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ABSTRACT Near-infrared spectroscopy (NIR) has become one of the most important methods for coun-
terfeit drugs identification for its low cost, non-destructive, and on-site detection. However, it is often
invalid for unknown samples beyond the scope of modeling samples, as well as it is not efficient in
conditions of insufficient samples (insufficient number of samples within the class), unbalanced samples
(large difference in the number of samples between classes), and sensitivity of identification results (different
tolerance for different errors in application scenarios). To solve these problems, this paper proposes a general
method for on-site identification of counterfeit drugs based on Siamese-networkmodeling with near-infrared
spectroscopy, which especially constructs the train set and test set, learning the general knowledge of spectral
differences to identify the different drugs by a costumed one-dimensional convolution neural network
(1D-CNN), and finally answered the question of whether the on-site two spectra are pointed to the same
drug. Based on experimental modeling samples of 1314 spectra, which are involved 9 drugs produced
by 25 manufacturers, this paper has constructed and fully trained its model. Then, not known at the time
of modeling, 4 drugs produced by 9 manufacturers are used for testing in the on-site application, and
the accuracy rate amounts to 97.3%. For generalizing consideration, randomly divided into training and
testing categories, the 32015 spectra of 135 drugs produced by 391 manufacturers in the spectral library are
handled by the same processing. The generalization model is equally applicable, and the accuracy is above
97%. Compared with traditional binary classification identification methods such as SVM, PLS-DA, Auto-
encoding, and one class (OC) threshold identification algorithms such as SVM-OC, SIMCA, conformity test
(CT), the proposed method has the best identification ability for unknown samples in modeling.

INDEX TERMS 1D CNN, drug identification, near-infrared spectroscopy, Siamese-network.

I. INTRODUCTION
The dangers of counterfeit drugs are unquestionable. For drug
supervision, the most direct and powerful means to crack
down on the manufacture and sale of counterfeit drugs is to
quickly and accurately identify the true and false drugs on the
spot. Therefore, on-site drug detection technology has special
significance.

The near-infrared spectroscopy (NIR) and its modeling,
analysis technology, which is often used in rapid on-site
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drug inspection, have the advantages of low instrument cost,
non-destructive detection, on-site detection, etc. [1]–[4], and
are suitable for rapid qualitative and quantitative analysis of
the organic matter. However, these methods relied heavily on
background data modeling, and models built by traditional
modeling methods are often not valid for unknown samples
beyond the scope of categories of the modeling phase.

There are just so many kinds of drugs that market reg-
ulators could not know exactly which drugs counterfeiters
are counterfeiting. Even if it is known that a popular drug
will be counterfeited, it is still unknown what methods and
means the counterfeiter will use to counterfeit it. Background
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database samples can not cover all the conditions, and test
samples often exceed the category range. To make it worse,
when modeling near-infrared spectral data with traditional
methods, the problems of insufficient samples (insufficient
number of samples within the class), unbalanced samples
(large difference in the number of samples between classes),
and cost sensitivity of identification results (different tol-
erance for different errors in application scenarios) often
become big challenges or obstacles.

In on-site detection, immediately giving the identifica-
tion results is often necessary, and large-scale, long-time
data acquisition, transmission, modeling analysis cannot be
conducted. Meanwhile, a simplified and universal model is
needed, which should use general knowledge as humans do.
Give the preliminary results quickly and take the suspected
drug back to the laboratory, where we can use other types of
precise equipment and methods to solve the problems.

Various algorithms under the two common ideas are usu-
ally used in near-infrared spectroscopy (NIRs) have various
limitations for rapid identification.

One idea is to use binary classification methods, that is,
to set genuine drugs as negative samples and counterfeit drugs
as positive samples, carrying out the binary classification
of genuine and counterfeit drugs, and constructing classi-
fiers using linear classifiers such as PLS-DA, SVM [5]–[10],
BP-ANN [11]–[12], or using deep-learning classifiers like
various Auto-encoding methods [13], DBN [14], CNN [15].
Although this kind of analysis has high classification accu-
racy in the laboratory, it is almost invalid for unknown sam-
ples beyond the range of modeling samples. In other words,
it needs to pre-determine the limitation of testing samples
within one or several certain drugs, and it also needs to obtain
sufficient labeled samples in the modeling stage, which is
quite difficult in the actual scenario. Additionally, this kind
of algorithm is sensitive to the category, quality, and quantity
of samples in its modeling stage. If the quantity of samples
is not balanced, the accuracy rate will be biased to the larger
number of samples. In other words, in reality, it is easier to
judge a generic drug as a genuine drug since genuine drug
samples are easier to obtain, and its accuracy rate is often
suspected to be false high in practice.

