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ABSTRACT Detecting a user’s intentions is critical in human—computer interactions. Recently,
brain—computer interfaces (BCIs) have been extensively studied to facilitate more accurate detection and
prediction of the user’s intentions. Specifically, various deep learning approaches have been applied to the
BClIs for decoding the user’s intent from motor-imagery electroencephalography (EEG) signals. However,
their ability to capture the important features of an EEG signal remains limited, resulting in the deterioration
of performance. In this paper, we propose a multi-layer temporal pyramid pooling approach to improve the
performance of motor imagery-based BCIs. The proposed scheme introduces the application of multilayer
multiscale pooling and fusion methods to capture various features of an EEG signal, which can be easily
integrated into modern convolutional neural networks (CNNs). The experimental results based on the BCI
competition IV dataset indicate that the CNN architectures with the proposed multilayer pyramid pooling

method enhance classification performance compared to the original networks.

INDEX TERMS Brain—computer interface, deep learning, feature fusion, pyramid pooling.

I. INTRODUCTION

Detecting a user’s intent correctly and providing them
appropriate information or service on time is essential
in human—computer interactions (HCIs). Recently, various
interaction methods, such as eye tracking, gesture recogni-
tion, and brain signal-based approaches, have been proposed
to detect a user’s intentions more accurately, thereby improv-
ing the user experience in HCI. In particular, brain—computer
interface (BCI) technology, that detects the user’s intentions
using brainwaves, has been considered increasingly in recent
years.

The BCI technology is capable of efficiently aiding users
with low communication skills or serious physical disabili-
ties. Furthermore, it can effectively interact with machines
or devices using the user’s brain signals [1], [2]. BCI-based
systems record the electrical activities of the human brain
via various neuroimaging modalities such as functional mag-
netic resonance imaging (fMRI), electroencephalography
(EEG), and positron emission tomography (PET) to detect a
user’s intentions. Among the various methods available for
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capturing brain activities, EEG is commonly used in BCI
systems because of its high temporal resolution, portability,
low cost, and non-invasiveness [1].

Sensorimotor rhythm (SMR) is a type of brainwave that
can be observed after executing the movements or a motor
imagery (MI) task. An SMR is strongly related to an MI
task, which is generally defined as a mental process where
an individual imagines himself/herself performing a specific
action (such as, left or right hand or foot movement) without
the actual activation of any muscles [3]. Therefore, successful
decoding of an SMR can result in the generation of mental
commands, which can remotely control a device. During the
MI tasks, several regions of the brain (e.g., motor cortex,
sensory areas, and prefrontal areas, etc.) are activated. Var-
ious studies have attempted to analyze the signals from these
regions to determine a category for the executed MI tasks.
For example, MI-based BCI systems can aid individuals
with motor disabilities in controlling wheelchairs [4], [5],
or robotic arms [6] without any physical interaction.

Over the past few decades, there have been various efforts
to detect user intentions using MI signals, that can act
as explicit or implicit feedback for the interaction design.
Studies from the early stages [7] of MI-BCIs have focused
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on extracting well-designed features and classifying the
user’s intentions based on the extracted features with vari-
ous machine learning algorithms, such as linear discriminant
analysis (LDA) [8], [9] and support vector machines (SVMs)
[10]-[12]. For example, common spatial pattern (CSP) [13]
and filter bank common spatial pattern (FBCSP) [14] algo-
rithms are well-known feature extraction methods that con-
tribute to the performance improvement of motor imagery
EEQG classification tasks.

Although previous BCI systems relied on well-designed
and handcrafted features, they remain unsatisfactory
with regard to classification accuracy. Conversely, deep
learning-based approaches have been successful with respect
to computer vision tasks, such as image classification, object
detection, and recognition tasks, without extensive feature
engineering [15]. Hence, many researchers in the BCI field
have been inspired by this and have attempted to apply
various deep learning approaches, such as convolutional
neural networks (CNNs), to the EEG domain. A study by
[16] proposed two types of CNN architectures (ShallowNet
and DeepNet) capable of decoding a user’s movement intent
from the raw EEG signals. The authors of [16] reported the
classification performance of CNN architectures, optimized
with various hyper-parameters, normalizations, and activa-
tion functions. Experimental results revealed that CNN-based
methods could successfully work without any feature engi-
neering, and outperform the classic decoding methods [13],
[14]. In [17], a CNN architecture termed as EEGNet was
proposed to address the MI-based BCI tasks. This study
aimed to produce a more compact network structure, reduc-
ing the number of parameters and the time required for
training the networks, while preserving the overall perfor-
mance. Sakhavi et al. [18] proposed an architecture built
on the FBCSP method to produce a novel representation
of the MI-EEG signals. The authors of [18] focused on
lowering the feature dimension while preserving valuable
temporal information. A more recent paper [19] attempted
to learn the most discriminative and complementary spatial
and temporal information for EEG-based brain computer
interfaces.

