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ABSTRACT In this paper, a 6-Degrees-of-Freedom (6-DOF) Unmanned Aerial Vehicle (UAV) system
with external disturbance corresponding to sensor failure is considered. The control method is presented
in two parts. In the first part, the upper bound of external disturbance is known and a Proportional-Integral-
Derivative (PID) Sliding Mode Control (SMC) technique is planned for maintaining the desired position in
the finite time. Whereas, the upper bound of the external disturbance is considered unknown in the second
part and the adaptive PID-SMC method is offered for stability and position tracking control of UAV systems.
Using the Lyapunov stability notion, the offered control method proves that the quadrotor’s states can be
tracked and stabilized in the finite time. Moreover, for the approximation of unknown bound of the external
disturbances which are entered in the quadrotor dynamic model at any moment, adaptive control laws
have been applied. Finally, simulation outcomes are provided to display the efficiency of the recommended
technique.

INDEX TERMS Quadrotor UAVs, finite-time stability, sliding mode control, external disturbance, adaptive

control procedure.

I. INTRODUCTION

A. BACKGROUND AND MOTIVATIONS

Generally speaking, UAVs have attracted much attention
during recent years and they are able to carry out various par-
ticular atmospheric skills, for instance, exploration of moving
objects [1], [2], accumulating of traffic data [3], large-scale
systems [4], examination of power transition lines [5], orga-
nizing military operations’ supplies [6] and supplying first-
aid kit in natural disasters [7]. On the whole, unmanned
aerial vehicles can be applied in military and civilian oper-
ations [8]-[11]. In fact, there exist three problems in the
controlling of unmanned aerial vehicles: (I) UAVs are multi-
input multi-output systems; (II) UAVs have unknown param-
eters; (III) UAVs have time-varying states and delays [12].
Quadrotors are under-actuated control systems with 6-DOF
and four independent control inputs [13]-[15]. In fact,
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translational and rotational motions in the quadrotor can be
done by changing of speed of four rotors. It can be said
that having a simpler configuration than helicopters is the
main advantage of UAVs [16]. In addition, on the stability
issue of quadrotors, non-linear parts and atmospheric pertur-
bation should be considered [17], [18]. In general, the main
goal of control of a quadrotor is attitude and altitude con-
trol which keeps the quadrotor in the set point [19], [20].
Therefore, some control approaches have been used for con-
trol of quadrotor including PID [21], [22], Linear Quadratic
Regulator (LQR) [23], [24], feedback linearization control
[25], [26], back-stepping control [27], [28], SMC [29], [30],
and adaptive control [29], [31]. SMC scheme is accepted
as an efficient instrument for planning a robust controller
of high-order systems with nonlinear and uncertain compo-
nents [32], [33]. The little sensitivity to the perturbations
and uncertainty in the SMC scheme can reduce the accu-
racy of the model of system [34], [35]. SMC is classified
via robustness to parametric variations and insensitivity to
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disturbances and it has been famous as a helpful approach to
deal with uncertainties of the system [36]—-[39]. While SMC
fulfills solitary asymptotic stability and tracking, the Fast
Terminal Sliding Mode Control (FTSMC) has provided a
fast terminal sliding surface [40]. The main advantage of
FTSMC is the finite time stability and tracking of system’s
trajectories [41], [42].