Another idea is to use the one-class (OC) threshold iden-
tification algorithm for genuine drugs, which first selects
or extracts the characteristics of the genuine drug, and then
defines a set of threshold ranges according to each charac-
teristic, identifying drugs that exceed the threshold range as
counterfeit drugs. The representative methods to realize this
idea is SVM-one class [16], SIMCA, and peak-valley correla-
tion conformity test [17]. When applied in modeling, it guar-
antees the quality of a drug identified as a genuine drug to an
extent, even if it is a counterfeit drug. However, it still needs to
collect sufficient authentic drug spectra before modeling, and
it is still ineffective for the samples beyond the class range of
authentic drugs in modeling. Therefore, the generality of the
model is limited, and there is still the problem of identifying

unknown samples, let alone the limited effect on the imitated
counterfeit drugs with similar ingredients.

Given the above situation, this paper proposes a novel
method: build the Siamese-network [18] to learn the universal
knowledge of contractive, and to establish a general ‘‘com-
mon sense’’ identification model instead of the specific ones.
In the on-site inspection, only two spectra are mandatory,
one genuine drug spectrum as the benchmark and the other
representing the drug to test. The model answers the question
of whether the two spectra are ‘‘the same drug produced by
the same manufacturer’’ when spectra are delivered. In this
way, the ‘‘unknown samples cannot be identified’’ problem
and the related problems such as the ‘‘insufficient samples’’,
the ‘‘unbalanced samples’’, and the ‘‘sensitive cost of identi-
fication results’’ can be effectively solved.

II. MATERIALS, OBJECTIVES, AND METHODS
All the near-infrared spectra in this paper were obtained
from the China National Institute for Food and Drug Control
(NIFDC).

Since 2006, to conduct the mobile inspection on drug
quality by quickly sample the near-infrared spectra of drugs,
the Chinese government has invested in equipping more than
400 drug inspection vehicles in 363 cities across the coun-
try. The near-infrared spectrometers onboard is all Bruker
Matrix-F spectrometers, and the spectral measurement meth-
ods used by the staff follow uniform internal inspection spec-
ifications [24].

However, most of the near-infrared spectra of drugs sam-
pled during the inspection are discarded after the test, and it
was after 2014 that NIFDC realized that it could collect some
spectra for scientific research.

Because the NIFDC can only passively collect the spectra
obtained by each inspection vehicle, the labeling informa-
tion outside the spectra is largely lost. Of the more than
700,000 spectra collected in recent years, only 32015 have
been labeled with both the name of the drug and the name of
the manufacturer. Although no less than 6 samples should be
taken for each drug according to the inspection specifications,
we can not guarantee the actual sample quantity of a single
drug from the spectra we have.

We gradually put these 32015 spectra into the experiments:
First, 1314 spectra of 9 drugs (Cephalexin tablets, met-

formin hydrochloride tablets, propylthiouracil tablets, etc.)
produced by 25 manufacturers, is employed in the modeling
of the Siamese-network.

When testing, we use the other 369 spectra of 4 drugs (Ran-
itidine Hydrochloride, citicoline sodium for injection, and
paracetamol tablets, etc.) produced by other 9 manufacturers,
which are unknown in the modeling stage.

This total of 1683 spectra will ensure the basic functional-
ity of the proposed model.

For generalizing consideration, this paper will use the
whole of 32015 spectra within 135 drugs produced by
391 manufacturers by randomly dividing them into training
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categories and test categories, and then, to find whether the
model can be effective for all drugs in a wide range, we use
the samemethod to deal with them to investigate the accuracy.

All the spectra have been adjusted to the wavelength range
of 4000-11995 cm−1 with a resolution of 4cm−1.
Table 1 shows the relevant information of 9 drugs (mod-

eling samples) produced by 25 manufacturers, which will be
used to construct the proposed model.

In Table 1, there are 25 categories of modeling sam-
ples classified by ‘‘drug-manufacturer’’ including tablets,
granules, and capsules (but not including powder injections,
which we did on purpose). There are classes with insufficient

TABLE 1. NIR data for constructing the model

spectra (some classes only have 21 spectra), and all categories
of spectra are unbalanced, with only 21 spectra at the lowest
and 209 spectra at the highest.

