundaries, are used to assess performances. Compared to several competitive
MOEA/D variants, the comprehensive experiments validate the superiority of our algorithm.

INDEX TERMS Multiobjective optimization, decomposition, recombination operator, differential evolution.

I. INTRODUCTION
Generally, a multiobjective optimization problem (MOP) is
mathematically represented by

Min F(x) = (f1(x), . . . , fm(x)), (1)

where x is an n-dimensional decision vector in its deci-
sion space �, and f1(x),. . . , fm(x) define m objective func-
tions [1]–[5]. The solution x is said to be a Pareto-optimal
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solution if and only if there is no other solution in � that can
dominate it. Due to the mutual contradiction among different
objectives, it is necessary to find more Pareto- optimal solu-
tions (PS) for MOPs. The mappings of PS in the objective
space are called the Pareto front (PF) [6]–[8].

To obtain a good approximation on PF for making deci-
sions, multiobjective evolutionary algorithms (MOEAs) have
been a popular approach to optimize various MOPs [9]–[11].
In recent decades, a variety of MOEAs have been
developed to solve various theoretical optimization prob-
lems and even some real-world applications [12]–[16].
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MOEAs are divided into several categories with different
criteria in terms of the environmental selection: 1) Pareto-
dominance-based framework [17]–[20], 2) indicator-based
framework [21]–[23], and 3) decomposition-based
framework [24]–[30].

Decomposition-based MOEAs (MOEA/Ds) decompose a
MOP into multiple scalar subproblems by weight vectors,
which can be optimized in a collaborative manner accord-
ing to the value of the aggregate function [31]. In recent
years, various strategies have been developed to further
improve MOEA/Ds. In [32]–[35], a set of the weight
vector adjustment strategies have been proposed. Specifi-
cally, in MOEA/D-LTD [32], the Pareto front estimated by
Gaussian process (GP) regression assists to adjust weight
vectors. In MOEA/D-SOM [33], weight vectors are updated
by using the trained self-organizing map (SOM) network.
Moreover, in AMOEA/D [34], weight vectors are adjusted
by removing invalid reference points and adding some points
around each crowded reference point, which can find var-
ious irregular PFs. In AWD-MOEA/D [35], the current
optimal solutions are used to reset weight vectors. In addi-
tion, some resource allocation strategies have been proposed,
which aim to adjust the computational resources of those
subproblems with different complexities. For example, in
MOEA/D-DRA [36], assigning different amounts of compu-
tational effort for one subproblem depends on the utility of the
subproblem. In MOEA/D-GRA [37], a generalized resource
allocation strategy is designed to associate each subproblem
with a different probability according to the improvement
vector. Furthermore, some efforts have been done to improve
the aggregate function. For example, in eMOEA/D [38],
two new aggregate functions with adjustable contours are
proposed to guide the search, which can adjust the bal-
ance between diversity and convergence during evolution.
In MOEA/D-LWS [39], the localized weighted sum (WS)
method is introduced, which can overcome the issue that WS
cannot work well for non-convex PFs.

Recombination operators including crossover and muta-
tion are also two key components in MOEAs. For exam-
ple, simulated binary crossover (SBX) is proposed in [40],
which can generate offspring close to their parents. In [41],
the differential evolution (DE) is another common crossover
used by many MOEA/Ds. Moreover, some efforts on recom-
bination operators have been done to further strengthen the
ability of search. As introduced in [42], [43], multiple DE
operators are suggested for MOEA/Ds, which can provide an
enhanced search capability. Inspired by the above research
works, we propose a novel genetically hybrid differential
evolution strategy (GHDE) for recombination in MOEA/Ds.
More specifically, four distinct differential evolution (DE)
mutation strategies are classified into two composite oper-
ator pools, each of which includes two DEs. Furthermore,
a fitness-rate-rank-based multiarmed bandit (FRRMAB) [42]
is used to select an appropriate operator pool, in which two
different DEs are applied on parents’ genes to hybridize
offspring by adaptive parameters tuning. In this way, our

proposed algorithmworks effectively to strengthen the search
capability, which can realize a good balance between conver-
gence and diversity during evolution. Our main contributions
are summarized as follows:

1) A genetically hybrid differential evolution strategy is
proposed, in which two DEs belonging to the same operator
pool are applied on parents’ genes to hybridize offspring by
adaptive parameters tuning.

2) Two composite operator pools are introduced, each of
which includes two distinct DE mutation strategies. Their
recently achieved fitness improvement rates are collected to
estimate the best operator pool.