B. LITERATURE REVIEW

In [43], a new Radial Basis Function Neural Network
(RBFNN) for multilateral telerobotic system in the presence
of time-delay, exterior perturbations and uncertainty has been
offered by applying the adaptive sliding mode control tech-
nique. In [44], the control of synchronization of redundant
actuator and motion coordination of multi-axes for Dual
Linear Motor Driven (DLMD) gantry has been proposed
based on the contouring control technique by integrating both
motion coordination between axes and synchronization of
redundant actuators. In [45], in the aim of attitude and altitude
tracking control of UAVs under perturbations and indeter-
minacy, a novel robust controller has been recommended
and the stability verification has been done by Lyapunov
concept. However, the tracking control is done asymptoticly.
In [46], an adaptive back@hyphestepping SMC of attitude
tracking of quadrotor has been recommended using Lyapunov
theory in the existence of nonlinear components. However,
the influence of external disturbances has been ignored in this
method. In [47], TSMC plan based on the transfer function
of tensor is offered. The proposed controller of [47] has been
designed separately. At first, transfer function of Single-Input
Single-Output (SISO) system has been presented. Secondly,
TSMC for the offered system is designed. Though the impact
of uncertainty has not been considered in this paper. In [48],
an adaptive non-singular terminal sliding mode control under
unknown dynamics has been presented for unmanned aerial
vehicle. Also, the tracking control of position and attitude
of quadrotor is investigated based on the Lyapunov theory.
However, the finite-time convergence rate and the chattering
phenomenon elimination are not considered in this article.
A finite-time tracking control of quadrotor in the presence of
uncertainty has been introduced in [49]. Although this article
presents a valuable convergence rate, however the removal to
the chattering phenomenon which reduces the performance
of system has not been examined. In [50], a Nonsingular
Terminal Sliding Mode Control (NTSMC) technique has
been proposed for quadrotor control under state uncertainties
and exterior perturbations. Moreover, the fault detection and
isolation technique in the target of fault identification has
been recommended in [50]. However, the adaptive proce-
dure for estimation of the upper bound of the external dis-
turbance has not been adopted and the chattering problem
has not been investigated. In [51], the finite-time conver-
gence for quadrotor based on the Global Terminal Sliding
Mode Control (GTSMC) technique has been suggested for
a quadrotor UAV; however, the effects of the external distur-
bances have been overlooked in this paper. In [52], feedback
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linearization scheme which converts nonlinear components to
the fourth-order dynamics has been recommended for flight-
tuning of quad-copters. Nevertheless, the stability is asymp-
totic which does not offer fast system performance. Also,
SMC is employed for the control of dynamical inversion
of feedback linearization’s error in [52]. But, the adaptive
procedure which can enhance the proficiency of the method
is not adopted in the mentioned reference. In [53], in inner
loop, a novel Hybrid Robust Three-axis Attitude Control
(HRTAC) has been designed for the control of three-axis
angular rotations. In the outer loop, linear quadratic con-
troller has been planned for the control of rotation angles.
In [54], PID controller and non-linear state feedback based
on Linear Matrix Inequality (LMI) have been designed for
the stability and tracking control of unmanned aerial vehicles.
In [55], a simple model of quadrotor is applied and then,
SMC is used for tracking control. In [56], a back-stepping
control procedure has been designed for the stability con-
trol of physical dynamic model of unmanned aerial vehicle
under sensor and actuator fault. In [57], trajectory tracking
control of quadrotor has been designed in two subsystems.
In the first subsystem, dual-loop integral SMC has been
planned for tracking control of desired attitude and angu-
lar velocity. In the second subsystem, a global asymptotic
controller for position tracking has been offered. A flight
regulator of quadrotor based on the nonsingular TSMC has
been suggested in the appearance of exterior disturbance and
parameter uncertainty in the inner and outer control loops
in [50]. In [58], the uncertainty compensator and SMC design
based on the exponential convergence rate have been offered
for quadrotor. But, in this article, the influence of external
disturbances has been reduced. An incremental SMC based
on the disturbance observer has been designed for UAVs
with the aim of fault tolerant in [59]. A novel fractional-
order back-stepping based on the SMC for tracking control
of UAV has been presented in [60]. As stated by the previous
authors’ researches, no comprehensive work has been done
in designing an adaptive PID sliding mode control method
for the aim of finite time tracking of attitude and altitude of
unmanned aerial vehicles. Consequently, the highest innova-
tions of the recommended scheme of this article compared
with the above-stated studies are the implementation of the
adaptive PID sliding mode control scheme with fast and
finite time convergence for UAVs and the alleviation of the
chattering phenomenon in the control inputs.

C. CONTRIBUTIONS
In this article, the principal contributions are mentioned as
below:

- A PID-SMC scheme with fast convergence is planned
for the finite-time control of 6-DOF UAVs with bounded
external disturbances.

- Anadaptive PID-SMC technique is planned in the aim of
quadrotor’s tracking and stability control in the presence
of the external perturbations with unknown bound of
disturbances.
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- Attitude stabilization and position tracking of quadro-
tor UAVs in the existence of external disturbances are
designed.

- The suggested controller approach appropriately guar-
antees the finite time convergence of sliding mode
around the switching surface.

D. PAPER ORGANIZATION

The following sections are organized in this article: a dynam-
ical state-space model of 6-DOF quadrotor is presented in
Sect. II. The problem explanation and some preparations
such as external disturbances corresponding to sensor failure
are provided in Sect. III. The PID-SMC method for fast
stability and tracking of quadrotor against known bounded
external disturbances is proposed in Sect. IV. An adaptive
PID-SMC method in the aim of stability and tracking control
of quadrotor by unknown bounded external disturbances is
provided in Sect. V. Simulation outcomes are displayed in
Sect. VI. To summarize the findings, conclusions are reported
in Sect. VIL
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FIGURE 1. The structure of quadrotor with four motors.

