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ABSTRACT This paper proposes a time-domain analog calculations model based on a pulse-width modula-
tion (PWM) approach for neural network calculations including weighted-sum or multiply-and-accumulate
calculation and rectified-linear unit operation.We also propose very-large-scale integration (VLSI) circuits to
implement the proposed model. Unlike the conventional analog voltage or current mode circuits, our circuits
use transient operation in charging/discharging processes to capacitors through resistors. Since the circuits
calculate multiple weighted-sums by charging a capacitance, they can be operated with extremely low energy
consumption. However, because a relatively long time constant is required to guarantee calculation resolution
in the time domain, they have to use very high-resistance devices, on the order of giga-ohms. We designed,
fabricated, and tested a proof-of-concept complementary metal-oxide-semiconductor (CMOS) VLSI chip
using a 250-nm fabrication technology to verify weighted-sum operation based on the proposed model
with binary weights and PWM input signals, which realizes the BinaryConnect model. In the chip, memory
cells of static-random-access memory (SRAM) are used for synaptic connection weights. High-resistance
operation was realized by using the subthreshold operation region of MOS transistors, unlike in the ordinary
in-memory-computing circuits. We evaluated the energy efficiency and temperature characteristics by
measurement using the fabricated chip, where the highest energy efficiency for the weighted-sum calculation
was 300 TOPS/W (Tera-Operations Per Second per Watt). The effects by a temperature change can be
compensated for by adjusting the bias voltage. If state-of-the-art VLSI technology is used to implement
the proposed model, an energy efficiency of more than 1,000 TOPS/W will be possible.

INDEX TERMS Artificial intelligence hardware, AI processor, deep neural networks, in-memory comput-
ing, multiply-and-accumulate, pulse-width modulation, time-domain analog computing, weighted sum, very
large-scale integration (VLSI).

I. INTRODUCTION
Artificial neural networks (ANNs), such as convolutional
neural networks (CNNs) [1] and multi-layer perceptrons
(MLPs) [2], have shown excellent performance on vari-
ous tasks, including image recognition [2]–[6]. However,
computation in ANNs is very heavy, which leads to high
power consumption in current digital computers and even in
highly parallel coprocessors such as graphics processing units
(GPUs). In order to implement ANNs in edge devices such as
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mobile phones and personal service robots, operation at very
low power consumption is required.

In ANN models, weighted summation, or multiply-and-
accumulate (MAC) operation, is an essential and heavy
calculation task, and dedicated complementary metal-oxide-
semiconductor (CMOS) very-large-scale integration (VLSI)
processors have been developed to accomplish it [7]–[10].
As an implementation approach other than digital proces-
sors, the use of analog operation in CMOS VLSI circuits
is a promising method for achieving extremely low-power
consumption for such calculation tasks [11]–[14]. In particu-
lar, in-memory computing (IMC) approaches, which achieve
weighted-sum calculation utilizing the memory circuit, such
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as static-random-access memory (SRAM), have been popular
since around 2016 [15]–[18].

Although the calculation precision is limited due to the
non-idealities of analog operation, such as noise and device
mismatches, neural network models and circuits can be
designed to be robust to such non-idealities [19]–[21]. On the
other hand, ANNmodels with binarized weights called Bina-
ryConnect or even with binarized inputs have been proposed
as binarized networks and their comparable performance has
been demonstrated, mainly in applications of image recog-
nition [22], [23]. These models facilitate the development
of energy-efficient hardware implementations [13]. Although
the state-of-the-art AI chips with multi-bit weights and
multi-bit inputs achieved an energy efficiency of up to 10 tera-
operations per second per watt (TOPS/W) [24], that for the
BinaryConnect model achieved up to about 50 TOPS/W [25],
and those for binarized networks achieved up to 700 TOPS/W
with the aid of an analog computing circuit approach [26].

The time-domain analog weighted-sum calculation model
was originally proposed based on mathematical spiking neu-
ron models inspired by biological neuron behavior [27], [28].
We have simplified this calculation model under the assump-
tion of operation in analog circuits with transient states, and
call its VLSI implementation approach ‘‘Time-domain Ana-
log Computing with Transient states (TACT).’’ In contrast
to conventional weighted-sum operation in analog voltage or
current modes, the TACT approach is suitable for operation
with much lower power consumption in the CMOS VLSI
implementation of ANNs.