The rest of the paper is organized as follows. In Section II,
some background knowledge is introduced. In Section III,
the details of MOEA/D-GHDE are described, including the
genetically hybrid differential evolution strategy for recombi-
nation, the update of neighborhood solutions, and the update
of parameters. In Section IV, the comparison results of our
algorithm with five competitive MOEA/Ds and the perfor-
mance analysis of GHDE are presented. Finally, this paper is
concluded in Section V.

II. BACKGROUND KNOWLEDGE
A. DECOMPOSITION APPROACH
In MOEA/Ds, several state-of-the-art decomposition
approaches can guide the subproblems to evolve [32-40].
Here, we consider using the TCH method as the aggre-
gate function, since it is mostly used in many MOEA/Ds,
as defined by

min
x∈�

gtch(x|λj, z∗) = max
1≤i≤m

{|fi(x)− z∗i |/λ
j
i}, (2)

where λj = (λj1, · · · , λ
j
m)T is the weight vector (also the

direction vector) with λji ≥ 0(i {1,. . . , m}) and
∑m

i=1 λi = 0.
The notation z∗ is an ideal point, which can be obtained by
finding the minimal value of each objective.

B. OPERATOR SELECTION STRATEGY
The operator selection strategy (i.e., FRRMAB) [42] is used
in this paper, including the credit assignment and the operator
selection, which are shown inAlgorithm 1 andAlgorithm 2,
respectively.

Algorithm 1 Credit Assignment
1. Initialize each reward Rewardi = 0 and ni = 0
2. for i = 1 to SlidingWindow.length
3. op = SlidingWindow.getIndexOp(i)
4. FIR = SlidingWindow.GetFIR(i)
5. Rewardop = Rewardop+ FIR
6. nop = nop+ 1
7. end
8. Rank Rewardi in descending order and set Ranki

to be the rank value of operator i
9. Compute decay value and by (4) for each op
10. Compute credit value by (5) for each op
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Algorithm 2 The Bandit-Based Operator Selection
1. if There are operators that have not been selected
2. opt = randomly select one operator
3. else
4.

opt = argmax
i={1,...,K }

FRRi,t + C ×
√
2× ln

∑K
j=1 nj,t

ni,t


5. end

In the credit assignment, the fitness improvement rates
(FIR) of operators are reserved in a sliding window, where
the length of the window is set to be W . As shown in
Algorithm 1, each reward Rewardi and ni are set to be 0 in
line 1. Then, at time point t in the sliding window, the FIR of
operator i is computed by

FIRi,t =
pfi,t − cfi,t

pfi,t
, (3)

where pfi,t and cfi,t are the fitness values of the parent and
the offspring, respectively. Then, Rewardi is obtained by
summing all FIR values of operator i. In line 8, Rewardi are
ranked in descending order, and Ranki are the rank value of
operator i. In addition, a decay value is computed by

Decayi = DRanki × Reward i , (4)

where D ∈ [0, 1] represents the decaying factor. Then, the
credit value of operator i is computed by

FRRi,t =
Decayi
K∑
j=1

Decayj

(5)

After obtaining the credit values, the bandit-based operator
selection is used to select one suitable operator for generating
new solutions as shown in Algorithm 2. In line 1, each
operator is given an equal chance to be selected until all
operators have been used at least once. After that, selecting
an operator depending on FRR, as shown in line 4.

III. THE PROPOSED ALGORITHM
A. GENERAL FRAMEWORK
Given the above preparations, our proposed algorithm is a
new MOEA/D variant based on MOEA/D-DRA [36], which
is called MOEA/D-GHDE. In Algorithm 3, the framework
of MOEA/D-GHDE is first provided in detail. To better
understand its mechanism and process, its flow chart is given
in Figure 1. Specifically, the algorithm starts by initializ-
ing the population, and then the recombination process is
applied on parent solutions to generate offspring, including
the crossover and mutation operators. Different from the
traditional crossover operator, the crossover component in
our algorithm includes two operator pools, each of which
includes two distinct differential evolution mutation strate-
gies. A novel genetically hybrid differential evolution strat-
egy (i.e., Algorithm 4) is proposed, in which two DEs

Algorithm 3 General Framework
Input: MOP: multi-objective optimization problem

N : population size
T : the neighborhood size
δ: probability of local mating
nr : the maximal replacement times
Maxgen: the stopping criterion

Output: S (final population)
1. initialize a population S with N solutions
2. initialize a set of weight vectors λ = {λ1, . . . , λN }
3. for i← 1 to N
4. B(i) = {i1,. . . , iT } where λi1 , . . . , λiT are the T

closest weight vectors to λi and set the utility π i =
1
5. end for
6. initialize the reference point z∗