Il. DESCRIPTION OF UAV FLIGHT MODEL

An unmanned aerial quadrotor vehicle with 6-DOF with four
rotors as illustrated in Fig.1 is considered in this section.
On the whole, raising and reducing total thrust can cause
every quadrotor to rotate and shift in six directions. A rigid
cross-frame and symmetrical unmanned aerial vehicle has
two pairs of rigid propellers (1, 3) and (2, 4) which rotate
reversely. Also, thrust and drag forces are proportional to the
square of the speed of propellers. For UAVs, there exist four
types of movements and motions:

- raising and reducing four rotors’ speed results in vertical
motion,

- varying the speed of propellers (1, 3) causes roll and
related lateral movement,

- modifying the speed of propellers (2, 4) creates pitch and
related lateral movement,

- torque difference between (1, 3) and (2, 4) generates yaw
rotation [61], [62].
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Dynamical equations of quadrotor according to the
Newton-Euler equations can be defined as [61]-[63]

m¢ = Fy + Fyq + Fg,

; 1
JQ2=-Q"JQ+Ty — T, — T, W

where m and £ denote system’s mass and quadrotor’s position
relating to the inertia framework E, respectively. The matrix
J € R¥3 is recognized as quadrotor’s inertia matrix regard-
ing to the steady framework which is expressed as follows:

I, 0 O
J=|0 1, o] @)
0 0 I

so that Iy, I, and I, demonstrate inertia amounts with regard
to x, y, z axes. The expression 2 which is presented below
describes the quadrotor’s angular velocities:

1 0 —siné ¢
Q=0 cos¢ cos 0 sin¢ 6 |, 3)
0 —sing cos¢pcos6 w

where ¢, 6 and i specify roll, pitch and yaw angles. Term
Fy illustrates the consequence of forces which are produced
from four propellers as follows:

cos ¢ cosysing + singsiny | 4
cos ¢ sin6 sinyr — sin ¢ cos ZFi, @)

cos ¢ cosb i=1

Ff:

with F; = K,,wlz. Now, K}, and w; are the lift power factor
and rotor’s angular speed, respectively. The term F; displays
consequence of the powers which are created along x, y, z
axes as follows:

—Kfax 0 0 ]
Fy = 0 —Kjy 0 ¢, 5)
0 0 —Kji,

where Kyy, Kryy and Kyg, are positive translation drag con-
stants. The gravity force F, is expressed as

0
—mg
so that g specifies gravity force. The term I's is the quadro-
tor’s moment respecting to the steady framework as:

d(F3 —F1)
d(Fy — Fy) , )
Cd(w% — W% + w% — Wi)

Iy =

so that d signifies the distance between center of quadrotor
and propellers’ rotation axis and Cy specifies the drag factor.
The expression I', shows torques of aerodynamic friction as

Kfax 0 0
r,= 0 Kiay 0
0 0 K

)2, ®)
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so that Ky,x, Kfay, Ky, specify aerodynamic friction factors.
Expression I'y shows the resultant of torques because of
effects of gyroscopic as

0
4
r,=Y 0 , ©)]
§ Z’=1 (_1)i+lwi

where J, is the rotor inertia. The dynamic model of quadrotor
is obtained as

X = % [—dex)'c + (cos ¢ sinO cos y + sin ¢ sin W)ul],

y = % [—deyj) + (cos ¢ sin O sinr — sin ¢ cos 1//)141],
t= [ Kk + (cosgeosOu] g,

- le [(1), — I)V6 — Ky — 1,0 + duz],

0= % [(lz — I)V$ — Ky” + 1,26 + du3],

B = [~ 1990~ Ked + Cous). (10)

Z

where uy, up, uz and uy are controller signals of system which
correspond to the angular velocities of four propellers as

2
Uy K, K, K, K, Wy
u | _ -K, 0 K, 0 w%
us3 0 —K, 0 K, w% ’
U4 Cp —-Cp Cp —Cp wﬁ
QZW]-W2+W3—W4. (11

Ill. PROBLME DESCRIPTION AND SOME PRELIMINARIES
The dynamical equation of an UAV quadrotor with 6-DOF
is expressed based on the state-space model. Then, the state-
space model is divided into four subsystems and the desired
vector is defined. To end, a Lemma which is related to
the finite-time stability concept is introduced for the control
objective.

Consider X = [¢,$,0,6,v,9.2,2], U = [u, us,
ug, w17 and fii(x, 1) = [fi2.fi3.foafs1]] are the vectors
of quadrotor’s states, the control signals and sensor failure,
respectively [64]. State-space formula of dynamical equation
(10) can be considered as

X = F(x) + G(X)U + fii(x, 1), (12)

where F(x) and G(x) are

_ o -

aixaxe + azxg + a3Qxy

X4

) _
asxpxe + asxy + ae$2x
arxyxq + agxg
X8
agxgxe — § i
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0 0 0 0
by O 0 0
0 0 0 0
0 b O 0
Gx=l0 0 o0 0 . (14
0 0 b3 0
0 0 0 0
0 0 0 COS X1 COS X3
- m -
with ay = I’VI;XIZ, a) = —Klji, a3 = —'I%, as = IZI_VIX,
Kiay =1y —Kjaz ’
as= — Ify , dg = ';—;, ay; = _Iz }, ag = _Iz/”’ag =

—Kpe 3 d _d _Cp
T,bl = E,bz— I—andb3 = t

Now, the considered system in (12) is divided into four
subsystems as follow:

X1 =x2

Xp = a1x4x¢ + azx% + a3§_2x4 + biuz + fi2,
X3 = x4

X4 = asxaxe + a5x‘% + asQ2x2 + bouz + fi3,
X5 = Xg

Xe = arxoxs + agxg + b3ug + fo4,

)'67 = X3

COSX1COSX3 (15)
— U +f¥1~

Xg = agxgxe — & +

Hence, the state-space vector can be considered as X =
[X1(), Xo(1), X3(2), Xa(0)]", such that Xi(t) = [x1,x]",
X = [,x”, X3(t) = [xs.x]” and Xa(t) =
[x7, xg]¥. Afterward, the desired vector can be defined as
Xg = [X14(1), X24(1), X34(1), Xaa(1)]", such that X4(1) =
[x1a. x2417, X2a(t) = [x3a, %4417, X34(t) = [x54,%64]" and
X4a(t) = [x74, x841" With X1g = X24, X3¢0 = X4d, X54 = X6d
and x7; = xgg4, while x4, x44, x¢4 and xgy are differentiable
functions of time.

IV. POSITION TRACKING OF QUADROTOR UAV
According to this section, firstly, the error signals between
the real and desired trajectories of unmanned aerial vehicle
are determined and then, the sliding surfaces are chosen
suitably. Afterward, the suggested PID sliding manifold is
defined. Finally, finite-time convergence errors and finite-
time tracking action are studied based on Lyapunov concept.
Consider the tracking errors as

Ei (=X (1)—Xia (1) = [ei (1), &; ()],  (Vi=1,2,3,4)

(16)

where

el(t) =x2 — xoq ex(t) = X4 — X4q

{ el(t) =x1 — x4 { ex(t) = x3 — X34

a7

e3(t) = x5 — Xs4 eq(t) = x7 — x74
e3(t) = X6 — Xod e4(t) = xg — X84
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Define the sliding surfaces as

Si(t) = CEi(t), (Vi=1,...,4) (18)

where C = [c1, c2] are gain constants. Now, the suggested
PID sliding surface is proposed as

t

oi(t)zkpSi(t)+ki/ S; (D)dt+kaSi (1), (Vi=1,2,3,4)
0

(19)

where k;,, k; and k; denote the proportional, integral and
derivative constants, respectively.

Theorem 1: Assume that the dynamic equations of quadro-
tor UAV are defined as (15) and the control inputs are
designed as

ity = —(cyby)~! {kp(clél(t) + ex(arxaxe + arx? + azQxy
+biur — x24)) + kiCE(t) + kg(ci(aixaxe + a2x22
+ a3 Qxy + bruy — foq) + ca(araie + 2azizx;
+ a3y — 2q)) + Kkysign(on) o1 + vioy
+ Xlsign(ffl)},
iis = —€2b2)™" [lp(162(0) + eaaaxas + asx} + afixs
+bouz — i4q)) + kiCEx(1) + ka(c1(asxaxe + asx;
+ a6Qxz + bouz — Xaq) + ca(asiaie + 2asiaxs
+ a2ty — ¥4a)) + Kk2sign(02) [02]*2 + 1207
+ xasign(o)].
iy = _(C2b3)7][kp(clé3(t )+ca(arxaxa+agxg +byus—ieq))
+ kiCE3(t) + ka(c1(arxoxs + agxg + b3us — %ea)
+ ca(aziais + 2asiexs — ¥oq)) + k3sign(o3) o3|
+ v303 + X3Si8n(03)},

COSX1COSX3

i =—(c2 - )~ {kp(61é4(t) + c2(agxg

COSX1COSX3 .
-8+ Tul — X84))

COSX1COSX3

+ kiCE4(t) + ka(c1(agxg — g + up — xgq)

+ k45ign(og) 04| + v404 + xasign(os) + ca(aois
1
+ —[—Xxysinx cosx3 — X3sinxzcosxiu; — 5égd))},
m
(20)

where «; and v;(Vi = 1,...,4) are positive constants and
xi(Vi = 1,...,4) are scalar values which fulfill the subse-
quent condition:

[Ail < xi,  (YVi=1,...,4) 21

where A1 = (kyca + kac)fia + kacafsa, Aa = (kpea +
kac)fs3 + kacaofsz, A3 = (kpea + kaci)fsa + kacofsa and
Ay = (kper + kqcr)fs1 + kacofst.

Then, the switching surfaces (18) are stabilized exponen-
tially and the PID sliding manifolds (1) converge to the
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equilibrium in the finite time. Therefore, the error signals (16)
and (17) can converge to the origin in the finite time. Hence,
the tracking control of quadrotor UAV under the external
perturbations can be achieved completely.