After the modeling is complete, four other drugs produced
by 13 other different manufacturers (test samples) will be
tested for identification.

Drug-related information is shown in Table 2.

TABLE 2. NIR data for testing

As can be seen in Table 2, according to ‘‘drug- manu-
facturer’’ classifying, neither drugs nor manufacturers have
been found in the training samples in Table 1. Therefore, for
the training course, the test samples are totally ‘‘unknown
samples’’. We also intentionally added the powder injection
package to the test samples that were not covered in the
training samples. If the experimental results are good, we will
add the medicinal ferrous sulfate produced by two manufac-
turers at the end, which is an inorganic substance, and its
identification method is significantly different from that of
ordinary drugs. This will be a strict test for the model when
identifying ‘‘unknown samples’’.

Examining the spectra of modeling samples and test sam-
ples, these spectra have the following characteristics:

1) There is little difference between spectral classes. For
example, the spectra of diclofenac sodium tablets produced
by different manufacturers shown in Figure 1 describe that
the important spectral sections (peak valley sections) of the
two spectra overlap greatly, and there is almost no difference
in a manual inspection.

2) Inner the same drug, there are great differences among
the spectra, especially Chinese patent medicines. As shown
in Figure 2, the Yinhuang series has a wide range of spectral
differences within its class, and they can be easily divided
erroneously into different categories in general modeling,
causing the ‘‘judge the genuine drug as counterfeit drug’’
result.

It can be seen from Figure 1 and Figure 2 that the infor-
mation contained in the modeling samples and test samples
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FIGURE 1. The spectrum of diclofenac sodium tablets produced by
different manufacturers shows little difference among different
categories.

FIGURE 2. Spectra of Yinhuang series drugs produced by the same
manufacturer show a great difference within the category.

selected in this paper coincides with the following two main
difficulties in the on-site identification practice of genuine
and counterfeit drugs:

1) THE DIFFICULTY OF DISTINGUISHING ‘‘SELL SECONDS
AT BEST QUALITY PRICES’’
In the practice of drug identification, there are often some
kinds of drugs, all of them have similar ingredients and have
a certain curative effect on a certain disease, but the prices are
very different. Manufacturers may use cheap drugs instead of
genuine drugs at higher prices. If these drugs can be com-
patible, counterfeiters even add a small number of genuine
drugs into their cheap medicines to increase the difficulties
of identification.

It is possible to make the spectral difference between gen-
uine and counterfeit drugs smaller than the spectral differ-
ences obtained by different samples, different measurement
methods, and different measuring equipment inside the gen-
uine drug.

2) THE DIFFICULTY OF IDENTIFYING IMITATION AND
COUNTERFEITING BETWEEN DIFFERENT MANUFACTURERS
OF THE SAME DRUG
The near-infrared spectra of the same drug produced by dif-
ferent manufacturers according to the same drug standard are

very similar, and the important spectral bands (peak valley
positions) are even overlapped. This situation often exists
between generic drugs and original drugs.

Generally, the time from R&D to the final registration and
marketing of the original drug is as long as 15 years, and
it costs a lot to go through four phases of clinical trials.
Such drugs cannot be copied before the patent expires, and
enjoy the protection of separate pricing and other policies.
However, generic drugs only copy the main components of
the original research drug. Even if a large amount of money
is invested in the imitation process, the cost is only about
1/3 or even 1/6 of the original research drug. Therefore,
from the perspective of the counterfeiter, the generic drug
and the original research drug should be as consistent as
possible without being distinguished. It is very possible to
label generic drugs as original drugs for sale.

Identification of generic drugs posing as the original drug
sales, or, identifying the same drug posing as a well-known
brand, because of its composition differences near the trace,
identification is more difficult.

Referring to Table 1, Table 2, Figure 1, and Figure 2, it
can be seen that the information contained in the spectra we
have can reflect the main difficulties in real identification
scenarios. The modeling and testing process based on these
data covered the four issues as ‘‘need to detect unknown
samples beyond the scope of the modeling sample category,’’
‘‘insufficient samples’’, ‘‘samples imbalance’’, and ‘‘model
application of error-sensitive’’.