7. set gen = 0, e = 0
8. while the stopping criterion is not met
9. select m indices of the subproblems whose

objectives are respectively MOP individual
objectives fi to form set I and then select the
other bN/5c − m subproblems to add into I by
using 10-tournament selection based on π i

10. for each i ∈ I
11. op← FRRMAB(FRR)
12. if rand < δ
13. P← B(i)
14. else
15. P← {1,. . . , N}
16. end if
17. the scaling factor F is generated by (6) and the

parameter p is adaptively adjusted by (7)
18. randomly select parent solutions from S and

generate y by genetically hybrid DE strategy
//Algorithm 4

19. y←Mutation (ȳ)
20. evaluate y and update z∗

21. update neighboring solutions //Algorithm 5
22. e = e+1
23. end for
24. update parameters of FRRMAB by (3)-(5)
25. update F ′ using (10)-(11)
26. gen ++
27. if mod(gen, 20) == 0
28. update π i of each subproblem using (9)
29. end
30. end while
31. return S

belonging to the same operator pool are applied on par-
ents’ genes to hybridize offspring by adaptive parameters
tuning. In our method, FRRMAB (i.e., Algorithm 1 and
Algorithm 2) is used to select the best operator pool, which
is applied on parents’ genes to hybridize offspring. Then, the
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FIGURE 1. The flow chart of MOEA/D-GHDE.

promising offspring will replace at most nr neighborhood
solutions (i.e., Algorithm 5) and the corresponding param-
eters are also updated. Finally, if the stopping criterion is
not reached, the evolutionary process is returned to generate
offspring. Otherwise, the evolutionary process will end with
the final population.

B. INITIALIZATION
First, the population S withN individuals is initialized and the
weight vectors λ = {λ1, . . . , λN } are evenly generated with
the constraints

∑m
i=1 λi = 1 and λji ≥ 0, where i = {1,. . . ,m}

and j = {1,. . . , n }. After evaluating the objective functions
in S, the ideal point z∗ is initialized by the minimum function
value of each objective. The utility π i for subproblem i is
set to be 1. Moreover, the indices of individuals in S are
denoted by the set P = {1,2,. . . , N}, while the indices of T
neighbors for each i-th subproblem are marked by B(i)(i =
{1, . . . ,N }), by searching the nearest weight vectors based on
the Euclidean distance. The number of function evaluations
(e) and the generation counter (gen) are both set as 0.

C. EVOLUTIONARY PROCESS
In line 9, as suggested by [36], a total number of
bN /5c subproblems are selected for evolution and their
indices are preserved in the set I , which can reasonably
assign the computational resource to subproblems. First,
m indices of the subproblems associated with the weight
vectors (1,0,. . . ,0),. . . ,(0,0,. . . ,1) are selected and the other
(bN /5c -m) subproblems are randomly chosen by using the
ten-tournament selection based on the utility function π .
These indices are preserved in a temporary set I . For each
subproblem i in I , its associated individuals will undergo the
recombination procedure to generate offspring. In line 11,
the operator op will be selected from {1, 2} by using
FRRMAB. Then, in lines 12-16, a set of mating parents is
selected as B(i) with the probability δ or remains as P with
the probability (1− δ).

Algorithm 4 Genetically Hybrid DE Strategy
Input: i: the index of current subproblem

F : the scaling factor used in operator pool
p: probability parameter
parent solutions: solutions used for recombination
n: the dimension of decision variable

Output: ȳ (offspring)
1. switch (op)
2. case 1:
3. pool = {DE/rand/1, DE/current-to-rand/2}
4. for j← 1 to n
5. if (rand < CR) ||j == jrand
6. ifrand < p
7. use DE/rand/1 to generate one geneȳji
8. else
9. use DE/current-to-rand/2 to generateȳji
10. end if
11. else
12. ȳji = x ji
13. end if
14. end for
15. case 2:
16. pool = {DE/current-to-rand/1, DE/rand/2}
17. for j← 1 to n
18. if (rand < CR) ||j == jrand
19. if rand < p
20. use DE/current-to-rand/1 to generateȳji
21. else
22. use DE/rand/2 to generate one gene ȳji
23. end if
24. else
25. ȳji = x ji
26. end if
27. end for
28. end switch
29. return ȳ

1) EVOLUTIONARY PARAMETERS
As shown in lines 17-18, before executing the crossover
operator, the scaling factor F in the operator is generated by

F = Cauchy(F ′, λ), (6)

where F ′ is the location parameter and Cauchy(·) represents
the Cauchy distribution. The scale parameter λ is set to be 0.1
as suggested in [43].