Proof: The candidate Lyapunov function is formed as

Vi(t) = %af(z). ~Vi=1,...,4 (22)

Using the time derivative of the sliding surfaces (18),
it can get

Si(t) = CE«1), (Vi=1,...,4) (23)

By substituting (16) into (23), we obtain

1

$i(t) = [e1. 2] [j] = c14; + 2¢;. (24)

Now, by applying (17) to (2), the subsequent equations are
achieved:
S1(t) = cie; + cre;
= cie; + ca(aixaxe + a2x22 + a3Qixs + brup
+/f2 — X24),
Sy(t) = ciey + cres
= ciey + ca(asxpxe + a5xf + ag$xs + bous
+/f3 — X4a),
S3(t) = cies + cies
= cies + ca(arxoxs + agxg + bug + fra — ),
S4(t) = cies + Creq
cosxlcosx3u1 Fful — dsa).
(25)

= cie4 + c2(agxg — g +

Taking the time-derivative of (24), one obtains
Si(t) = [c1, c2] [?] = c1é; + 2e;. (26)
L

where using (17), one finds

S1(t) = c1é) + cae
= c1(a1xax6 + a2x3 + a3Qx4 + biua + fi2 — %24)
+ ca(arxaxe+2a2x2x2+a3 Qig+biip +fsz — X24),
Sz(t) = c1ér + crep
= c1(aaxaxe + asxi + asQxa + baus + fi3 — aa)
+ coasiaiie+2asiaxs +aeQ2ir +boitz +fsz — ¥a4),
S3(t) = ci1é3 + cre3
= c1(azxaxs + asxg + b3us + fus — Xoa)
+ co(ariais + 2asiexs + bsits + fsa — ¥ea),
S4(t) = c1é4 + Cre4

COSX1COSX3

= c1(agxg — g + uy + fs1 — xga)

. L, .
+ co(agxg + —[—x18inxicosx3 — x3sinx3cosx|ug
m

COSX1COSX3 , . .
—— i1 +fs1 — Xga). 27
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Afterward, differentiating (19) with respect to time, one
can obtain

Git) = kpSi(t) + kiSi(t) + kaSi(t),  (Vi=1,2,3,4)

(28)
Now, by substituting (18), (25) and (27) into (28), it is
realized that
o1(t) = kp(cre1 + ca(arxaxe + a2x22 + azQxq + brun
+fi2 — %24)) + kiCE1 (1) + ka(c1(arxaxe + axx3
+ a3Qxy4 + biuy + fio — ¥2q) + c2(a1Xake
+ 2a252x7 + a3Qka + brit + fi2 — ¥2a)),
62(1) = ky(c1é2 + calasxaxe + asxj + ag$xa + bous
+fi3 — 42)) + kiCE (1) + ka(c1(asxoxe + asxj
+ acQxs + baus + fi3 — Xaa) + c2(asine
+ 2as5x4x4 + aﬁész + btz +].Cx3 — X44)),
33(1) = ky(c1é3 + ca(arxaxs + agxg + byus + fug — X6a))
+ kiCE3(t) +ka(c1(arxaxs+agxg +b3us +fia — Xoa)
+ co(ariais + 2asiexe + bsits + fra — ¥ea)),
. . COSX1COSX3 .
04(t) = kp(crea+co(agxg —g+————u1 +fs1 —x84))
+kiCE4(t) + ka(c1(agxs — g + %ul
+fs1 — X84) + c2(agxg + %[—xlsinxlcosm

L COSX1COSX3 , . .
— X3sinxzcosxiu) + ——————=iu1 + fs1 — X84)).
m

(29)

Therefore, using (22) and (29), time-derivatives of the
Lyapunov functions are calculated as

Vi(t) =o01(1)61(1)
=01 (Dky(c1é1 + ca(arxaxe + arxs + a3Qxy
+brup + fs2 — X24)) + kiCE1(2) + ka(c1(a1xaxe
+ax3 4 a3Qxg + biuy + fio — x24)
+ co(ar i + 2arioxs + a3Qiy + byiy + fio
— ¥24))],
Va(t) = 02(1)62(t)
= oo (D)[ky(c1é2 + ca(asxaxe + asxi + agQx
+bous + fs3 — X44)) + kiCEx(1) + ka(c1(asxaxe
+asx] + agQxa + bous + fi3 — ¥4a)
+ cp(agxxe + 2asxaxs + ag chz + byl +fs3
— X44))],
V(1) = 03(1)53(1)
= 03(1)[ky(c134ca(arxoxs+asxg +byus+fra—ioa))
+ kiCE3(t)+ka(c1 (azxaxa+asxg +byus+fra —Zoa)
+ colaziaia + 2agiexe + baita + fra — ¥oa))],
V(1) = 04(1)64(t) = oa(t)lkp(c1é4 + ca(agxs

COSX1COSX3 .
-g+ — + fs1 — X8a)) + kiCE4(t)
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COSX1COSX3

+kq(ci(agxg — g + uy + fs1 — X8a)

1
+ cp(agxg + —[—xysinxjcosx3 — X38inx3cosxlui
m
COSX1COSX3 . "
————u1 +fs1 — Xsaql. (30)
Substituting the control laws (20) into (30), one gets

Vi(t) = —oi(t)k;sign(oy) |oil* — oi(t)vio;
—oi(t)xisign(o;) + oi(t)A;  (31)
By considering the condition (21), it yields
Vi(t) < —kiloil — vy loyl?
= —piVilo) — oV (@),
Vi=1,...,4&Vj=5,...,8) (32)

where p; = 2v; > 0, pj = 2; > 0 and 5= (8 + 1)/2. This
finalizes the proof of theorem.