We have already proposed a device and circuit that perform
time-domain weighted-sum calculation [29]–[31]. Some
AI processors based on different time-domain approaches
have been reported recently [32]–[35]. Unlike these other
approaches, our proposed circuit consists of plural input resis-
tive elements and a capacitor (RC circuit), where the weights
of the network are expressed by the resistance values. The
energy consumption could be lowered to the order of 1 fJ
per operation, which corresponds to 1,000 TOPS/W. We also
proposed a circuit architecture to implement a weighted-
sum calculation with differently signed weights with two
sets of RC circuits, one of which calculates positively
weighted sumswhile the other calculates negatively weighted
sums [36], [37]. Using a similar time-domain approach,
a vector-by-matrix multiplier using flash memory technol-
ogy was proposed [38]. However, weighted-sum calculation
circuits using pulse-width modulation (PWM) signals have
previously been proposed [39].

In this paper, we reformulate the weighted-sum calculation
model based on the time-domain analog computing approach
using PWM signals, an approach called the TACT-PWM,
and propose and demonstrate its applications to ANNs such
as MLPs and CNNs with extremely high computing energy
efficiency. We also show the design and measurement results
of a VLSI ANN chip fabricated using a 250-nm CMOSVLSI
technology; we compare the calculation results by the pro-
posed model with the ordinary numerical calculation results

FIGURE 1. Modification from the TACT to TACT-PWM approach, where the
label ‘0’ means an input pulse corresponding to the zero value.

and verify the very high computing efficiency of the proposed
model [40]. We show the temperature characteristics mea-
sured using the fabricated chip, and suggest that the effects
by a temperature change can be compensated for by adjusting
the bias voltage.

II. TIME-DOMAIN WEIGHTED-SUM CALCULATION
CIRCUIT MODEL WITH PWM SIGNALS
The TACT-PWM approach can be considered a modified
version of the original TACT approach [36], [37]. The modi-
fication from the TACT to the TACT-PWM is shown in Fig. 1.
The original TACT approach is based on temporal coding
of the integrate-and-fire neuron model, and the input/output
information is expressed by the timing of signals, where
inputs are given by step signals. When the weighted sum
of transient responses of all input step signals exceeds the
threshold, an output step signal is generated, which can be
fed into the connected neurons as an input signal. According
to the temporal coding in spiking neuron models, the time
spans during which input and output signals are given, such
as Tin and Tout , do not necessarily have to be defined, but it
is useful to define such time spans for MAC calculations in
CNNs.

In the TACT-PWM approach, the inputs to a neuron are
expressed by PWM signals given in the input period defined
by Tin. The weighted sum of the input PWM signals is tem-
porarily stored, and then an output PWM signal that has a
pulse width proportional to the weighted sum of the inputs is
generated in the output period defined by Tout . The modifica-
tion from the TACT to the TACT-PWM can be considered
as a separation of the input step signals in the TACT into
two signals in Tin and Tout , respectively, as shown in Fig. 1.
Because of this modification, we can perform input and out-
put operations independently, and do not necessarily have to
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FIGURE 2. Weighted-sum calculation using current sources switched with
PWM signals.

set Tin and Tout consecutively, which is useful for shortcut
connections in ResNets [41]. In addition, no pulses have to
be given for zero-value inputs as in the TACT approach.

The basic circuit configuration based on the TACT-PWM
approach is shown in Fig. 2. Corresponding to input
PWM signals Si ∈ {0, 1} in the voltage domain, each
switched-current source (SCS) outputs current Ii when
Si = 1. An SCS can be replaced by a combination of a resistor
and a diode if the nonlinearity in charging characteristics can
be ignored. The weight is expressed by current Ii, which can
be controlled by the gate voltage if an SCS consists of a
field-effect transistor (FET). If the FET consists of a flash
memory device or a ferroelectric-gate FET, current Ii can be
changed and stored with nonvolatility, which means that the
weights can be set arbitrarily and modified with an on-chip
learning mechanism.