Next, the probability parameter p can be computed as
follows:

p

=


rand(−0.05, 0.1), e≤max _e× 1/3
0.5, max _e× 1/3 < e≤max _e×2/3
rand(0.95, 1.05), max _e× 2/3 < e,

(7)

VOLUME 9, 2021 2431



N. Luo et al.: MOEA/D With GHDE Strategy

Algorithm 5 Update Neighborhood Solutions
Input: E (neighborhood solutions)

nr : the number of solutions replaced
y: offspring

Output: P (updated population)
1. c = 1
2. Compute η value of each solution in E by (9)
3. find x with maximal η value and replace it with y
4. FIRop = FIRop + η(x)
5. while c < nr || E != ∅
6. randomly select a solution x from E
7. if η(x) > 0&& rand < η(x)
8. replace x with y and delete x from E
9. c = c+1
10. FIRop = FIRop + η(x)
11. end if
12. end while
13. return P

where e and max_e are the current function evaluations and
pre-defined maximal evaluations, respectively.

2) RECOMBINATION
The individual xi associated with subproblem i will undergo
the genetically hybrid DE strategy (Algorithm 4) to get ȳ.
As shown in Algorithm 4, each composite DE operator pool
consists of two different DE mutation strategies, one empha-
sizing convergence and the other focusing on diversity. Here,
the four DE mutation strategies, i.e., DE/rand/1, DE/current-
to-rand/1, DE/rand/2 and DE/current-to-rand/2 are respec-
tively given as follows:

vi = x i + F × (xr1 − xr2 )

vi = x i + K × (x i − xr1 )+ F × (xr2 − xr3 )

vi = x i + F × (xr1 − xr2 )+ F × (xr3 − xr4 )

vi = x i + K × (x i − xr1 )+ F × (xr2 − xr3 )+F × (xr4−xr5 )

(8)

where x i, xr1 , xr2 , xr3 , xr4 , xr5 are parents and vi is the
mutated solution. The notations F and K are two parameters
controlling the weighting of the difference vectors.
For each subproblem i = 1,. . . , n (n is the dimension

of the decision variable), the DE mutation strategies in the
selected pool are used to produce a new gene dependent
on the probability parameter p. According to (7), p is ran-
domly selected in a range of -0.05 and 0.1 when e is not
larger than 1/3∗ max_e. In this case, using the strategy
DE/rand/2 or DE/current-to-rand/2 to produce a new gene has
a higher probability, which can strengthen diversity. During
the median period of evolution, p is set to 0.5. In this case, two
distinct DE mutation strategies are applied on each gene with
equal probability, which strengthens the search ability by the
genetically hybrid DE strategy. At the later period, i.e., e is
larger than 1/3∗ max_e, p is randomly selected in a range
of 0.95 and 1.05. In this case, using the strategy DE/rand/1 or

DE/current-to-rand/1 to produce a new gene has a higher
probability, which can speed up convergence.

3) UPDATE NEIGHBORHOOD SOLUTIONS
After executing mutation on ȳ to get y in line 19 and eval-
uating its objectives to update z∗ in line 20, this offspring
y will be used to update at most nr individuals from S in
line 21 by Algorithm 5. As described in Algorithm 5, the
fitness improvement rates of all neighborhood solutions are
computed by

η(xj) =
g(x j|λj, z∗)− g(y|λj, z∗)

g(x j|λj, z∗)
(9)

where λj is the weight vectors for subproblem j. First, the off-
spring y replaces the parent solution x with the maximal η
value, and then it replaces other parent solutions until nr par-
ent solutions are successfully replaced. By summing up the
fitness improvement rates of the successfully replaced solu-
tions, the final reward FIRop of operator op can be obtained.

Then, the number of function evaluations e is increased by
1 in line 22 of Algorithm 3. Each solution will undergo the
above reproduction and update procedures.

D. UPDATE OF PARAMETERS
After the above reproduction and update procedures,
the parameters of FRRMAB are respectively updated
by (3)-(5) in line 24, which are used to select the DE operator.
Then, in line 25, as suggested in [43], the location parameter
F ′ in the Cauchy distribution can be computed by (10)-(11)

F ′ = wF × F ′ + (1− wF )

×meanPOW (Fsuccess), (10)

meanPOW (Fsuccess) =
∑

x∈Fsuccess

(xk/|Fsuccess|)1/k , (11)

where wF is a pre-defined weight factor and Fsuccess is a
set reserving the successful scaling factors. As suggested
in [43], F ′ is initialized to 0.5, k is set to 1.5, and wF is
randomly sampled from [0.8, 1]. The generation counter gen
is increased by 1 in line 26. At last, in lines 27-29, the utility
function π of the subproblems will be recomputed at each of
the 20 generations.