Remark 1: The sliding manifolds o;(Vi = 1,...,4) are
converged to the origin in the finite time using the discontin-
uous control inputs i;(Vi = 1, ..., 4). Therefore, by taking
integrations of i; which are calculated as (20), the control
signals u;(Vi = 1,...,4) are obtained and the chattering
action is removed.

V. ADAPTIVE POSITION TRACKING OF QUADROTOR UAV
It can be said that, at most of the time, the upper bound
of external disturbance is unknown. So, an adaptive method
is employed to approximate the bound of disturbance. The
design procedure of the adaptive parameter-tuning scheme is
expressed in the following theorem.

Assumption 1 [65], [66]: The initial conditions satisfy the
inequality x; (0) 2 0(Vi=1,...,4).

Theorem 2: Consider that the external disturbances f;; and
fyi(‘v’i =1, ..., 4)are unknown but bounded while y;’sin (21)
are some unknown positive coefficients. Let the PID sliding
manifold be expressed as (19). So, the tuning parameters ¥;
are adopted to approximate x; by the subsequent adaptation
laws:

Xi=0iloiVi=1,...,4) (33)

where ©;(Vi = 1,...,4) are the positive constants. Thus,
the control inputs are obtained as

i = —(Czbl)_l {kp(clél + ca(ar1xaxe + a2x§ + a3
+b1uy — x24)) + kiCEL(1) + ka(c1(a1xaxs + ax;
a3 Qx4 + bruy — ¥2q) + ca(arxaXe + 2a2%x2
+a3Qiy — Fq)) + k1sign(on) og [ + vioy

+ ilsign(m)},

ity = —(cabp)™! {kp(cléZ + ex(asxaxe + asxi + agxa
+ bauz — X44)) + kiCEx(t) + ka(c1(asxaxs + asx;
+ asSxy + bauz — X4q) + ca(asiaie + 2asxaxy
+ agQky — X4q)) + Kk2sign(o2) 02| + 1207

+ Xlsign(az)},
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iy = —(cob3) ™! {kp(c1é3 +ca(azxaxs+agxg +byus—ieq))

+ kiCE3(1) + ka(c1(arxoxa + agxg + b3ug — kea)
+ caaziais + 2agiexe — ¥oa)) + K3sign(o) |o3|%
+ w303 + )?3Sign(03)},

COSX1COSX3

i = —(c2 )" kp(c1éa + ca(aoxs

COSX1COSX3 .
-8+ — . - x84)) + kiCE4(t)

COSX1COSX3

+kq(ci1(agxg — g + Uy — Xgq)

. r .. .
+ co(agxg + —[—x1S8inxicosx3 — x38inx3cosxi|uy
m

— Xg4) + va04 + Kasign(ou) o4 + Rasign(os)}.
(34)

Therefore, the offered PID sliding manifolds can reach the
origin with an exponential convergence rate. Thus, the track-
ing control of quadrotor UAV under the external perturbations
can be achieved completely.

Proof: The Lyapunov function is formed as

Vi) = suixi + 507@), (Vi=1l....4 (35

where p; is a positive constant which fulfills u; < @L With

respect to time-derivative of the Lyapunov function (35),
it obtains

Vilt) = wixifi + oi(D)6i(0) (36)

Considering x; = X; — x; and substituting (28) into (36),
we obtain

Xi) + 0i()(kpSi(1) + KiSi(t) + kaSi(1).
(37)

Vit) = wixi(Ki —

Now, the adaptation laws (33) are substituted into (37)
where using (18), (25) and (27), we have

Vi(0) = 101 (X1 — x1) lot (O] + o1 (1) (kpS1 (1)
+kiS1 (1) + ka2 (1))
= w®100 — ) lor O] + o Olky(crér
+ co(ayx4xe + azxg +as S_2x4
+biuz + f2 — X24)) + kiCE1 (1) + ka(c1(a1xaxe
+ a3 + a3Qxy + biuy + fio — ¥24)
+ ca(ariaie + 2azioxs + azQia + biiny
+fi2 — F2a))],
Va (1) = 1202 (%2 — x2) loz ()] + 02 (1) (kpS2 (1)
+kiSy (1) + ka2 (1))
= 202(X2 — x2) loz ()] + o2(D)[ky(c1é2
+ caasxaxe + asx; + agQxa + byuz + fi3 — x44))
+ kiCE>(t) + kq(ci(agxoxe + a5x3 + agxn
+bouz + fs3 — X4q) + ca(asioXe + 2asigxy
+agQky + baits + fi3 — Xaa)),
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V3 (1) = 303 (X3 — x3) los (0] + 03 (1) (kpS3 ()
+ kiS3 (1) + kaS3 (1))
= 303(x3 — x3) lo3(D)| + o3(t)[ky(c163
+ caazxaxs + agxg + baug + fu — %6a)))
+ kiCE3(t) + ka(c1(arxyxs + agxg + bus
+fs4 — Xea) + ca(arioi + 2asiexs + b3ia
‘ +fsa — X6a))], _
Vi) = M4®z_1‘()?4 — x4) loa(@®)| + o4(t)(kpSa(t) + kiSa(t)
+ kqS4(2))
= 1404(X4 — x4) loa()| + oa(D)[ky(c1é4 + c2(agxg
COSX|COSX3 .
-8+ Tul + fs1 — X84))
COSX1COSX3