The total charge amount Q stored at the node of capacitor
C charged by N SCSs with inputs Si, each of which has a
pulse width ofWi, is expressed by

Q =
N∑
i=1

WiIi, (1)

where Q can be considered as the weighted-sum calculation
result with weight Ii and input Wi. The node voltage of C ,
Vc, is given by Vc = Q/C , and the energy consumption E of
this charging/discharging process is given by E = CVcVdd ,
where Vdd is a supply voltage of SCSs.
The weighted-sum calculation circuit and a timing diagram

of its operation are shown in Fig. 3. Here, we consider this
operation as a weighted-sum calculation with the same signed
weighting. The circuit consists of a weighted-sum calculation
or MAC part and a voltage-pulse conversion (VPC) part. The
MAC part consists of SCSs corresponding with inputs, and
is accompanied by the parasitic wiring capacitance Cd . The
VPC part consists of an SCS, two switches, and a comparator
with an input capacitanceCn. Since the parasitic capacitances
Cd and Cn are inevitably included in the circuit, to minimize
the energy consumption for the operation, the charged capac-
itance C , which is equal to Cd + Cn, should be as small as
possible.

A possible circuit configuration based on the TACT-PWM
approach is as follows. The PWM inputs are given in the input
period Tin; ∀i,Wi ≤ Tin, which is arbitrarily defined. If the
node voltage Vc at the timing of the end of this input period
is denoted by Vmac,

Vmac =
Q

Cd + Cn
=

1
Cd + Cn

N∑
i=1

WiIi. (2)

FIGURE 3. Weighted-sum calculation circuit model with the same signed
weighting: (a) circuit diagram and (b) timing diagram.

In the VPC part, the output PWM signal Sout with pulse
width Wout is generated during the output period Tout . In
this operation, capacitance C is charged up by the SCS with
current In. To minimize the energy consumption in this oper-
ation, the VPC part is separated from the MAC part by Sn,
and only Cn can be charged up to the threshold voltage Vθ
of the comparator. In this case, to meet the condition that
0 ≤ Wout ≤ Tout , the current In is given by

In =
CnVθ
Tout

, (3)

whichmeans that the node voltageVn increases with the slope
of Vθ/Tout . When Vn > Vθ , the comparator output Sout = 1,
and after the end of the output period Vn is reset by Srst at the
resting state, which is usually zero. Thus, the pulse width of
the output signal as a result of weighted-sum calculation is
given by

Wout =
Vmac
Vθ

Tout (4)

=
Tout

(Cd + Cn)Vθ

N∑
i=1

WiIi, (5)

where it is assumed that 0 ≤ Q ≤ (Cd + Cn)Vθ .
The parameters Tout and Vθ are determined with some con-

straints in the circuit design, and the maximumMAC value is
determined by adjustingWi and Ii so that Eqs. (2), (4), and (5)
are satisfied. The parameters Tin, Tout and Vθ are fixed and
determined by the required specifications (energy efficiency
and calculation precision); Tin and Tout should be as short
as possible to reduce the operating time of the comparator,
which leads to a reduction of the energy consumption of the
comparator and an improvement of the calculation perfor-
mance. However, the minimum values of Tin and Tout depend
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on the time resolution of the peripheral circuits that treat input
and output signals. For example, if the time resolution is about
4 ns, and if the precision is required to be 6 bits, Tin and
Tout should be more than 256 ns. The threshold voltage of the
comparator,Vθ , is limited by the supply voltageVdd , typically
Vθ < Vdd/2, and reducing Vdd leads to a reduction in the
energy consumption of the whole circuit. However, reducing
Vθ leads to a reduction in the signal-to-noise ratio of output
signals, which means lowering the calculation precision.

If the same input line structures are used for both the
positive and negative weights, the denominator of Eq. (5) is
common. Thus, positive and negative weighted calculations
are performed separately in the different lines, and by sub-
tracting Wout for negative weighting from that for positive
weighting, the total calculation result is obtained as follows:

W+out −W
−
out =

Tout
(Cd + Cn)Vθ

[
N+∑
i=1

W+i I
+

i −

N−∑
i=1

W−i I
−

i

]
,

(6)

N = N+ + N−, (7)

where W±out are the pulse widths of output signals with posi-
tive and negative weighting, respectively. Since the obtained
result can be fed into the next circuit corresponding to the next
layer of the network via nonlinear transformation operation,
the calculations for ANNs can be achieved.

The total energy consumption for the MAC calculation is
expressed as follows:

Ecal = Emac + Evpc, (8)

Emac = CdVmacVdd +
N∑
i=1

Ei, (9)

Evpc = Cn(Vmac + Vθ )Vdd + En

+

∫ Tin+Tout

0
Pcmp(t)dt, (10)

where Emac and Evpc are the energy consumptions of the
MAC and VPC parts, Ei and En are those for the switching
of the SCS at each MAC part i and for the switching of the
SCS at the VPC part, respectively, and Pcmp(t) is the power
consumption of the comparator.