III. ALGORITHM DESCRIPTION
In this paper, we mainly use Siamese-network to build the
model.

In recent years, the Siamese-network has been widely
used in handwriting font identification, face ID authenti-
cation, dynamic object tracking, and other graphic image
and video tasks [18]–[22], and achieved good results. In the
mineral (inorganic) analysis by Raman spectroscopy, Jin-
chao Liu et al. used a twin neural network to compare the
unknown spectrum with the known spectrum in the spec-
tral library [23] and achieved better similarity measurement
results than cosine distance and LMNN (large margin near-
est neighbor) methods. However, there is no report about
Siamese-network application in the field of near-infrared
spectroscopy of organic compounds (including drugs).

The modeling process of the Siamese-network used in this
paper is shown in Figure 3:

In Figure 3, we first construct the required data set for the
Siamese-network by the method of the left block diagram,
then input the data into the model on the right for training.
After the training is successful, the model will output a Dw
value for any input spectrum pair (usually one is the genuine
drug spectrum and the other is the spectrum to be tested),
to judge whether the Dw is less than 0.5, the answer of
‘‘whether the drug category is the same’’ can be obtained
so that the genuine and counterfeit drugs can be identified
on-site.
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FIGURE 3. Model construction and training process.

A. CONSTRUCTION OF DATA SET
1) PAIRING
In this paper, because the input of training and testing is an
identical or heterogeneous pair, rather than a single spectrum,
therefore, training samples and testing samples are not mem-
bers of the training set and test set. We need to use the paring
method to build a training set and test set (collectively called
data sets).

We use the bootstrap method to construct the pairs: for
every two extractions in the same class, the similar pair
counted once, and it labeled as y = 0. For heterogeneous
pairs, one spectrum is randomly selected from one class, and
the other is randomly selected from other classes, followed
by the different pair counted once, its label marked as y = 1.
In this way, s1 rounds are extracted from the same kind of
pairing, and s2 rounds are extracted from the heterogeneous
pairing, then s1 + s2 pairs are obtained. Compound the pairs,
the train and test set will be formed. Since bootstrapping
method sampling with replacement, limits of spectra could
be sampled unlimited rounds. The problem of insufficient
spectral numbers within a class could be solved to a certain
extent.

If the total number of spectra is n, the number of different
pairs is n2, which is a large number. At the same time, if the
number of classes is k and the number of spectra in each
class is m, then the number of similar pairs is km2, and
the number of different pairs is k2m2-km2. The number of
similar pairs is only 1 / (k-1) of the number of different pairs.
The chosen spaces of similar pairs and different pairs are
extremely asymmetric.

To ensure the typicality and uniformity of the sub-
sequent data sets, a fair sampling strategy must be
adopted in the sampling pairing in a large and unbalanced
space.

In this paper, a fair sampling strategy is designed for this
purpose:

Firstly, the total number of pairs N , the number of classes
k , and the sampling ratio α of the similar and different pairs
should pre-determined by users.

Then, according to formula (1), we can get the s1 and s2.
For each class, according to the counting rounds s1 and s2,
training data and testing data can be obtained by randomly
selecting. 

s1 =
N

k + k
a

s2 =
N

ka+ k

(1)

This sampling method will have the following advantages:
first, s1+s2 = n/k , which can ensure that each class (whether
the spectra number deviates too much from the average spec-
tra number or not) can get an equal share of attention, thus
improving the impact of insufficient samples within the class
and unbalanced samples between classes. Second, it can solve
the problem of cost sensitivity which is described below.

2) COST-SENSITIVE PROBLEM HANDLING
In the practice, the genuine drug samples are easy to obtain,
while the counterfeit drug samples can only get one or two
cases each time when the counterfeiter has been caught. The
genuine and counterfeit drug samples are often uneven. In this
way, when the detection error occurs, it is easy to judge the
counterfeit drug as a genuine drug, but it is not easy to judge
the genuine drug as a counterfeit drug.

The cost or risk of identifying a genuine drug as a coun-
terfeit drug is not the same as identifying a counterfeit drug
as a genuine drug. In this scenario, when the ‘‘genuine drug
is identified as a counterfeit drug’’ error occurs, it can often
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be taken back to the laboratory for further analysis and deter-
mination. However, if the ‘‘counterfeit drug is identified as a
genuine drug’’ error occurs, the counterfeit drug usually has
to be released, thus cause serious consequences.

In this paper, the space of heterogeneous sampling is much
larger than that of the same class sampling. In this way, the
cost-sensitive factors α can be taken into account by setting
the sampling ratio of the same and different classes in the
construction of the data set.