Finally, as shown in line 8, when the stopping criterion is
reached, the population S is returned as the final solution.

IV. EXPERIMENTAL STUDIES
A. TEST PROBLEMS AND EXPERIMENTAL SETTING
In our experiments, 19 unconstrained test MOPs including
UF1-10 [44] and F1-9 [45] are first used as test instances,
in which their dimensions of decision variables are consis-
tent with those in their original papers. Then, eight MOPs
with difficult-to-approximate (DtA) PF boundaries [46]
(MOP1_DtA_PF-MOP8_DtA_PF) are also adopted to com-
pare the performances.

The parameters in all of the compared algorithms are
set as suggested in their references, which are summa-
rized in Table 1. In MOEA/D-GHDE, the neighborhood size
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TABLE 1. Parameter settings of all compared algorithms.

T = 20, the probability of selecting parents in neighborhood
δ = 0.9, the updated size nr = 2. Moreover, we set CR =
1.0 and K = F for the DE operators, while η = 20 and
pm = 1/n for the polynomial-based mutation operator.

In addition, the population size N is set to 600 for all
bi-objective UF and F test problems, and to 1000 for other
three-objective test problems. Moreover, we set the maximal
function evaluations to 150 000 for F1-F5 and F7-F9, and to
300 000 for F6 and UF1-UF10. As suggested in [46], the pop-
ulation size N is set to 200, and the maximal function evalua-
tions are set to 150 000 for MOP1_DtA_PF-MOP8_DtA_PF.
To be fair, each indicator value obtained by the compared
algorithms on each test problem is the averaged value over
30 independent runs.

B. PERFORMANCE INDICATORS
In this paper, we use two indicators, i.e., the inverted gener-
ational distance (IGD) [47] and the hypervolume (HV) [48],
to estimate the performances of all algorithms.

1) IGD
The points uniformly sampled on the true PF is represented
by P and the final solutions set obtained by an MOEA is A.
Then, the IGD indicator is defined as follows:

IGD(P,A) =

∑|P|
i=1 d(Pi,A)

|P|
, (12)

where |P| is the size of P and d(Pi ,A) represents the minimal
Euclidean distance in objective space from Pi to the solutions
in A.

2) HV
A given reference point zr = (zr1, . . . , z

r
m) in the objective

space is necessary for the HV indicator to calculate the objec-
tive space size that is dominated by the solutions in S and
bounded by zr . More specifically, given zr , the HV indicator
is defined as follows:

HV (S)=VOL
(
∪
Ex∈S

[
f1 (x) , zr1

]
×· · · ×

[
fm (x) , zrm

])
, (13)

where VOL(·) is the Lebesgue measure. Notice that the
values of the reference point in each dimension must be

slightly larger than the worst value of each objective on the
true PF. In our experimental settings, the reference point
was set to (1.1, 1.1)T for all bi-objective problems, and to
(1.1, 1.1, 1.1)T for all three-objective problems.

C. COMPARISON OF MOEA/D-GHDE AND OTHER MOEAs
The experimental results of our proposed algorithm
MOEA/D-GHDE are compared to five MOEA/D vari-
ants, i.e., MOEA/D-DRA [36], MOEA/D-FRRMAB [42],
MOEA/D-IR [9], MOEA/D-CDE [43], and MOEA/
D-MUP [22]. Tables 2 and 3 list the mean values and the
standard deviations of the two indicators, respectively, which
are achieved by all the compared algorithms on UF and F
instances after executing 30 independent runs. Note that the
result marked by boldface indicates the best result. To show
the statistical differences for the compared results obtained by
MOEA/D-GHDE and the others, Wilcoxon’s rank-sum test
was run at a 5% significance level in our experiments. The
notations ‘‘−’’, ‘‘+’’, and ‘‘∼’’ in Tables 2 and 3 indicate
that the results obtained by the corresponding algorithm are
significantly worse than, better than, and similar to those of
MOEA/D-GHDE, respectively.