III. CMOS BinaryConnect NETWORK CIRCUIT BASED ON
THE TACT-PWM APPROACH
On the basis of our TACT-PWM circuit approach, a CMOS
circuit using an SRAM cell array structure was developed as
shown in Fig. 4 (a). This circuit implements a BinaryConnect
neural network, which uses analog input values while the
weights are binary [22].

This circuit consists of a synapse part and a neuron part.
The synapse part consists of an SRAM cell array, and each
synapse circuit operates as twoMACcircuits. Unlike the ordi-
nary SRAM circuits proposed in the concept of in-memory
computing, our SRAMcell circuit outputs very low current on
the order of nano-amperes to guarantee the time constant in
the TACT approach [36], [37], and therefore the p-type MOS

FIGURE 4. BinaryConnect neural network circuit based on the TACT-PWM
approach: (a) schematic diagram, (b) binary synapse unit (BSU) circuit,
(c) ReLU function circuit, (d) timing diagram of the ReLU function circuit,
(e) comparator (CMP) circuit, and (f) timing diagram of the comparator.

field effect transistors (pMOSFETs)M± supply subthreshold
currents to the dendrite lines D± based on the input from the
axon lines Ai, where axon and dendrite are neuroscientific
terms referencing biological neurons. As shown in Fig. 4 (a),
when an input PWM pulse Si with a pulse widthWi is fed into
the circuit, the voltage of the line Ai is changed from Vdd to
Vw, and pMOSFETs M± are turned on during the time span
of Wi.

In the neuron part, two VPC circuits perform the posi-
tive and negative weighting calculations, respectively, and
the subtraction result is obtained by a rectified-linear-unit
(ReLU) function circuit. A detailed explanation follows.

A. SYNAPSE PART
In the synapse part, each SRAM cell shown in Fig. 4 (b),
hereinafter called a binary synapse unit (BSU), performs
binary weighting, when receiving an input pulse Si as the
gate voltage of the pMOSFET M± to make it operate in the
subthreshold region. To perform this operation, it is necessary
that the SRAMcell be set at a 0 or 1 state based on the training
result in a BinaryConnect network.

The BSU has three functions: one-bit memory, a switched
current source, and a selector. The one-bit memory function
is achieved at the flip-flop, which stores the binary weight
wi ∈ {+1,−1} by setting voltages V+P and V−P , as follows:

wi =
{
+1 if (V+P ,V

−

P ) = (Vdd , 0)
−1 if (V+P ,V

−

P ) = (0,Vdd )

}
. (11)

The switched current source with a selector is realized by
the pMOSFETs M± that are connected to the dendrite lines
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D±, respectively. Since the pMOSFETs M± operate in the
subthreshold region, their drain currents I±i are expressed as
follows:

I±i ≈ I0 exp(V
±

P − VAi) (12)

VAi =
{
Vdd if Si = 0
Vw if Si = 1

}
, (13)

where I0 is a constant, VAi is the voltage of axon line Ai, and
Vw is the constant gate voltage for subthreshold operation. For
example, if synapse i has positive weight (wi = 1) and Si = 1,
then (V+P ,V

−

P ) = (Vdd , 0), and I+w ≈ I0 exp(Vdd − Vw), and
I−w ≈ 0.
The currents I±i flowing from each BSU to the lines

D± used for MAC calculations consist of two parts: a sub-
threshold current of M± and leakage currents, which are
the junction leakage and gate-induced drain leakage (GIDL).
However, the subthreshold currents can be significantly
higher than these leakage currents. The leakage currents can
be considered as offsets and somewhat canceled out in the
subtraction operation between V± for executing the ReLU
function.

B. NEURON PART
In the neuron circuit, dendrite lines are initialized and reset at
ground level by Srst before inputting signals Si to the synapse
part. Next, input PWM signals are given during input time
period Tin, and the capacitances Cdi and Cn are charged.
Then, the dendrite lines are separated from the neuron parts
with Sn. At the same time, the current source In is connected
to the capacitance Cn, and thus Cn is charged. When the
node voltage of Cn, V±n , reaches the threshold voltage of the
comparator, the output signal S±out is generated. A set of output
signals S±out are fed into the ReLU function circuit, which
simply consists of logic circuits, as shown in Fig. 4(c), and
the output PWM signal is only generated whenW+out > W−out ,
as shown in Fig. 4(d).

