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ABSTRACT All over the world, the operators of the power distribution networks (DNs) are still looking
for improving the efficiency of their networks. The performance of DNs and lifetime of its component have
been significantly affected by its capability of varying their topologies with accurate load gathering via
smart grid functions. This paper investigates making use of the smart DNs features and proposes a model of
handling the capability of re-allocating the capacitors integrating with configuring the DNs topology. Using
the developed formulation, the efficiency of DNs can be improved not only by minimizing the operational
costs related to the network losses but also by optimizing the investment costs associated with capacitor re-
allocations. Also, various load patterns are employed in the developed formulation to imitate the daily load
variations over a year. The improved sunflower optimization algorithm (ISFOA) is proposed in this paper to
get the optimal solution of the presented problem. The standard IEEE 33-node feeder and practical 84-node
system of Taiwan Power Company (TPC) are the considered test systems. Besides, the uncertainties due to a
distributed generation of wind power are investigated viaMonte Carlo simulation involved with the proposed
ISFOA. Furthermore, to verify the ability of ISFOA to obtain better solutions compared with different recent
optimizers, a statistical comparison is carried out based on a large scale 118-node distribution systems.
The simulation results reveal that significant technical and economic benefits are obtained by applying the
proposed algorithm with higher superiority and effectiveness.

INDEX TERMS Performance enhancement, multi-lateral distribution networks, network re-topology,
capacitor re-allocations.

I. INTRODUCTION
Automation of distribution networks (DNs) is one of the
most effective frameworks for improving their efficiency
and enhancing the reliability of the power service as well
[1]. Two main requirements are necessary for achieving the
DNs automation which are the automatic switches and their
secured communications. DNs and their related communi-
cation devices must be incorporated together to handle an

The associate editor coordinating the review of this manuscript and

approving it for publication was Siqi Bu .

effective automated DNs [2]. Thus, network reconfigurations
can be immediately acquired in an optimized way. On the
other side, power DNs represent the ultimate contact with
consumers. They are continuously facing ever-growing load
demand, leading to increased burden and bad performance
with excessive branches loading [3]. The power losses in
DNs represent a burden on electric utility, which reaching
13% of total generated power [4], [5]. It is important in
effective DNs to reduce the dissipated energy as much as
possible. Investigating and improving the DNs performance
affects directly on the transmission and generation sectors as
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well as providing luxury and consumers’ satisfaction. Several
methods have been followed to improve the efficiency of
DNs such as capacitor banks (CBs), network reconfiguration,
distributed generators (DGs), automatic voltage regulators
(AVRs), etc. [6], [7].

Shunt capacitor is considered the common conventional
enhancement devices for DNs. The achieved power loss mini-
mization using single located capacitor bankwas extended for
multiple capacitor banks. Subsequently, optimization strate-
gies were introduced to deal with capacitor optimal place-
ment problem. Economic benefits of the capacitor banks
depend mainly on capacitor optimal numbers and sizes as
well as proper selection schemes to match load variations [8].
Over the past two decades capacitors’ allocations and con-
trol have been studied using a range of heuristic methods
such as ant-colony optimization algorithm [9], [10]; parti-
cle swarm optimization algorithm [11]; immune algorithm
[12]; cuckoo search optimization algorithm [13]; genetic
algorithm [14]; grey wolf algorithm [15]; plant growth
algorithm [16]; gravitational search algorithm [17]; flower
pollination algorithm [18]; teaching learning optimization
algorithm [19]; bacterial foraging algorithm [20]; honey
bee optimization algorithm [21]; combined fuzzy-heuristic
techniques [22], [23]. These techniques solve the problem
of best location and size imitating bees, birds, wasps, fish
schools, etc. in order to reach the best solution. Optimal
allocation of capacitor banks in DNs can fulfill many ben-
efits once optimal sizing and sitting are obtained. Many
researchers seek to maximize the advantages of using capac-
itor banks in DNs for performance enhancement either in
technical or economic prospect [24], [25]. Hence, most of
the objectives of interested researchers were in this regard
such as minimum total cost [9]–[12], [15]–[18], [26], max-
imum annual net saving [5], [22]; distribution system volt-
age stability improvement [17]. Some of them were able to
achieve these objectives either as a single objective func-
tion [10], [17], [24]–[26] or combined as a multi-objective
[5], [9], [11], [12], [14], [15], [18]–[22].