From our experiences, α taking 0.125-0.5, that stands sim-
ilar sampling: different sampling between 1:2 to 1:8 will play
a better role than others. It can ensure that the cost-sensitive
problem can be solved to a certain extent, and at the same
time, it will not sacrifice the accuracy to ensure the pur-
pose. We set it as 0.333, that is, similar sampling: different
sampling = 1:3.

3) CONSTRUCTION OF TRAINING SET AND TEST SET
This paper focuses on solving the problem of unknown sam-
ples. Therefore, it is necessary to completely isolate the train-
ing process from the acquisition of test process information.
The training samples should not be involved in any spectrum
of test samples in the process of heterogeneous pairing. In the
same way, the test samples should not involve any training
spectra when they are doing heterogeneous pairing either.

After the isolation principle is defined, a fixed number of
pairings are selected from the training samples as the training
set, and another fixed number of pairs are selected from the
test samples as the test set. In this paper, 400 ∗ 60 pairs of the
training set and 80 ∗ 60 pairs of the test set are extracted.

B. CONSTRUCTION OF 1D-CNN
In Siamese-network, for two groups of values in pairing, a
neural network that can extract its features must be provided,
and the two neural networks can share the same weights.
In the implementation, the two neural networks are often
combined into one. After receiving two inputs, the com-
bined network calculates the distance, loss, and then process
optimizing progress (adjusts the weights). In this paper,
a one-dimensional convolutional neural network, which can
effectively extract the near-infrared spectra of drugs, is con-
structed to realize Siamese-network. The parameters of the
network have been marked in Figure 4. After many rounds of
exploration and repeated debugging, these parameters have
been confirmed to be the optimal results in our experience.

For the identification scenario in this paper, it is the best
choice to select 1D-CNN as the pre-treatment network of
Siamese network preprocessing. The alternative can also be
Sparse Auto-encoder (SAE), Multi-Layer Perceptron (MLP),
and other artificial neural networks.

To evaluate the effectiveness of 1D-CNN as the basic
preprocessing network of the Siamese network, we construct
SAE, MLP as alternative neural networks, and then test their
effects when they replace 1D-CNN.

The SAE network is constructed using the method pro-
vided in reference [14], choosing the 2074-120-60-120-2074

FIGURE 4. One dimensional convolution neural network and its main
parameters for near-infrared spectrum feature extraction of drugs
constructed in this paper.

structure and using cross entropy as its loss function to
calculate reconstruction loss. SAE needs to be pre-trained,
and its trained encoder is connected to the Siamese network
through a fully connected layer.

MLP directly replace 1D-CNN with the 2074-150-28
structure.

Experiments (described in section IV. D) show that at least
in our basic experiments, 1D-CNN is better than the other
two networks. Therefore, this paper uses 1D-CNN as the
pre-treatment network.

In this paper, Euclidean distance is used to measure the fea-
tures extracted from a one-dimensional convolution network,
and the contractive loss is used as the loss function to optimize
the network [22]. Namely:

DW = ‖W1 −W2‖
2

L(W ,Y , EX1, EX2) = (1− Y )
1
2
(DW )2 + (Y )

×
1
2
{max(0,m− DW )}2

(2)

Among them, Dw is Euclidean distance, which is calcu-
lated according to the output of the Siamese-network. L is
the training loss, and Y is the label generated by the pairing
process. m is the margin value, which adjusts the distance
between two different spectra within 0 ∼ m. In the experi-
ments, we set m = 1.

IV. EXPERIMENT AND DISCUSSION
To test the effectiveness and superiority of the method in
this paper, three experiments are carried out. One is the
basic experiment related to the training and test operation
of the model in this paper; after the basic experiment is
successful, expand the modeling samples and test samples to
our full spectra library; the last experiment is a comparative
experiment, which verifies the superiority of the model by
comparing with the current mainstream drug identification
algorithms.

A. EXPERIMENTAL ENVIRONMENT
This paper uses the following hardware and software environ-
ment for data modeling experiment.
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TABLE 3. Experimental results of test samples

Hardware environment: CPU Xeon 2698v4 (20 cores,
40 threads), memory 96GB, SSD 1TB, GPU NVIDIA
Tesla V100.

Software environment: operating system Ubuntu 20.04.1
LTS, NVIDIA driver version 440.33.01, CUDA v10.0, cudnn
v7.6.5, keras-gpu 2.3.1, tensorflow-gpu 1.15.0, sci-kit learn
0.23.2.