The comparator circuit CMP and its timing diagram are
shown in Figs. 4(e) and 4(f), respectively. In this design,
a clocked CMOS inverter was used as a CMP, where the
Vθ setting and compensation of the MOSFET threshold
voltage variation are achieved with charges stored in a
capacitor shown in Fig. 4(e) by the auto-zero operation shown
in Fig. 4(f).

IV. VLSI CHIP DESIGN AND MEASUREMENT RESULTS
Using TSMC 250 nm CMOS technology, we designed and
fabricated a CMOS VLSI chip of a single-layer neural net-
work circuit with ten neurons each of which has 100 synapses
based on the TACT-PWM approach. The layout results and
microphotographs are shown in Fig. 5.

The whole chip photograph is shown in Fig. 5(c), where
other unrelated circuits with long wires are also shown.
The proposed circuit is shown inside the white rectan-
gle (Fig. 5(b)). When multi-layer networks are constructed,
the output of the ReLU circuit is connected to the input of the
next layer circuits, which can be located nearby. However,
if the wiring distance becomes long, the wiring capacitance

FIGURE 5. VLSI layout results of a 100× 10 BinaryConnect neural
network: (a) layout result, (b) microphotograph of the circuit, and (c) chip
microphotograph. A: Switch and buffer array for axon lines; B: BSU array;
C: neuron array; and D: buffer array for dendrite lines.

TABLE 1. Measurement conditions and results of the fabricated VLSI chip.

increases, which leads to an energy consumption increase.
Nonetheless, the delay in signal transmission causes no preci-
sion degradation because the delays at the rising and trailing
edges of the PWM signals can be considered equal.

A. EVALUATION OF ENERGY EFFICIENCY AND
CALCULATION PRECISION
We evaluated the fabricated chip under various conditions,
and calculated the energy efficiency based on the measure-
ment results, as shown in Table 1. Fig. 6 shows the energy
consumptions per operation measured under typical condi-
tions. Here, leakage currents in the SRAM cells are also
included in the power consumption. The highest energy effi-
ciency obtained from the measurement was 300 TOPS/W,
as shown in Fig. 6C.

The proposed circuit requires three types of bias voltages:
Vw, Vθ , and a bias voltage for setting In, which have to be
supplied from external voltage sources, and the power con-
sumption of these voltage sources are not included in Table 1.
However, these bias voltages can be shared by all the same
component circuits. We estimated the power consumption
when commercial integrated circuits (ICs) were used. For
example, in the evaluation of the test chip, we used three
low-noise power supply ICs (LT3042), and the total power
consumption was about 11 mW. Thus, when a very large
number of MAC circuits (more than 6 million) are used, the
power consumption of external bias voltage supplies can be
negligible.

The comparison results among some typical AI proces-
sors are shown in Table 2. In AI processors targeted mainly
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TABLE 2. Comparison of state-of-the-art AI processors.

FIGURE 6. A: Vθ = 0.4 V , ∀i Wi = 2 µs, auto-zeroing frequency per
weighted sum operation: faz = 1, energy efficiency: 150 TOPS/W, jitter:
3σ/Wout_max = 0.010; B: Vθ = 0.4 V , ∀i Wi = 2 µs, faz = 1/100, energy
efficiency: 210 TOPS/W, jitter: 3σ/Wout_max = 0.011; C: Vθ = 0.2 V ,
∀i Wi = 0.3 µs, faz = 1/100, energy efficiency: 300 TOPS/W, jitter:
3σ/Wout_max = 0.021.

for edge computing, the most important performance mea-
sure is energy efficiency, which is independent of through-
put. The energy efficiency of 300 TOPS/W in this work is
six times as high as that of a state-of-the-art in-memory-
computing AI processor implementing the same BinaryCon-
nect model, while the VLSI technology node used in this
work is four-generation older than that in the AI proces-
sor [25], as shown in Table 2. One of the latest AI processors
fabricated using a 7 nm-node VLSI technology [18] is also
included in Table 2. It is noted that, even compared with this
processor, the energy efficiency of our present processor is
comparable.