Nevertheless, the current CNN-based approaches still
exhibit limitations with respect to the classification accuracy
due to the insufficient number of samples and the unstable
nature of EEG signals. The EEG signals are inherently
dynamic, unstable, inconsistent, and have a low signal-
to-noise ratio. This makes it difficult for current deep learning
architectures to automatically learn the important features
from raw EEG signals. For example, the EEG signals mea-
sured from a single individual on the same day for the
same task can exhibit different patterns. Therefore, a more
robust method to learn the informative features from various
perspectives is expected to improve the performance of EEG
classification.

With respect to feature learning, recent studies on deep
learning for computer vision have investigated the effects
of multilevel feature extraction and fusion. Specifically,
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[20] proposed the application of a multilevel pooling layer
immediately after the convolution layer, placed before the
first fully connected layer in a CNN structure. The orig-
inal goal of this layer was to handle the different scales,
sizes, and aspect ratios of the input images by generating a
fixed-length representation of features. However, the authors
of [20] observed that the multilevel pooling strategy was also
helpful in learning the various perspectives of the features
when training the models for image classification and object
detection tasks. The results from [20] validated that multilevel
(or multiscale) feature extraction and fusion helps in extract-
ing more informative data from the network. Furthermore,
it contributes to improving the performance of the original
network for various tasks. Hence, it is also expected that
EEG classification can benefit from the multilevel pooling
approach, which can learn features from various perspectives.
However, studies on multilevel pooling for the EEG domain
are limited. Therefore, this study aims to discuss the feasibil-
ity of a multilevel pooling approach to decode EEG signals
for MI-based BCI applications. In this paper, we first discuss
the basic concept of the spatial pyramid pooling method,
successfully used in computer vision and other domains.
Subsequently, we present the design and implementation
of a novel type of pyramid pooling approach suitable for
motor imagery EEG classification. Finally, we validate the
feasibility of the proposed method.

The remainder of this paper is organized as follows.
Section 2 reviews the related studies on motor imagery EEG
classification. In Section 3, we briefly review the concept of
pyramid pooling. Section 4 discusses the proposed method
to apply the pyramid pooling approach to an EEG domain.
In Section 5, we present and analyze the experimental results.
Finally, we discuss the results and present our conclusions in
Section 6.

Il. RELATED WORK
In this section, we briefly describe the previous studies on
motor imagery EEG classification.

A. FILTER BANK COMMON SPATIAL PATTERN
The filter bank common spatial pattern (FBCSP) [11] algo-
rithm is a popular method for motor imagery EEG clas-
sification and was the best classification approach of the
BCI competition IV [21]. The FBCSP overcomes the limita-
tions of the common spatial patterns (CSP) algorithm [13],
which is a spatial filter algorithm designed to effectively
extract the discriminatory features from the motor imagery
EEG signals. The CSP method has a limitation, wherein
the classification accuracy decreases when the selected fre-
quency range is inappropriate for the subject. To solve this
problem, the FBCSP automatically selects the discriminative
subject-specific frequency range.

Nevertheless, the FBCSP is limited due to its dependence
on hand-crafted features, such as the selection of frequency
band ranges and feature extraction methods.
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B. MOTOR IMAGERY EEG CLASSIFICATION WITH CNNs

In the computer vision field, deep learning methods, such as
the CNN, have succeeded in improving image understanding
and classification performance based on their advanced char-
acteristics, such as automatic feature extraction and learn-
ing [22]. Therefore, several recent studies have attempted to
apply CNNs for understanding the motor imagery EEG and
leverage the advantages of their architecture during classifi-
cation tasks.