As observed from Table 2, MOEA/D-GHDE shows some
advantages over other algorithms when considering the
IGD indicator, because MOEA/D-GHDE can find the best
results on 10 out of all the 19 test problems. As shown
in Table 2, statistical comparisons of MOEA/D-GHDE with
other competitors are summarized in the last row, in which
‘‘−/∼/+’’ indicates the total numbers of test problems that
MOEA/D-GHDE performs better than, similarly to, and
worse than the corresponding algorithm. Compared with
other algorithms, MOEA/D-GHDE has some advantages
because our algorithm can achieve better results on most test
problems. Meanwhile, this demonstrates that our proposed
GHDE plays a positive effect on solving these problems.
As indicated in Table 2, MOEA/D-GHDE performs better
than or similarly to MOEA/D-DRA, MOEA/D-FRRMAB,
MOEA/D-IR, MOEA/D-CDE, and MOEA/D-MUP on 15,
15, 15, 14, and 18 out of 19 test problems, while it is beaten
by these competitors on 4, 4, 4, 5, and 1. Therefore, according
to these IGD results, we can conclude that our algorithm
is better than its competitors on most problems. Recall that
only one single DE operator was used in MOEA/D-DRA,
MOEA/D-IR, and MOEA/D-MUP. Moreover, both MOEA/
D-DRA and MOEA/D-IR adopted the adaptive resource
assigning strategy, assigning different computational resou-
rces according to the relative improvement of the aggregated
function values for each subproblem. However, instead of
using only one ideal reference point, multiple utopian ref-
erence points were used to guide the evolutionary search
directions for its subproblems in MOEA/D-MUP, aiming to
explore uncovered border areas and give slight superiority
in maintaining diversity without decelerating convergence.
Compared with the above three algorithms, the composite
DE operator pools have a positive influence on improv-
ing the performance of the proposed MOEA/D-GHDE.
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TABLE 2. Experimental results on IGD obtained by all compared algorithms.

Hence, we conclude that multiple DE operators can better
strike a good balance between convergence and diversity
during the evolutionary process of solving the test prob-
lems. Note that MOEA/D-CDE andMOEA/D-FRRMAB are
also designed based on the adaptive selection of multiple
DE operators. However, experimental results validate that
our proposed genetically hybrid differential evolution strat-
egy for recombination has superiority when compared with
others.

Table 3 further lists the compared results on the HV indi-
cator obtained by all compared algorithms. It turns out that
similar conclusions can be obtained. As shown in Table 3,
on all of the 19 test problems, the number of the best
results achieved by MOEA/D-GHDE is 10, whereas other
algorithms only can achieve the best performance on 0, 2,
3, 2, and 2 out of all the 19 test problems, respectively.
Such an observation demonstrates that the performance of
MOEA/D-GHDE is better than others on most of the test
problems. As summarized in Table 3, it can be seen that on
the 19 test problems, MOEA/D-GHDE still performs better
than or similarly to MOEA/D-DRA, MOEA/D-FRRMAB,
MOEA/D-IR, MOEA/D-CDE, and MOEA/D-MUP on 14,

14, 14, 14, and 17, whereas it is worse than these competitors
on 5, 5, 5, 5, and 2, respectively. Thus, it is further confirmed
by these HV results that our algorithm shows some advan-
tages for solving most of the UF and F test problems when
compared with other competitors.

To visually show the quality of the final populations
obtained by different algorithms, Figures 2-3 further plot
the final approximate solutions with median IGD over
30 independent runs on the test problems. Due to the
page limit, only two representative cases, i.e., UF5 and
F2, are given in Figures 2-3. It can be seen from
Figures 2-3 that MOEA/D-GHDE have a stronger search
capability, which can realize a better balance between
convergence and diversity than other algorithms during
evolution.

Moreover, some studies have focused on the use of statisti-
cal techniques in the analysis of the evolutionary algorithms’
behaviors over optimization problems [49], [50]. To quantify
the overall performance of each algorithm, Friedman’s test
and Bonferroni-Dunn’s post hoc procedure from the software
tool KEEL [50] were used to show the average performance
ranks (as shown in Figure 4) and the significant differences
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TABLE 3. Experimental results on HV obtained by all compared algorithms.

FIGURE 2. Scatter plots of population obtained by all compared algorithms on UF5.

(as shown in Table 4) between MOEA/D-GHDE and other
competitors for solving UF and F test problems, respectively.
From Figure 4, the average performance ranks (2.2105 in

terms of IGD and 2.3684 in terms ofHV) ofMOEA/D-GHDE
are smaller than those of the competitors, which confirms
the advantages over the competitors when considering all
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FIGURE 3. Scatter plots of population obtained by all compared algorithms on F2.