B. EXPERIMENTAL PREPARATION
In the experiment, in addition to the network parameters
already set in Figure 4, the following super parameters are
given in this paper:

When sampling pairing, α is set to be 1:3. The number of
training pairs is 400 times the batch size to form the training
set, while the number of test pairs is 80 times the batch size to
form the test set. Training pairs are extracted and generated in
training classes, while test pairs are extracted and generated
in test classes without interference.

Model training uses RMSprop optimizer with batch size
set to 60.

Each experiment trained 60 epochs. Before each epoch
began, the input data (pairs) were generated in real-time from
the sampling-pairing process.

C. BASIC EXPERIMENT
The basic experiment is based on the samples given in Table 1
(modeling samples) and Table 2 (test samples). The experi-
mental results of test samples are shown in Table 3.

As can be seen from Table 3, the model in this paper
has a good identification effect. Although the test sample
is completely different from the training sample in terms
of drug name or manufacturer, except citicoline sodium for
injection, the precision, recall, accuracy, and F1 score of
other test samples (ranitidine hydrochloride, azithromycin
series, Shexiang Jiegu capsule) are all 100%. The model has
complete discrimination ability to most test samples.

FIGURE 5. Confusion matrix of identification results of citicoline sodium
for injection produced by two manufacturers.

Although there are errors in the identification of citicoline
sodium for injection, its identification ability is still available,
and the accuracy rate is above 92%.

The confusion matrix of citicoline sodium for injec-
tion was drawn as shown in Figure 5 (left is manufac-
tured by Henan Furen huaiqingtang Pharmaceutical Co.,
Ltd, and right is manufactured by Zhejiang Asia Pacific
Pharmaceutical Co., Ltd).

As can be seen from Figure 5, the error does not appear
in the focus of ‘‘mistakenly classifying counterfeit drugs
into genuine drugs’’ (when the true label is 1 and prediction
is 0), it appears in the situation of ‘‘mistakenly classifying
genuine drugs into counterfeit drugs’’. This shows that we
set the similar and different sampling ratio as 1:3 (pay more
attention to ‘‘do not mistakenly classify counterfeit drugs into
genuine drugs’’) to play its due role. While maintaining a
high accuracy rate (at least 93%), the cost-sensitive problem
has been effectively solved. The experimental results have
achieved our pre-set goal.

Combined with the description of citicoline sodium for
injection in Table 2 of section 2, it is found that citicoline
sodium for injection is a powder injection, but our train-
ing sample does not contain the powder injection. Even for
human teaching, we must first teach the difference between
the spectrum of tablets, capsules, and powder injection to
have discrimination. The small error caused by the lack of
information can be understood.

VOLUME 9, 2021 3201



Z. An-Bing et al.: On-Site Identification of Counterfeit Drugs Based on Near-Infrared Spectroscopy Siamese-Network Modeling

FIGURE 6. Confusion matrix of identification results of ferrous sulfate
tablets produced by two manufacturers.

We intentionally expand themissing information by adding
ferrous sulfate tablets produced by two manufacturers into
the test samples and draw the confusion matrix of the exper-
imental results according to the trial results in Figure 6. The
left one is manufactured by Taiyuan Satellite Pharmaceutical
Co., Ltd, and the right is manufactured by Shanghai Huanghai
Pharmaceutical Co., Ltd.

As the main component of ferrous sulfate tablets is inor-
ganic, its spectral difference is significantly different from
that of various organic substances in training samples. As can
be seen from Figure 6, the error is significantly enlarged.
When the error is the largest, 70% of the genuine drugs are
judged to be counterfeit drugs. However, the model still does
not take counterfeit drugs as genuine drugs.

D. PRE-TREATMENT EXPERIMENT
To test the effect of other pre-treatment networks, we replaced
1D-CNNwith SAE andMLP respectively, and carried out the
same experiment.

The SAE network is only used as a pre-training model in
this experiment. After the training is over, it connects to a
fully connected layer (28 outputs) through its feature layer
(the 60 part of the 2074-120-60-120-2074 structure), which
will provide the hidden 28 features for the Siamese-network
to calculate the Dw value. The super parameters are set as
follows:

The ‘RELU’ activation function is used inside the Auto-
encoder, and the sigmoid activation function is used in the
full connection layer. During the pre-training course, the opti-
mizer is set to Adam, the learning rate is initialized to 0.003.
β1 is set to 0.9, β2 is set to 0.999, the batch size is set to
60, and the decay value is set to 10−5. 150 epochs were
pre-trained.

Alternatively, MLP using 2074-150-28 structure with
Keras’ ‘Dense()’ function, and is directly connected to
Siamese-network with ‘sigmoid’ activation function.