Reconfiguration of DNs is one of the most effective means
for power loss reduction, voltage profile improvement, load
congestion management, and system quality and reliability
enhancement. Generally, DNs are operated in a radial fash-
ion. Distribution systems reconfiguration enables the DNs
to re-struct its topology. This can be done by reconsidering
the status of normally open/closed switches of sectionaliz-
ing and tie-switches. Reconfiguration of DNs can relieve
load congestion and achieve secure and reliable operation of
DNs during contingencies or under normal operating condi-
tions [27], [28]. The reconfiguration problem can be either
static or dynamic [29]. The static problem of the reconfigura-
tion is still a complex, non-differentiable and combinatorial
constrained optimization issue which is hard to be treated
and gains more complexity by expanding over multiple time
periods. Therefore, it is crucial to find a proper algorithm to
solve the problem. Reconfiguration of DNs got deep investi-
gation and great attention from researchers for enhancing the

performance of DNs. Different techniques were introduced in
previous literatures either using analytical or meta-heuristic
algorithms. Interchange switch strategy [30], open-all switch
strategy [31], close-all switch strategy [32] and sensitivities
computation method [33] are the commonly used analytical
methods for optimal reconfigurations. Improved Elitist–Jaya
algorithm [34], feasibility-preserving evolutionary optimiza-
tion [35], improved sine–cosine algorithm [36], tabu search
algorithm [37], equilibrium optimization algorithm [38],
grey wolf optimizer [39] and particle swarm optimiza-
tion [7] are some examples of previously used meta-heuristic
algorithms.

Most of the previous literatures were concerned with opti-
mal capacitor placement or optimal reconfiguration of dis-
tribution systems without considering the other. Although
the achievement of DNs enhancement with capacitor opti-
mal placement or distribution system reconfiguration, but
performance evaluation of distribution system and economic
benefits of combined capacitor placement and distribution
system reconfiguration not studied sufficiently [40]–[42].
The planners who interested in enhancing the DNs perfor-
mance began to integrate the placement of enhancement
devices with DNs reconfiguration [43]–[46]. There are only
a few literatures studying cost minimization of DNs that
applies distribution system reconfiguration and capacitor
placement simultaneously. Ref [43] introduces a population-
based ant colony search algorithm for optimal reconfiguration
of DNs simultaneously with optimal capacitor banks allo-
cation. Ref [44] introduces an improved branch exchange
method by optimizing the sequence of loops selection for
minimizing the energy losses. Then, a joint optimization algo-
rithm is applied for combining this improved method of dis-
tribution system reconfiguration and optimal capacitor banks
placement. A hybrid approach that combines network recon-
figuration and capacitor placement using Harmony Search
Algorithm (HSA) is proposed to minimize power loss reduc-
tion and improve voltage profile was proposed in [45]. Also,
in [46], an improved binary particle swarm optimization
method was proposed for optimal network reconfiguration
and capacitor placement to reduce power loss.

Several of previous literatures were concerned with solv-
ing the optimal capacitors placement and reconfiguration of
DNs problem at peak load only [9]–[11], [17]–[20], [23],
[24]–[26]. Continuous daily and seasonally load variations
cause many problems in modelling and calculations of distri-
bution systems especially at light load values. As well, pos-
sibility of reverse power flow may lead to excessive energy
losses [13], [47]. To get rid of these problems, some litera-
tures are concerned with performance enhancement of dis-
tribution systems considering load variations [5], [12]–[14],
[22]. There are additional modern and superior optimizers
for the capacitor allocation on the distribution grid includ-
ing variable load conditions and practical cases such as
hybridization of particle swarm optimization besides a gravi-
tational search algorithm [48], enhanced gravitational search
algorithm [49], and spotted hyena algorithm [50].
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This paper introduces a practical and economic solution
methodology for performance enhancement of smart DNs
with optimal integrated capacitors re-allocations, distribution
reconfiguration and daily load variations. It represents several
load patterns with daily load variations over a year horizon,
which makes the proposed improvement more realistic and
closer to reality. It supports the time of use tariff with dif-
ferent charge rates at different times of night or day. The
introduced solution methodology, in this paper, uses a pro-
posed improved variant of a novel nature-inspired optimizer
based on sunflowers’ motion. The sunflower optimization
represents an iterative population-based optimizer for the
sake of solving multi-dimensional problems. It mimics the
sunflowers’ movement for capturing the best orientation to
the sun. Various recent implementations have been success-
fully executed for damage identification on composite plates
[51], identifying the electrical parameters for photovoltaic
cells [52], solving the optimal power flow [53], and param-
eter estimation of lithium-polymer batteries [54]. The main
contributions of this paper can be summarized as follow:
• An improved sunflower optimization algorithm (ISFOA)
is proposed. ISFOA develops the pollination rate and
the mortality rate in an adaptive way to overcome the
restrictions in the SFOA search capability due to being
constants.

• The uncertainties due to the presence of distributed gen-
eration of wind power is investigated via Monte Carlo
simulation involved with the proposed ISFOA.