Furthermore, in Table 2, we roughly estimated the
performance of this work virtually at a 65 nm node. It
is rather difficult to compare AI processors with different
circuit approaches and using different VLSI technologies,
but we added in Table 2 estimation results with conversion
into 65 nm technology, where p65nm is the shrinkage ratio

estimated with line pitches in interconnection metal layers.
The energy efficiency of our approach is mainly determined
by the operation voltage and capacitance, such as Vmac, Cd
and Cn, as shown in Eqs. (9) and (10). The operation voltage
is around 1 V, which is almost unchanged even in technology
nodes of 65 nm and 7 nm, although the voltage lowers grad-
ually. Therefore, the energy efficiency is determined by the
capacitance, which is mainly given by the parasitic capac-
itance between interconnection wires in the metal layers.
Therefore, the shrinkage ratio p65nm is given by the second
metal line pitch in each technology node [42]. On the other
hand, the throughput is determined by the circuit footprint
density per unit chip area, which is given by (1/p65nm)2.

Using this ratio with the scaling trend down to the
7 nm node, the throughput is converted proportional to
(1/p65nm)2, and the energy efficiency is converted propor-
tional to 1/p65nm. As shown in Table 2, if we fabricate a
TACT-PWM-based AI processor using the same VLSI tech-
nology as in the digital AI processors, we will obtain an
energy efficiency of more than 1,000 TOPS/W or 1 POPS/W
(Peta-OPS/W).

It is noted that the low throughput, 0.24-0.59 GOPS,
as shown in Table 1, is due to the mature VLSI technology,
such as TSMC 250 nmCMOS technology, used in this imple-
mentation and the small number of MAC circuits integrated
in a chip. The throughput can be improved by increasing the
number of processing elements in a chip, which can easily
be achieved by using more advanced fabrication technology
or increasing the chip area. Regarding the throughput per
area converted to the same technology, this work is superior
to another AI processor implementing the BinaryConnect
model, as shown in Table 2.

Measurement results of the input-output relationship in
weighted-sum calculations operations at one neuron with
100 synapses are shown in Fig. 7. As shown in Fig. 7(a),
a weighted-sum operation was approximately achieved, and
sufficient linearity was obtained. From Fig. 7(b), the devi-
ations in the time domain are ±20 ns, and this means that
the precision of the calculation is about ±1 % because of the
maximum pulse width being 2 µs.

Offsets and scattering of weighting are clearly observed
in Fig. 7(a). These nonidealities are mainly caused by the fol-
lowing variations: variations in parasitic capacitance C± and
variations in the threshold voltages of MOSFETsM± operat-
ing in the subthreshold region in BSUs. Variations in C±n and
I±n in the neuron part also create errors in the pulse generation
operation. If the proposed approach is implemented using
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FIGURE 7. Measurement results of input-output characteristics:
(a) averaged output pulse width and (b) deviation.

FIGURE 8. Human detection system using the fabricated chip.

a more advanced VLSI technology than the 250 nm node
used in our current implementation, these errors will increase,
because the variations of threshold voltages of MOSFETs
will increase with an advanced scaling. It is known that
such variations are in proportion to tox/

√
LW , where tox

is the thickness of the gate oxide film, and L and W are
the length and width of the gate electrode of a MOSFET,
respectively [43], [44]. If we design the processor with a
simple scaling from 250 nm to 65 nm node, which means
a four-generation advance, the variations will only be two
or three times larger by virtue of the different techniques
used to suppress the increase of variations. Although these
errors may lead to large current variations in the subthresh-
old operation of MOSFETs, these can be controlled by the
values of L and W , and therefore, they are not fatal for some
recognition tasks. Furthermore, if analog memory devices

FIGURE 9. Home service robot having the system including the fabricated
chip.

FIGURE 10. Measurement results of output pulse widths for the
combination of random weights and inputs. Timing jitters were decreased
by averaging the output signals for 50 measurement results. The
horizontal axis shows the numerical calculation values of∑N=50

i=1 wi ·Wi /Ti , where wi ∈ {+1,−1} and 0 ≤Wi /Tin ≤ 1.

such as ferroelectric-gate FETs are used as M± in BSUs
and MOSFETs operating for the current sources I±n , such
variations can be compensated for by adjusting the threshold
voltages, and the recognition success rate will be improved.