Comparing the effect of Siamese network constructed by
1D CNN, SAE, and MLP, the experimental results are shown
in Table 4:

As can be seen from Table 4, 1D-CNN has the best
effect, and its accuracy rate is about 0.8 and 1.2 percent
higher than the other two networks respectively. The basic
pre-treatment network is mainly used to extract the features of
the spectrum. When the main structure (Siamese-network) is
determined, the change of the feature extraction method will

TABLE 4. Experimental results under different pre-treatment networks

also affect the experimental results, but its influence is quite
limited relatively.

E. EXTENDED EXPERIMENT
To avoid large errors caused by lack of information, based on
the success of the above experiments, we used 32015 spectra
of 135 drugs produced by 391 manufacturers in the spec-
tra library (the source of spectra library has already been
described in section II) to expand the experiment. The pur-
pose is to include most of the information needed for general
drug identification in the training samples so that the estab-
lishedmodel can be applied tomost of the drugs in themarket.

There are 472 classes of drugs in the spectra library accord-
ing to ‘‘drug-manufacturer’’. According to 9:1, 8:2, 7:3, 6:4,
5:5, 4:6, 3:7, 2:8, and 1:9, the training samples and test
samples are randomly divided, and the training set and test
set are generated according to the same rules of the basic
experiment. The same modeling training and testing process
is carried out just like the basic experiment. The experimental
results are shown in Table 5.

As can be seen from Table 5, the modeling also achieved a
good identification effect. In the above cases, the average of
scores and accuracies were above 96%.

The training process was investigated from the 9:1 exper-
iment, and the curves of accuracy and loss with the increase
of epochs are extracted as shown in Figure 7.

It can be seen from Figure 7 that although we set epoch to
60, in fact, with only 9 epochs, the increase of experimental
accuracy and the decrease of loss has come to an available
point. The optimal values (the highest point of accuracy and
the lowest point of loss) within 0 to 9 epochs are not much
different from the optimal value after 60 epochs. When we
test or use the model, we usually take the model generated

TABLE 5. Experimental results under different training and test set
partitions
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FIGURE 7. Changes in accuracy and loss during training.

under the optimal value. Then after trained 9 epoch, we can
assert that the model is available, although it is not globally
optimal. Since data will be randomly paired to form a training
set before the epoch starts, the growth of epochs essentially
means that the training data is randomly expanded. Nine
epochs are available, which means that there is not much
training data demanded in the training course. Therefore,
the problem of insufficient and unbalanced samples is solved.

The confusion matrix of each experiment is drawn
in Figure 8.

As can be seen from Figure 8, the probability of ‘‘coun-
terfeit drug being classified as the genuine drug’’ (the true
label is 0 and prediction is 1) is significantly less than that
of ‘‘genuine drug being classified as the counterfeit drug’’
(the true label is 1 and the prediction is 0), it shows that
we set the same and different sampling ratio as 1:3 (paying
more attention to ‘‘not mistakenly classifying the counterfeit
drugs into genuine drugs’’) in large data sets also take effect.
The cost-sensitivity problem is thus resolved to a certain
extend.

F. COMPARATIVE EXPERIMENT
In this paper, extended experiments are used to compare the
accuracy of six algorithms in two categories of traditional
true and false drug identification practice. Three of them
are binary classification algorithms: RBF-SVM, PLS-DA,
Sparse auto-encoder (SAE). The other is one class iden-
tification algorithms: SVM one-class (SVM-OC), SIMCA,
conformity test (CT) [17]. Because the preconditions of

FIGURE 8. Confusion matrix of each experiment.

these algorithms are different from our method in this paper,
we need to construct training sets and test sets for these
algorithms according to the common logic.

For each class, we assume that the in-class spectra are
genuine samples, while spectra in the rest outer classes are
counterfeit samples. Based on this consideration, the training
and test sets of each comparative algorithm are established.

The parameters of RBF-SVM, PLS-DA, and SAE are set
as follows:

The gamma value of RBF SVM is 0.001, the C value
is 1, and the number of PLS-DA components is 28. Other
parameters are the default values provided by scikit-learn
software.