+HhiCEA() + kalcr(aoxg — g + ————u

. ) .
+fi1 — X84) + c2(agxg + —[—x1sinx1cosx3

m
L COSX1COSX3 . . .
— X3sinxzcosxilu) + —————=u1 + fs1 — X84))].
m

(38)
Then, using the control inputs (34), the same expressions
in equation (38) are removed, then one finds:
Vi(t) = wi®i(Xi — xi) loi0)| + o] (1) (isign(oi(t)) |oi(1)|*
—v;0i(t) — Xisign(oi(?)) + A;)
< wi®i(Ri — x) loi(0)] — ki loil ' — viloy(n)]?
= Xiloi®] + [Ailloi(®)], (39)
Since the expression —k; |Ul_|3,-+1 — v,-|c7,-(t)|2 is negative,

it can be removed from the above inequality. Hence, one
obtains:

Vi(t) < wi®i(%i — xi) loi®)l — Riloi®)| + 1Ailloi(®)],  (40)
Now, by adding and subtracting the term x;|o;(¢)|, one can
achieve:
Vilt) < 1i®i(Ri — x) loi(®)] — Rilow®)] + |Al|oi(?)]
+ xiloi@®| — xiloi®)|  (41)
After some calculations, we have:
Vi (1) <= (1= 110)) (Xi—xi) loi (0= (= Ail) oi(D)].
(42)
If the conditions |A;| < x; and w;®; < 1 are satisfied,

then, by considering the Lyapunov function (35), Eq. (4) can
be represented as follows:

. 2 Xi loi(®)]
Vi — == pi®) 2= 10| —V2(xi— | A
"= ‘,Mz‘( 1z )\/g|0(f)| (Xi— 1Al NG
43)

Now, by considering a new parameter as Y; =
min{,/ (1 = 09 [0i(0)] . V2(0xi = |Ai])) > 0. we have

. Xi | loi®l :
Vi(t) = _Ti(\/_z + NG )= =TV (1), (44)
Wi
The proof of this theorem is completed. |
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FIGURE 2. Block diagram of the proposed control technique.
TABLE 1. Quadrotor parameters [61], [62]. e proposed method
== == method of [1]
i 400
Parameter Value Parameter Value 30
Krax (N/rad /s) 5.5670e-4 m (Kg) 0.486 25 300
Krqy (N/rad /s) 5.5670e-4 d (m) 0.25 20
Koy (N/rad/s) | 6.3540e-4 | L (N.m/rad/s%) | 3.8278e-3 = z 2
Krax (N/m/s) 5.5670e-4 | I, (N.m/rad/s’) | 3.8278e-3 - 15 > oo
Keay (N/m/s) 5.5670e-4 I, (N.m/rad/s%) 7.6566¢-3 10
Kea, (N/m/s) 6.3540¢-4 Cy (N.m/rad/s) 3.2320e-2 5 0 R RSN
K, (N .m/rad /s) 2.9842¢-3 J. (N.m/rad/s?) 2.8385¢e-5
0 -100
0 10 20 0 10 20
i i Time(sec) Time(sec)
§ 1 7 ——Droposed method
=09 = = Method of [1] 250 25
s | | == m= = desired values
0.8 200 20
0 5 10 15 20
Time(sec) 150 15
o8 T T T £ 100 £ 10
g > >
3,, 0.6 !\ i 50 5
—-— 1 L 0 0
0 5 10 15 20 L—ﬂ
Time(sec) -50 -5
: ‘ . 0 10 20 0 10 20
S 1.5F — = Time(sec) Time(sec)
©
o 4 J FIGURE 4. Time responses of control inputs under known bounded
x L . . external disturbances.
0 5 10 15 20
Time(sec) . . . L
4 : : . parts, the simulation outcomes are developed with realistic
B J /—_ _ e e e = = = = = values according to Table 1. Also, the simulation results
X are compared with the results of the control method of [1].
: ‘ ' e sliding surface in this article is defined as s(f) =
00 5 10 15 20 Th lid g f th ticl def d 1
Time(sec) kpe(t)+k; fot e (W) dW + kge. The initial conditions are given

FIGURE 3. Tracking of state trajectories in the presence of known
bounded disturbances.