• Furthermore, statistical comparison is carried out
between the proposed ISFOA and different recent opti-
mizers of harmony search, artificial bee colony, shark
smell, cuckoo search, gravitational search, and salp
swarm optimization on large scale 118-node distribution
systems.

• The simulation results reveal that significant technical
and economic benefits are obtained through the appli-
cation of the proposed algorithm with higher superiority
and effectiveness.

• The proposed methodology is applied for standard IEEE
33-node feeder, and practical 84-node system of Tai-
wan Power Company (TPC). Also, scalability of the
proposed technique is tested on large scale 118-node
distribution systems.

The rest parts of this work are organized as follows: Section II
presents the proposed problem formulation. Section III intro-
duces the basic and improved SFOA as well as its applica-
tion for reconfiguration of DNs and capacitor re-allocations.
Section IV presents the simulation results and results analysis
and discussion. Overall conclusion is introduced in section V.

II. PROPOSED PROBLEM FORMULATION
The proposed problem is formulated as a sophisticated opti-
mization problem to handle the readiness of re-locating
and/or re-sizing the capacitors in re-configurable DNs. This
developed formulation reinforces the minimization of the
operational costs related to the network losses and optimizing

the investment or untangling costs related to capacitor
re-locations and re-sizing. These two objectives can be aug-
mented in a single objective function as follows;

MinOf=

NL∑
L=1

TDLhL

Nline∑
Br=1

LossBr,L

+


NC∑
i=1

(
ei+ciQci

)
+


Nu∑
j=1

(
uj + cj(-Quj )

)
 (1)

where, Of ($/year) is the considered objective function that
reinforces the minimization of the operational costs related
to the network losses and optimizing the investment or untan-
gling costs related to capacitor re-locations and re-sizing. The
first term of this equation represents the total operational
costs related to the network losses, where; TDL is the time
duration of each load level; hL is the $/kWh cost of each load
level; NLine is the number of the distribution lines; LossBr,L is
the network losses in each distribution branch for each period
of the load levels; NL is the number of yearly load levels.
The second and third terms are the costs ($/year) related
to either investment for new installations of capacitors with
size (Qc) or savings for untangling capacitors with size (Qu),
where; e, u, and c are the installment ($), untangling ($), and
purchase ($/kVAr) cost for each kVAr capacitor, respectively;
NC is the number of new installations; and Nu is the number
of untangled capacitors.

This formulation searches for the optimal re-allocations
of the existed capacitors, installing newer ones and optimal
status of the switches for optimal re-configuration. In this
formulation, daily load variations with several load patterns
over a year horizon are simultaneously represented. Thus,
the vector of the control variables (CV) is as follows;

Cv = [SW1....... SWNsw︸ ︷︷ ︸
Open switches

,Lq1....... LqNq︸ ︷︷ ︸
Capacitor
Re-locations

,Qc1....... QcNq︸ ︷︷ ︸
Capacitor
Sizes

]

(2)

where, SW refers to the selected switches to be open (integer
variable); Nsw is the total number of the must open switches
that radially configure the distribution system; Lq is the can-
didate re-locations of the capacitor to be installed or untan-
gled (integer variables); Qc is the regarded sizes to be
installed or untangled (discrete variables); Nq is the total
number of the capacitors to be installed or untangled.

Solving the objective function in (1) is subject to the
following technical and operation constraints;

Vmin
n,L ≤ Vn,L ≤ Vmax

n,L , n = 1, 2, . . . ,Nb,

L = 1, 2, . . . ,NL (3)∣∣SBr,L∣∣ ≤ Smax
Br,L, L = 1, 2, . . . ,NL,Br = 1, 2, . . . , NLine

(4)

1 ≤ SWi ≤ Nline, i = 1, 2, . . . , NSW (5)

1 ≤ Lqj ≤ Nb, j = 1, 2, . . . , Nq (6)
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0 ≤ Qcj ≤ Qcmax, j = 1, 2, . . . , Nq (7)

Nq ≤ Nb (8)
Nq∑
j=1

Qcj ≤
Nb∑
n=1

(Qdn)min(L), L = 1, 2,. . . , NL (9)

PssL >
Nb∑
n=1

(Pdn)L, L = 1, 2, . . . , NL (10)

QssL −
NC∑
j=1

Qcj >
Nb∑
n=1

(Qdn)L, L = 1, 2, . . . , NL (11)

where, V indicates the voltage magnitude; S and Smax refer
to the power flow and the rating of the lines; Pss and Qss are
the supplied active and reactive power from the substation;
Nb refers to the total number of the nodes. The subscripts
‘‘min’’ and ‘‘max’’ refers to the minimum and maximum of
each regarded variable.