SAE uses the 2074-120-28-120-2074 structure to set up its
networks, and RELU is used as its activate function, 28-150-
logistic regression structure is used to design the network for
the classifier, and sigmoid activation function is used in the
progress of classifying. By using Adam optimizer and setting
the batch size to 60, the training is divided into two stages.
In the first stage, the learning rate is initialized to 0.003, β1 is
set to 0.9, β2 is set to 0.999, and the decay parameter is set
to 10-5, trained 150 epochs. In the second stage, the learning
rate is initialized to 0.000007, and the rest of the parameters
are the same in the first stage.

SVM one class (SVM-OC), SIMCA, and consistency
test (CT) are calculated by NIDFC’s customized product soft-
ware, which is developed from OPUS, the official working
software of the spectrometer manufacture Bruker.

The results of comparative experiments are shown
in Table 6.

It can be seen from Table 6:
1) Generally speaking, although the test rules are obviously

biased towards comparative algorithms (for example, our
method is tested with unknown categories, and the compara-
tive algorithms are at least genuine drugs within the training
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TABLE 6. Accuracy of various multi-class classification algorithms

TABLE 7. Training and inferencing time of each algorithm (in second, training time/inferencing time)

set), the algorithm in this paper still has better performance
and its accuracy is far higher than any other algorithm.

2) The accuracy of each comparative algorithm decreases
with the increase of test set share. When the proportion is less
than 5:5, the accuracy of the algorithm is almost the same as
that of the random answer, sometimes even worse. However,
our method is stable in all ratios from 9:1 to 1:9, and the
variance is the smallest among all algorithms.

The training time and inferring time of each algorithm
are shown in Table 7. Siamese network, SAE uses GPU for
training and inferring, and CPU is used for other algorithms.

It can be seen from the table that:
No matter training time cost or inferring time cost, our

algorithm is far lower than other algorithms.
There are three reasons for the long-running time of other

algorithms.
Firstly, this method (Siamese-network) and SAE use the

TensorFlow-GPU module for training and inferring, and it
can effectively use more than 3000 CUDA cores in GPU,
while other algorithms using CPU modules for training and
inferring. For example, RBF-SVM, PLS-DA use scikit-learn
as their backbone, and scikit-learn can not use GPU, worse
still, it can use only single-core CPU utilization unless the
customized parallel modules are explicitly designed. There-
fore, although the experimental equipment includes a power-
ful GPU and a 12 cores CPU, its efficiency does not play out
on these algorithms.

Secondly, because this paper is applied in the identi-
fication cases, RBF-SVM, PLS-DA, and SAE are used
for binary classification. This means that among the 472

‘‘drug-manufacturer’’ classes, these algorithms need to estab-
lish 472 sub-models, and the data were loaded and combined
frequently from the database to form the training set and test
set required by each sub-model. Therefore much time had to
spend on input and output processing. During the courses,
the performance of the database itself also consuming some
experimental time. Compared with our algorithm, our algo-
rithm does not need to consider these problems because it
only does these things once.

Finally, although each trained comparative model only
needs input one inspecting spectrum to put into utilization
(our method needs to input two spectra, one for reference and
one for inspection), it needs to determine which model to use
in application from 472 choices. After that, it also needs to
unload the old model and its parameters, select and load the
new model and its parameters from a total of 472 models.
Therefore, it takes too much additional time in its inference
course. However, our method replaces the complex courses
with the ‘‘inputting two spectra’’ strategy, which can avoid
all the troubles above.

Therefore, our algorithm is better than other traditional
algorithms in terms of simplicity and ease of use.

V. CONCLUSION
In this paper, based on Siamese-network, a universal
near-infrared spectroscopy identification model was estab-
lished. Compared with various traditional methods, it has
many advantages, such as easy to use, strong generalization,
can deal with unknown samples beyond the scope of mod-
eling samples, and can solve the problems of insufficient
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samples within the class, unbalanced samples between
classes, and cost-sensitive problems of error occurrence.

In the process of modeling, aiming at the main problem of
‘‘unknown samples beyond the range of modeling samples’’,
this paper uniquely designs the training set division and
sampling pairingmethod and constructs the Siamese-network
model through the customized one-dimensional convolu-
tional neural network. Through the performance test and the
comparison of 6 traditional drug classification and identifi-
cation algorithms, the effectiveness of the model is analyzed
and verified.

The strong identification ability of the network in the
scene of near-infrared spectrum identification of drugs pro-
vides a useful reference for readers to identify and clas-
sify drugs in multi-variety, multi-manufacturer, insufficient,
unbalanced samples, and cost-sensitive application scenarios.
This method can also be applied to the identification of crude
oil, organic chemical industry, and other similar scenes, and
has broad application prospects.
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