FIGURE 4. Average ranking of Friedman’s test for all compared algorithms.

TABLE 4. p-values obtained by applying post hoc methods.

the test problems. Table 4 gives the post hoc comparison
results, where a p-value closer to 0 means a more significant
difference in the results. As described in Table 4, we can
find that most p-values are very close to 0, meaning that
MOEA/D-GHDE achievesmore significant differences in the
results.

D. EFFECTIVENESS OF GENETICALLY HYBRID DE
STRATEGY
From the above experimental results, it is found that
MOEA/D-GHDE shows some advantages over the
competitors due to the use of the genetically hybrid differen-
tial evolution strategy. To further verify the effectiveness of
theGHDE strategy,more experiments are designed to analyze
the above effect in this subsection.

As introduced in Section III.C, the choice of the opera-
tor pool is decided by the parameter op, which is adjusted
adaptively according to FRRMAB. Then, according to the
population status, two complementary DE strategies in each
operator pool are adaptively used. Here, we use two com-
pared variants, i.e., Variant-I and Variant-II, to compare with
MOEA/D-GHDE. The values of op are fixed as 1 and 2 for
Variant-I and Variant-II, respectively.
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Moreover, the probability parameter p is adaptively
adjusted as the number of evaluations increases, which is used
to realize the genetically hybrid DE strategy in each operator
pool. Here, the value of p is fixed as a constant, i.e., 0.5, which
is regarded as another compared variant (named Variant-III),
aiming to validate the effectiveness of the adaptive strategy
for adjusting p in MOEA/D-GHDE.

TABLE 5. Results of MOEA/D-GHDE and its variants on IGD.

In this experiment, the performances of the three vari-
ants are tested on 19 test problems including UF1-10
and F1-9. The averaged results regarding the IGD and
the HV indicators over 30 independent runs achieved
by MOEA/D-GHDE, Variant-I, Variant-II, and Variant-III
are given in Tables 5 and 6, respectively. Specifically,
as shown in Table 5, when considering the IGD indi-
cator, MOEA/D-GHDE performs better than or simi-
larly to Variant-I, Variant-II, and Variant-III on 17, 17,
and 18 out of 19 test problems, respectively. Moreover,
as shown in Table 6, when considering the HV indica-
tor, MOEA/D-GHDE performs better than or similarly to
Variant-I, Variant-II, and Variant-III, on 19, 16, and 19 out
of 19 test problems, respectively. Therefore, the superior per-
formance of MOEA/D-GHDE over the three variants further
validates the effectiveness of the GHDE strategy.

TABLE 6. Results of MOEA/D-GHDE and its variants on HV.

E. PARAMETER SENSITIVITY ANALYSIS
To capture the impact of the evolutionary parameters,
the parameter sensitivity analyses of the scale param-
eter λ and the probability parameter p are studied,
respectively.

First of all, keeping the same parameter setting as
introduced in the previous experiments, MOEA/D-GHDE
with different λ values from {0.05, 0.1, 0.2, 0.3} were
experimentally compared. As shown in Tables 7 and 8,
MOEA/D-GHDE with λ = 0.1 achieves better performances
on most test problems when comparing to MOEA/D-GHDE
with other λ values. More specifically, regarding IGD,
MOEA/D-GHDE with λ = 0.1 achieves better or similar
results than those using λ = 0.05, 0.2, and 0.3 on 17, 18,
18 out of 19 cases, while only worse than its competitors
on 2, 1, and 1. Moreover, regarding HV, MOEA/D-GHDE
with λ = 0.1 achieves better or similar results on 16,
17, 18 out of 19 cases, while only worse than its com-
petitors on 3, 2, and 1. Therefore, the above compari-
son results validate the effectiveness of MOEA/D-GHDE
with λ = 0.1.

Then, to capture the impact of the probability parame-
ter p on the performance, also keeping the same parameter
setting as before, MOEA/D-GHDE with different p values
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TABLE 7. Experimental results on IGD obtained by MOEA/D-GHDE with different λ and p values.

from {0.3, 0.5, 0.8} were compared. The results show that
MOEA/D-GHDE with p = 0.5 achieves better IGD results
than those using other p values (p = 0.3 and 0.8) on 9 and
9 out of 19 cases, while it is better than its competitors on
11 and 9 regarding HV. Moreover, MOEA/D-GHDE with
p = 0.5 is only worse than its competitors on 2 and 1 regard-
ing IGD, while on 3 and 2 regarding HV. Based on these
observations, we can conclude that MOEA/D-GHDE with
p = 0.5 is more reasonable than other values.