This formulation represents an inequality bounds related
to the voltage quality at each load demand at any period
as in (3) while (4) handles the safe loading of each
branch. Equations (5)-(7) bounds the control variables of
the open switches, the locations of capacitor sizes to be
installed or untangled, and their regarded sizes, respec-
tively. Equation (8) specifies the number of capacitors to
be installed or untangled not to exceed the total number of
buses whilst (9) specifies the limits of total injected reactive
power from the capacitors. Equations (10) and (11) guarantee
powering all loads in the distribution network as the supplied
power have to be greater than the loads aggregation. Added
to that, the load flow balance for each load level should be
preserved as the equality constraints.

To preserve the radial mode of the distribution network, a
branch-bus incidence matrix is formed as in (12);

Aij =

0, if line i isn’t connected to bus j
−1, if the line i enter to bus j
1, if the line i exits from bus j

(12)

This matrix is a Nb×NLines. Based on this matrix formation,
if their determinant is zero, the network isn’t radial and if it
is 1 or -1, the network topology is radial [55].

Additionally, the presence of wind DGs can be connected
to some buses with their rated power. Typically, wind speeds
have probabilistic characteristics that can be interpreted
using the Weibull Density Function (WDF) [56], [57]. Thus,
for each hour, the WDF (Fwind) for wind speed(s) can be
expressed as:

Fwind(s) =
k
c

( s
c

)k−1
e−(

s
c )
k

(13)

where, s indicates the random wind speed (m/s); c refers to
the Rayleigh scale index (c ≈ 1.128sav); sav is the average
speed dependent on historical speed data; k indicates the
shape index (k=2). In real time operation, the correct value
of the wind speed(s) is measured, and the output power of
the wind turbine (Pwind) is determined. Much of the time,

the calculation speed is greater than the rated speed and less
than the cut-off point, so the output power at the measured
frequency (Pwind) is determined as follows;

Pwind(s) =


0 if s ≤ sci
m3s3 +m2s2 +m1s+m0 if sci < s < sr
Prated if sr < s < sco
0 if sco ≤ s

(14)

where, sci, sr and sco are respectively the cut-in, rated,
and cut-out speed of the turbine; m0, m1, m2, m3 are the
coefficients defined on the basis of the curve fitting; Prated
is the nominal rating of the turbine.

III. PROPOSED ISFOA
A. BASIC SUNFLOWER OPTIMIZER
SFOA is one of the recent evolutions in soft computing
algorithmswhich is inspired from the nature. Themain notion
of the SFOA is the simulation of the sunflowers’ movement
seeking for capturing the best following to the sun where this
process is repetitious at the sunrise every morning. The cycle
of a sunflower is always the same: every day, they awaken and
accompany the sun like the needles of a clock. At night, they
travel the opposite direction to wait again for their departure
the next morning [51]. The law of radiationmanages the cycle
of a sunflower as;

Qx =
Px
4π r2x

(15)

where, Qx is the heat intensity that received by each sun-
flower individual (x); Px is the solar power and rx is the
distance between the best individual in the current population
and each individual. Equation (15) shows the inverse square
relationship between the radiated heat and the distance. Each
sunflower adjusts its orientation towards the sun be expressed
in (16);

Esx =
X∗ − Xx∥∥X∗ − Xx

∥∥ , x = 1, 2, . . . ,NP (16)

where X∗ is the best individual in the current population,
Xx refers to each solution and NP is the specified size
of the population. The sunflowers move across the sun is
represented as follow.

dx = λ. Px (‖Xx + Xx-1‖) . ‖Xx + Xx-1‖ (17)

where, λ is a defined constant related to the inertial displace-
ment of each sunflower; Px(||Xx+Xx−1||) is the sunflower
probability of the pollination.

In SFOA, the pollination is carried out in a random way
through the least distance between each flower and the poste-
rior flower. Consequently, the sunflower pollinates for a new
position where the nearer sunflowers to the sun make smaller
moves to support the local search improvement whereas
the other sunflowers move normally. Based on the above,
the update mechanism of each sunflower position is carried
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out via the sunflowers move (dx) and their orientation (sx)
towards the sun as follows:

Xx+1 = Xx + dx × sx (18)

The basic steps of the SFOA can be summarized as follows:
Step 1: Initialize NP, Pr, m, maximum iteration Maxw,

the iteration counter (t=0), and the specified limits
of CV (2).

Step 2: Create the initial sunflower population (Xx(w)),
randomly. Each sunflower is represented as
in (2).Therefore, each sunflower is composed of
simultaneous capacitor allocations with selected
switches to be open.