We applied the fabricated chip controlled by a microcom-
puter to a home service robot, and evaluated its classification
performance in the human recognition task. The system was
proposed and demonstrated in a live demonstration at an
international conference, as shown in Fig. 8 [45]. Fig. 9 shows
a robot called HSR [46] that has the human recognition
system including the fabricated chip. The fabricated chip was
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FIGURE 11. Measurement results of the temperature characteristics of
the TACT-PWM circuit: (a) measurement condition, (b) temperature
dependence of the output with constant Vw , and (c) temperature
dependence with changing Vw in order to make t+out constant.

used as weighted-sum operation units at the last stage of
a classifier. The detection success rate of the classifier was
86 % of that obtained by numerical simulation.

The measurement results of the output pulse width as a
function of the weighted-sum calculation results followed
by the ReLU function in one neuron with 100 synapses are
shown in Fig. 10. The average error was 1.5 %, and the
maximum error was about 8 %. This error will be decreased
by adjusting the deviations of the threshold voltages of
MOSFETs operating in the subthreshold region by using
analog memory devices.

B. TEMPERATURE DEPENDENCE OF THE TACT-PWM
CIRCUIT
The temperature characteristics of the proposed calculation
circuits are very important, because the ambient temperature
crucially affects the analog circuit operation and calculation
precision. Therefore, we measured the temperature depen-
dence of the fabricated TACT-PWM circuit with 100 inputs
and one output.

FIGURE 12. Measurement results of output pulse widths with random
weights and inputs, where the conditions are the same as in Fig. 10
except temperature, Vw , and VIn: (a) T = 298 K , Vw = 0.79 V , and
VIn = 0.44 V ; (b) T = 358 K , Vw = 0.86 V , and VIn = 0.49 V .

Fig. 11(a) shows the measurement conditions of the
temperature characteristics of the TACT-PWM circuit. Here,
the switched current source of the neuron part was always
‘OFF’ (Sn = 1), and therefore the output of the neuron was
inverted only by currents from the synapse part. All weights
of the synapse part were set at positive (wi = +1), and all
inputs were set at ‘‘1’’ (Si = 1), and we observed an inversion
timing t+out of the positive output S

+
out . It is noted that we used

a clocked CMOS inverter as the comparator in the neuron
part, in which the threshold voltage deviation by temperature
change as well as device mismatch are compensated for by
the auto-zero operation. Therefore, we were able to mea-
sure only the temperature characteristics of the synapse part
of the TACT-PWM circuit by observing t+out with different
temperatures.
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The temperature characteristics of the synapse part are
shown in Fig. 11(b) and (c), where the temperature is changed
from 25◦C to 85◦C; Fig. 11(b) shows themeasurement results
with a constant Vw, and Fig. 11(c) shows those with changing
Vw in order to make t+out constant. These results show that the
temperature characteristics of I+i can be compensated for by
changing Vw linearly.

Fig. 12 shows the measurement results of output pulse
widths with random weights and inputs at temperatures
of 25◦C (Fig. 12(a)) and 85◦C (Fig. 12(b)). Here, Vw was
set based on the results shown in Fig. 11(c), and I±n was
set at a constant value by adjusting VIn in Fig. 4(e). The
approximately straight lines of Fig. 12(a) and (b) are almost
equal. Therefore, these results show that effective temper-
ature compensation is achieved by adjusting Vw based on
Fig. 11(c).

V. CONCLUSION
In this paper, we proposed a time-domain weighted-sum
calculation model based on the TACT-PWM approach with
an activation function of ReLU. We also proposed VLSI
circuits based on the TACT approach to implement a Bina-
ryConnect model with extremely low energy consumption.
A high energy efficiency of 300 TOPS/W was achieved by
the fabricated CMOS VLSI circuit with binary weights using
250-nm CMOS VLSI technology. If we use a more advanced
VLSI fabrication technology, which achieves lower parasitic
capacitance, the energy efficiency will be further improved to
over 1,000 TOPS/W.

The fabricated circuit had limited calculation precision,
which was mainly due to the characteristic variations of
subthreshold operation in MOSFETs. To improve the cal-
culation precision and compensate for such variations, it is
necessary to introduce analog memory devices. We also
evaluated the temperature characteristics of the circuit by
measuring the fabricated chip, and suggested that the effects
by a temperature change can be compensated for by adjusting
the bias voltage.

As for the neuron part, the measurement results of the
fabricated VLSI chip suggest that the energy consumption of
this part is comparable to that of the whole synapse part with
100 inputs. Therefore, it is also necessary to refine a compara-
tor circuit with much lower power consumption to improve
the energy efficiency of the whole calculation circuit.
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