F. COMPETITION WITH OTHER RECENT MOEAs
In this subsection, another eight test instances featured
by difficult-to-approximate (DtA) PF boundaries [46]
are adopted to further investigate the performance of
MOEA/D-GHDE and four popular or recently proposed
MOEAs (i.e., eMOEA/D-MSF [38], eMOEA/D-PSF [38],
MOEA/D-PaS [51] and RVEA [52]. Notice that the set-
tings of the four compared MOEAs are suggested in their
references. Tables 9 and 10 give the experimental results
of MOEA/D-GHDE with the four MOEAs regarding IGD
and HV, respectively. In Tables 9 and 10, ‘‘+/–/∼’’ indicate
that the competitors performed better than, worse than, and
similar to MOEA/D-GHDE, respectively.

The results show that the IGD and HV values achieved
by eMOEA/D-MSF and RVEA are always worse than

FIGURE 5. Average ranking of Friedman’s test.

those achieved by MOEA/D-GHDE. Compared with
eMOEA/D-PSF regarding IGD, MOEA/D-GHDE performs
better than eMOEA/D-PSF on 6 cases, and achieves 1 similar
case and 1 worse case, respectively. Similarly, regarding
HV, MOEA/D-GHDE achieves significantly better and sim-
ilar results than eMOEA/D-PSF on 7 cases and 1 case,
respectively. The above comparison results confirm that
MOEA/D-GHDE performs better than eMOEA/D-MSF,
eMOEA/D-PSF, and RVEA. Moreover, MOEA/D-GHDE
and MOEA/D-PaS achieve similar performances on these
problems, demonstrating the effectiveness of the Pareto adap-
tive scalarizing (PaS) approximation method proposed in
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TABLE 8. Experimental results on HV obtained by MOEA/D-GHDE with different λ and p values.

TABLE 9. Experimental results on IGD values obtained by the recent MOEAs and MOEA/D-GHDE.

MOEA/D-PaS. However, although MOEA/D-GHDE adopts
the traditional scalarizing method, it still achieves similar
performances on most problems, showing the effectiveness
of using the proposed genetically hybrid differential evolution
strategy.

In addition, we use the non-parametric tests for ana-
lyzing the performances of the compared algorithms on
these test problems. As shown in Figure. 5, the aver-
age performance ranks of all compared algorithms are

computed by using Friedman’s test method. We can find
that the average performance ranks (1.5 on IGD and
1.4375 on HV) of MOEA/D-GHDE are smaller than those
of other MOEAs. Moreover, the p-values obtained from
Bonferroni-Dunn’s and Holm’s post hoc procedure are pro-
vided in Table 11. Most p-values are close to 0, showing
that the results of the proposed MOEA/D-GHDE are signif-
icantly better than the competitors when solving these test
problems.
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TABLE 10. Experimental results on HV values obtained by the recent MOEAs and MOEA/D-GHDE.

TABLE 11. p-values obtained by using post hoc methods.

V. CONCLUSION AND FUTURE WORK
In this paper, a decomposition-based multiobjective evolu-
tionary algorithm with a novel genetically hybrid differential
evolution strategy (GHDE) for recombination is proposed.
Two composite operator pools are designed in our algo-
rithm, each of which includes two DE mutation strategies.
Moreover, the selection of two composite operator pools
is decided by FRRMAB. In each composite operator pool,
two different DEs are applied on parents’ genes to hybridize
offspring by adaptive parameters tuning. Finally, 19 com-
plex test MOPs are adopted for performance comparison,
and the results show that our proposed algorithm exhibits
the superiorities over five competitive MOEA/D variants
(MOEA/D-DRA, MOEA/D-FRRMAB, MOEA/D-IR,
MOEA/D-CDE, andMOEA/D-MUP).Meanwhile, the effec-
tiveness of the proposed GHDE strategy is confirmed and
the parameters sensitivities are further analyzed on these
test problems. Furthermore, eight MOPs with difficult-
to-approximate PF boundaries are adopted to further verify
the superior performance of MOEA/D-GHDE when com-
pared with some popular or recently proposed MOEAs
(i.e., eMOEA/D-MSF, eMOEA/D-PSF, MOEA/D-PaS, and
RVEA.).

In future work, more efficient adaptive operator selection
strategies will be studied to further strengthen the search
ability in MOEA/Ds. Moreover, it is interesting to extend the
proposed algorithm MOEA/D-GHDE to solve more realistic
multiobjective optimization problems, even some real-world
applications [53]–[55].
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