Step 3: Evaluate the related fitness function (OF) as in (1).
Step 4: Appoint the best sunflower (X∗) with the least OF.
Step 5: Check if Maxw is reached. If it is satisfied, extract

X∗ and end the program.
Step 6: Adjust the sunflower positions towards the sun (16).
Step 7: Calculate the orientation vector for each sun-

flower (15) and remove the worst m% sunflowers.
Step 8: Update the Pr% sunflowers according to (18), and

the m% sunflowers by randomly creating them
within their limits.

Step 9: Increase the counter increment (w=w+1). Then,
go to step 3.

B. IMPROVED SUNFLOWER OPTIMIZER VIA
NORMALIZATION PROCESS
The SFOA is very sensitive to the two specified parameters
of the pollination rate (Pr) and the mortality rate (m). This
high sensitivity does not guarantee the capability for finding
the best sunflower. Also, the inertial displacement of each
sunflower is defined as constant which restricts the searching
behavior of the SFOA. These two restrictions don’t support
the search exploration of the SFOA. In this paper, two mod-
ifications are suggested to overcome the above-mentioned
restrictions. The first modification proposes converting the
pollination rate (Pr) from constant specified value into
adaptive value as in (19);

Pr = 0.5× (1−
w

Maxw
) (19)

This equation describes the co-efficient vector (Pr) as a linear
declined from 0.5 to 0 over the iterations.

The second modification proposes describing the iner-
tial displacement (λ) adaptively for each sunflower as
in (20);

λ = (Ub − Lb)× (1−
w

Maxw
) (20)

where, Ub and Lb are the upper and lower bounds of the
decision variables; w is the current iteration. Fig. 1 illustrates
the flowchart of the proposed ISFOA.

Based on the above, the advantages of the proposed
algorithm are as follows:
• The search space is passed through different directions
based on two specified parameters which are the
pollination rate (Pr) and the mortality rate (m).

FIGURE 1. Flowchart of the proposed ISFOA for handling the proposed
formulation.

• The first determines the percentage of the sunflower
individuals that pollinates for new positions with smaller
moves to support the local search improvement.

• The second determines the percentage of the sunflower
individuals with worse fitness values that will be
removed in each iteration.

• The adaptive parameter of the pollination rate helps the
exploration phase of the SFOA by decreasing the local
search dependability on the Best sunflower as illustrated
in its update mechanism.

• The adaptive parameter of the inertial displacement is
represented considering the diversified ranges of each
decision variable. Related to the proposed formula-
tion, the ranges are greatly varied where the ranges
for the open switches and the capacitor re-allocations
are very small compared to the capacitor sizes. Thus,
the new adaptive description of the inertial displacement
performs as a normalization process to the updating
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FIGURE 2. Evaluating the related fitness function.

mechanism which helps supporting the exploitation
phase of the SFOA.

To describe in detail the solution procedure for joint recon-
figuration and capacitor re-allocations, Fig. 2 shows a related
flowchart. As shown, the proposed ISFOA creates based
on its updating mechanism (Fig. 1) the control variables.
The first type of the control variables represents the open
tie branches, and the second type represents the capacitor
locations and their corresponding sizes (2). After that, equa-
tion (12) is activated to formulate the matrix of branch-bus
incidence (A) based on the open tie branches. Then, the deter-
minant of A can be estimated. Then, a checking process is
executed to the radial topology, where the network is radial
if the determinant of A is equal to 1 or -1. Else, the network
is not radial or islanded. Finally, the load flow, via Newton
Raphson method, is performed for the radial condition and
the fitness function (1) is calculated. The fitness function will
be set at infinity if the network is not radial. So, the related
solution will be discarded in the following iterations.

C. ISFOA FOR NETWORK RE-TOPOLOGY AND CAPACITOR
RE-ALLOCATIONS INCORPORATING THE WIND POWER
UNCERTAINTIES
Forecasting studies of the wind speed are executed through
several forecasting techniques [58]–[60] and the output
power of the wind turbine (Pwind) is determined. Despite
the high efficiency of the forecasting techniques, it remains
some uncertainties that may cause small deviations between
the actual and the forecasted. In order to overcome the
uncertainty in generated output power from the wind tur-
bine, Monte Carlo Simulations (MS) is implemented, which

FIGURE 3. ISFOA structure incorporating wind power uncertainties.

requires random input variables depending on the probability
density function (PDF) [61], [62]. And then all stochastic
data can be computed. A probabilistic model is expected to
use the MS. To fix the complexity of the Wind power model
(represented by Fwind), random data is represented by aWDF
which is the best suitable PDF to adapt the random scattered
wind speed (13). It is distributed where the scale and shape
parameters are taken of 10 and 3.1, respectively considering
20 samples of average measured wind speeds as deterministic
data. The variability of wind power generation is selected
at random within a ±5 per cent range. The more scenarios
to be simulated the more accuracy of MS to be derived.
Fig. 3 describes the structure of ISFOA application for net-
work re-topology and capacitor re-allocations incorporating
the wind power uncertainties.