VI. SIMULATION RESULTS

The block diagram of the proposed control technique has
been depicted in Fig.2. The planned control process has
been considered in two parts: in the first part, the upper
bounds of the external disturbances are known, but in the sec-
ond part, the bounds of external disturbances are unknown.
To address the unknown bounds, an adaptive-regulator tech-
nique is offered to estimate the external disturbance. In both

VOLUME 9, 2021

as X(0) = 1[0.9,-0.9,0.75, -1,0.75, -0.1, 0.25, —0.1].
The initial quantities of adaptive controller can be put as
x(©0) = 0.5(Vi = 1,...,4). The design parameters are
selected as C = [c1, 2] = [5,0.6], kp =4, ki =2,ks =1,
v =vy =03, v3 =v =015k = 15V~Vi =1,...,4),
6;=3/5(Vi=1,...,4)and ®; =0.05(Vi=1,...,4). Itis
noted that the parameters of the control strategy have been
obtained by trial and error approach. Moreover, the desired
quantities are taken as ¢g = %, 64 = %, Ya =
and zz = 3. The external disturbances are taken as fs
0.1x7sin(¢), fo = 0.lx1cos(t), f3 = 0.1x3sin(2¢) and
fsa = 0.1xs5 cos (2t).

IRSE!
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FIGURE 5. Sliding surfaces under known bounded external disturbances.
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FIGURE 6. PID Sliding manifolds under external disturbances with known
bounds.

Fig.3 displays the time history of the states of
quadrotor UAV system with known bounded external dis-
turbances. It can be found from Fig.3 that using the pro-
posed control method, the tracking purpose is fulfilled
appropriately.
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FIGURE 7. Time responses of the errors under known bounded external
disturbances.
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FIGURE 8. Time trajectories of system states in the presence of unknown
bounded disturbances.

It can be perceived from Fig.4 that in the control signals
with proper amplitudes, there is no chattering under the
known bounded external disturbances.

Fig.5 shows the time trajectories of the sliding surfaces,
which demonstrates the exponential convergence to zero.

Fig.6 displays the time responses of the PID-sliding man-
ifolds o;(t), which confirms that o; converges to zero in the
finite time.

The time histories of errors defined in (16) and (1) are
shown in Fig.7, which demonstrates the convergence of the
error signals to zero properly.
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FIGURE 9. Time responses of control inputs in the presence of unknown
bounded external disturbances.
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FIGURE 10. Sliding surfaces in the existence ofunknown bounded
disturbances.

For the second part, as mentioned before, the simulation
results are presented in the sense of unknown bounded distur-
bances. Fig.8 demonstrates the time histories of the quadrotor
states with unknown bounded disturbances. It is confirmed
from Fig.8 that the tracking purpose is achieved suitably.

It can be gotten from Fig.9 that in the control signals with
proper amplitudes, there is no chattering in the presence of
unknown bounded disturbances.
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FIGURE 11. PID Sliding surfaces in the existence of unknown bounded
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FIGURE 12. Time responses of the errors in the presence of unknown
bounded external disturbances.

Fig.10 shows the sliding surfaces s;(#) which illustrates that
si(t) converges to the origin exponentially under unknown
bounded external disturbances.

Fig.11 shows PID sliding manifold o;(¢), which proves
that o;(¢) converges to zero suitably under unknown bounded
external disturbances.

Time histories of the error signals are exhibited in Fig.12,
which confirms the exponential convergence of errors to the
origin.
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FIGURE 13. Adaptive-tuners x;(i =1,...,4).

The adaptation laws are presented in Fig.13, which
demonstrates the approximation of uncertain parameters
appropriately.

The above simulation results show that the planned con-
troller based on the PID-SMC scheme and adaptive PID-SMC
technique is useful for tracking control of unmanned aerial
vehicle system. Additionally, As a result, it can be found from
comparison that the sliding surfaces of the proposed method
converge to zero faster than the surfaces of the method of [1].
Moreover, the control inputs in our proposed technique have
suitable amplitude without chattering, but the control signals
of the method of [1] have high amplitude with noticeable
chattering problem which reduce the system performance.

VIi. CONCLUSION

In this paper, the dynamical state-space equation of an
unmanned aerial vehicle with six degree-of-freedom is set
up according to the Newton-Euler formulization. Then,
the external disturbance related to sensor failure and aero-
dynamic perturbation is entered in the dynamic model. The
control procedure is done in two various steps. At the first
step, a PID-SMC scheme is proposed in the aim of the
finite-time stability and tracking control of UAV system with
6-DOF in the presence of exterior disturbances with known
bounds. In the second step, the upper bound of the external
disturbance has been considered unknown; thus, an adaptive
PID-SMC is proposed to estimate the external disturbances.
Additionally, a PID sliding surface has been specified and the
stability of the system has been proved based on the Lyapunov
stability concept. Simulations are provided to demonstrate
the effectiveness of the recommended approach. The design
problem of finite time tracker for a practical quadrotor UAV
in the presence of time-delays in the control inputs will be
studied in our future research work.
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