As shown, the maximum number of MS scenarios is firstly
specified. Then, the WDF is generated to extract the out-
put power from each wind turbine existed in the network.
After that, the proposed ISFOA, that is previously detailed in
Section III.B, is applied for each generated scenario.When all
the MS scenarios are simulated, the accumulated probability
based on the total installed capacitors is evaluated and the
higher probability solution is deduced as the optimal one.

IV. SIMULATION RESULTS
In this section, the ISFOA and the conventional SFOA are
applied on the IEEE 33-node feeder [63], and 11 feeder
practical 84-node system [64]. Four loading levels with dif-
ferent load patterns are considered within a year horizon. This
analysis is based on two exemplary load patterns which were
taken from a practical Brazilian distribution utility [65].
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FIGURE 4. Exemplary load pattern [65].

For each tested system, the distribution nodes are divided
into two groups based on these two loading patterns. The
first (Group-A) has the load curve that depicted in Fig. 4-a,
while the second (Group-B) has the load curve in Fig. 4-b. All
the distribution nodes are possible for locating the capacitors,
so the capacitor sites are integers chosen from node 1 to Nb.
Similarly, all the distribution lines have switches which are
possible to be the opened tie line.

The capacitors are modelled as voltage dependent suscep-
tance where their VAr injection is proportionally to the square
of the node voltage [66]. This model demonstrates high accu-
racy compared to modelling it as negative reactive demand
[7]. Added to that, the considered sizes of the capacitors
are discrete values within the range [0-1800] kVAr with step
200 kVAr and the associated investment cost of the capacitors
is 4 US$/kVAr [67]. Their instalment and untangling costs are
considered 150 and 100 US$, respectively. The nodal voltage
limits are 0.90 p.u. and 1.1 p.u [68]. The time duration of
each load level and the related energy price, based on the
concept of time of use tariff, are tabulated in Table 1 [67].
The simulation runs are performed using the proposed SFOA
and ISFOA with 50 and 100 sunflowers for IEEE 33-node
and practical 84-node system, respectively with maximum
number of 200 iterations. MatlabR2017b is used to perform
the simulations on a system with 8 GB of RAM and intel(R)
Core (TM) i7-7200U CPU (2.5 GHz).

A. IEEE 33-NODE FEEDE
The first test system is the radial distribution feeder with
33-node, 12.66-kV rated, and total demand of 3.715 MW and
2.3 MVAr [63]. In this system, there are five open switches at

TABLE 1. Time duration of different load levels and the related energy
price.

FIGURE 5. IEEE 33-node distribution system.

lines from 33:37. Three capacitors are optimally considered,
as referred in [9], at nodes 9, 19, and 25 with sizes of 450,
450, and 1050 kVAr, respectively. Fig. 5 depicts the system
diagram. The distribution nodes (2:18) follow the load pattern
of Group-Awhile the rest follow the load pattern of Group-B.

The proposed SFOA and ISFOA are applied for the pro-
posed formulation. In addition, PSO [69] are also employed
for comparative purposes. The related control variables are
tabulated in Table 2. This table illustrates that the proposed
ISFOA untangles the three existed capacitors and re-locating
them at nodes 14, 25 and 30 with re-sizes of 200, 200 and
800 kVAr, respectively. The obtained re-allocations are con-
ducted with the same configuration by opening the same
switches at lines from 33:37.

Table 3 tabulates the obtained system performance assess-
ment in terms of the economic and technical issues. From
which, the proposed ISFOA is effectively achieves the least
total costs of the operational losses and the capacitor costs
which areminimized from initially 67828US$ to 44486 US$.
With this selected control variables, the power losses are
greatly reduced from initially 82.053, 162.39, 117.40 and
98.56 kW to 57.997, 110.596, 84.852 and 66.378 kW at all
loading levels (L1:L4), respectively.

Also, the minimum voltages are greatly improved from
initially 0.9479, 0.92, 0.9194 and 0.9345 p.u. to 0.9614,
0.9359, 0.9353 and 0.9503 p.u. at all loading levels (L1:L4),
respectively. In addition, the negative sign for the investment
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TABLE 2. Optimal capacitor re-allocation of the 33-node system.

TABLE 3. Performance evaluation of the 33-node system.

on capacitors refers to the regarded savings due to untangling
750 kVAr which can be re-installed in other systems. Further-
more, the convergence curve of the proposed ISFOA, SFOA
and PSO is displayed in Fig. 6 where the proposed ISFOA
demonstrates their capability in finding the global minimum
of 44486 US$ compared to the PSO and SFOAwhich achieve
total costs of 45866 and 45162 US$, respectively.

To consider the uncertainties of the wind power, three wind
DGs are considered at optimal locations as previously men-
tioned per [70]. The installed nodes are 13, 24, and 30 with
sizes of 813.4, 1094.6, and 1066 kW, respectively. By apply-
ing the ISFOA structure that is described in Fig. 3 where the
maximum number of 400 MS scenarios is taken. Fig. 7 dis-
plays the related probabilities of the acquired solutions which
are discriminated based on their size summation of the capac-
itors. As shown, high probability of 16, 19.8, 16.7 per cent is
driven at sum of capacitor size within range of 1-1.4 MVAr
where the maximum probability of 19.8 per cent at 1.2 MVAr
where the regarding optimal solution is illustrated in Table 4.
From this table, the optimal locations are 10, 29, and 33 with
sizes 400, 600, and 200 kVAr, respectively where the must
open tie lines are from 33:37.

FIGURE 6. Convergence curve of the proposed ISFOA, SFOA and PSO for
IEEE 33-node Feeder.

FIGURE 7. Probabilities of the acquired solutions via the proposed ISFOA
for IEEE 33-node system.

TABLE 4. Optimal configuration with capacitor re-allocations via the
proposed ISFOA considering wind power uncertainties.

B. PRACTICAL 84-NODE SYSTEM OF TP
This system is the practical 11 feeder 84-node system of
TPC. It consists of 84-node, 95 line and 13 tie-line switch.
Fig. 8 depicts the system diagram. The rated kV is 11.4 while
the total demand of 28350 kW and 20700 kVAr [64]. In this
system, 13 open switches are existed at lines from 84:96.
Four capacitors are optimally considered, as referred in [66],
at nodes 6, 19, 71 and 79 with sizes of 200, 400, 600 and
600 kVAr, respectively. Therefore, the total existed sizes are
1800 kVAr. The distribution nodes (1:46), at the feeders A:F,
follow the load pattern of Group-A while the rest (47: 84), at
the feeders G:L, follow the load pattern of Group-B. In this
test case, the proposed ISFOA, SFOA and PSO are applied
for the proposed formulation. Their optimal control variables
are illustrated in Table 5.
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FIGURE 8. IEEE 84-node distribution system.

TABLE 5. Optimal capacitor re-allocation and reconfigurations of the 84-node system.

From this table, the proposed ISFOA obtains a further
increase in installing new capacitors where all the existed
capacitors at nodes 6, 19, 71 and 79 are untangled and re-
allocated. The obtained locations are at nodes 9, 65, 72,
82 and 84 and the corresponding sizes are 400, 1000, 800,
600 and 600, respectively. These re-allocations are associated
with an optimal configuration by opening the switches at
lines 7, 34, 38, 55, 63, 72, 82, 86, 88, 89, 90, 92 and 95.

Table 6 tabulates the obtained system performance assess-
ment in terms of the economic and technical issues.
As shown, the proposed ISFOA obtains the least total costs of
the operational losses and the capacitor costs by minimizing
it from initially 173641 US$ to 139770 US$. The power
losses are greatly reduced from initially 211.9331, 392.9574,
358.072 and 253.6787 kW to 158.348, 304.175, 267.6137 and
191.3289 kW at all loading levels (L1:L4), respectively.
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TABLE 6. Performance evaluation of the 84-node system.

FIGURE 9. Convergence curve of the proposed ISFOA, SFOA and PSO for
IEEE 84-node System.

Also, the minimum voltages are greatly improved from
initially 0.9588, 0.9438, 0.9324 and 0.9512 p.u. to 0.9771,
0.967, 0.963 and 0.9722 p.u. at all loading levels (L1:L4),
respectively. The convergences of ISFOA, SFOA and PSO
are depicted in Fig. 9 which indicates the great capability
of the proposed ISFOA in finding the global minimum of
139770 US$ compared to the PSO and SFOA which achieve
total costs of 140260 and 145710 US$, respectively.

To consider the uncertainties of the wind power, random
nodes are selected to install wind DGs at 13, 24, and 30 with
sizes of 813.4, 1094.6, and 1066 kW, respectively. By apply-
ing the ISFOA, Fig. 7 displays the related probabilities of
the acquired solutions based on their size summation of
the capacitors. As shown, high probability of approximately
30 per cent is driven at sum of capacitor size within range
of 3.4-3.8 MVAr and the maximum probability of 10 per
cent at 3.6 MVAr where the regarding optimal solution is
illustrated in Table 7. From this table, the optimal locations
are 7, 53, 72, 80 and 84 with sizes 400, 1200, 400, 800 and
600 kVAr, respectively where the must open tie lines are 7,
34, 38, 62, 72, 76, 81, 84, 86, 89, 90, 92, and 95.

TABLE 7. Optimal configuration with capacitor re-allocations via the
proposed ISFOA considering wind power uncertainties.

FIGURE 10. Probabilities of the acquired solutions via the proposed
ISFOA for 84-node system.

C. SCALABILITY ANALYSIS ON LARGE SCALE
DISTRIBUTION SYSTE
The scalability and competitiveness of the ISFOA are proven
with utilizing the large scale 118-node DN shown in Fig. 11.
It is composed of 118 nodes and 117 distribution segments
while its real and reactive power demands are 22,709.70 kW
and 17,041.10 kVAr, respectively. The ISFOA is compared
with recent optimizers called harmony search (HS) [71], arti-
ficial bee colony (ABC) [72], shark smell (SS) [73], cuckoo
search (CS) [13] gravitational search (GS) [74], and salp
swarmmethod (SSM) [75]. This aims to reduce the combined
energy losses and shunt compensation costs as;

Of = Min [TKeLosses+ σ (Kc

NC∑
i=1

Qci + KiNC)+ KopNC]

(21)

where, Ke is the energy losses cost (0.06 $/kWh); Kc is
the capacitor’s purchase cost (25 $/kVAr), Ki and Kop is
their installation and operational costs (1600 $ and 300 $),
respectively. Losses are the total power losses. T refers to
8760 hours in the year. σ equals 10% as depreciation factor
NC is the VAR number compensation nodes (11 site) [73].
For this DN, the initial power losses are 1298.10 kW,

without VAR compensation, and their annual costs are
682,281$. The SFOA and ISFOA are run for 50 times to min-
imize the considered target and the best obtained capacitor
allocations are staggered in Table 8. The losses are reduced
to 812.5 kW with 37.41% reduction compared to the initial
case.
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FIGURE 11. 118-node distribution system.

TABLE 8. Application of SFOA and ISFOA for the 118-node DN.

Table 9 shows a detailed comparison between the proposed
ISFOA, SFOA and GS, ABC, CS, HS, SS and SSM in terms
of the power losses, kVAR compensation, best, mean and
worst values of the obtained total costs. From this table,
the proposed ISFOA outperformed the other compared algo-
rithms. It leads to the lowest power losses. Also, the acquired
total costs using the proposed ISFOA is the minimum with
433706 $ as shown in Fig. 12. Furthermore, the proposed
ISFOA outperforms the other competitive algorithms by
attaining the lowest values in terms of the best, mean and
worst cases.

This effectiveness of the proposed ISFOA compared to
the other reported algorithms presents great value since the
acquired total costs using the proposed ISFOA is the min-
imum with 433706 $ where the nearest obtained costs are
435360 $ based on the proposed SFOA as well. This means

TABLE 9. Results of competitive algorithms for 118-node DN.

FIGURE 12. Convergence curve of SFOA and ISFOA for the 118-node DN.

that the savings reaches to 1654 $ for just utilization of
an improved version of the SFOA. Otherwise, the nearest
reported results are recorded by SSM [75] of 437230 $. This
means that the value of savings reaches to 3524 $ based on
the proposed ISFOA.

V. CONCLUSION
This paper proposes an improved sunflower optimization
algorithm (ISFOA) for performance enhancement of smart
distribution networks. The proposed ISFOA is applied for
optimal capacitor banks re-allocation on different distribution
test systems. Different load conditions simulating practical
daily and annual load pattern is applied. Minimization of
the operational costs related to power losses and investment
costs of capacitor banks is the main objective of the proposed
ISFOA. The proposed allocation procedure supports the time
of use tariff with different charge rates at different times of
night or day. It introduces an ISFOA develops the pollination
and the mortality rates in an adaptive manner to overcome
the restrictions in the conventional SFOA search capabil-
ity. Significant techno-economic merits are achieved as the
proposed ISFOA demonstrates high competence through the
applications on IEEE 33-node feeder, and 11 feeder practical
84-node system of TPC. In terms of the solution quality,
the ISFOA superiority is demonstrated with best convergence
rates compared with the conventional SFOA and PSO, where
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the power losses can be reduced with a percentage of 22.6 to
32.6% with a total operation cost saving of 20 to 24.5%.
Added to that the scalability is tested for 118-node distri-
bution systems where the outperformance of the proposed
ISFOA is demonstrated over several recent techniques. The
proposed ISFOA achieves the most economical solutions
compared with other optimization techniques.
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