Schirrmeister et al. [16] presented two CNN architectures,
ShallowNet and DeepNet, which decode the motor imagery
from the raw EEG signals without any hand-crafted features.
They reported performance improvements in classifying EEG
signals using CNNs with various hyper-parameter set-ups,
such as dropout, batch normalization, and activation func-
tions. ShallowNet is a shallow network architecture consist-
ing of two main blocks. The first block performs temporal
and spatial convolution operations. Temporal convolution is
performed with 40 kernels with a dimension of 1 x 25. Sub-
sequently, a spatial convolution is conducted with 40 kernels
with a dimension of E x 1, where E denotes the number
of electrodes. In the second block, a square nonlinearity,
a logarithmic activation function, and an average pooling
operation are applied. classification is then performed using
the Softmax function. In contrast, DeepNet architecture con-
sists of five main blocks. The first block performs temporal
and spatial convolution operations in a manner similar to
the ShallowNet architecture. The remaining four blocks are
composed of a set of convolution and max pooling operations.
All the layers, except the final fully connected layer, utilize an
exponential linear unit (ELU) [23] as the activation function.
Batch normalization and dropout are used to improve the
performance of both models.

In [17], another CNN-based method, termed as EEGNet,
was proposed for the classification and interpretation of MI
EEG signals. The main idea of EEGNet was the adoption
of depth-wise separable convolution operations [24] used
in the recent CNN architectures for computer vision tasks.
The advantage of depth-wise separable convolution opera-
tions in a CNN architecture includes reducing the number of
parameters and simultaneously minimizing performance loss.
The EEGNet presented a compact architecture, which could
perform at par with deeper networks. The EEGNet consists
of three main blocks. The first block performs temporal con-
volution and depth-wise convolution operations. Temporal
convolution is performed via kernels with a size of 1 x 64.
Depth-wise convolution is conducted with £ x 1, where E
denotes the number of electrodes. In the second block, sep-
arable convolution is performed to combine the depth-wise
convolution. Finally, the third block is a Softmax-based clas-
sification layer without a fully connected layer. In all the
layers, with the exception of the third block, the ELU [23]
activation function and average pooling are applied.

Conversely, the authors of [25] argued that the current
CNNs exhibit limitations wherein the spatial relationships
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between the features of an object are not maintained while
training a model. To address this problem, they proposed the
capsule network (CapsNet), in which a group of neurons (i.e.,
Capsule), which represent the various parameters of an entity,
forms the basic unit of training. The structure of the original
CapsNet consists of a single convolution layer followed by
Capsule layers. In CapsNet, the learning process is performed
with a “dynamic routing by agreement” algorithm, which
iteratively updates the values of low-level and high-level
capsules in the Capsule layer. CapsNet has proven to be suc-
cessful in automatically learning the various properties (e.g.,
rotation and thickness) of an object through the experimental
results on the MNIST dataset, a large database of handwritten
digits commonly used for training the various image process-
ing systems [26]. Inspired by this, Ha er al. [27] proposed
a method to apply CapsNet to classify motor imagery EEG
signals. [27] used short-time Fourier transform (STFT) to
convert 1D EEG signals to 2D time—frequency domain spec-
trogram images to be used as inputs for training and testing
the Capsule networks. Accordingly, the configurations for the
convolution layer and Capsule layers (e.g., kernel size, stride,
and hyper-parameters for the dynamic routing algorithm)
were optimized for the EEG domain. The authors of [27]
showed that the CapsNet-based approach leads to competi-
tive performance when compared to that of the CNN-based
approaches.

As described above, various CNN-based techniques have
been proposed for decoding the motor imagery EEG signals
in recent years. However, their accuracy in the classifica-
tion of signals is still not satisfactory. Therefore, studies on
more robust methods of feature extraction, feature represen-
tation, training network architecture, and data augmentation
are required. Among these, this study primarily focuses on
the importance of feature extraction and representation in
improving the performance of CNN architectures for motor
imagery classification.

IlIl. PYRAMID POOLING

In this section, we briefly review the concept of a pyramid
pooling approach and its applications in various domains. The
next section shows how it can be utilized in the EEG decoding
domain.

The pyramid pooling method was proposed to address the
problem of a fixed input size for deep neural networks in
a computer vision field. For example, images are usually
cropped or warped to have a fixed size and then fed into
the deep neural network for training and inference. Crop and
warp operators tend to either omit parts of the object or lead
to geometric distortion [28]. These limitations can result in
some information loss, which can decrease the recognition
accuracy of deep neural networks. To overcome this issue,
a novel pooling strategy, termed spatial pyramid pooling
(SPP), was proposed by [20] based on the spatial pyramid
matching model [29], [30]. The main contribution of the
SPP layer is to generate a fixed length output, regardless
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of the input size. The SPP layer is placed between the
final convolution layer and the first fully connected layer to
aggregate information from the previous feature maps. In the
SPP layer, the feature maps are pooled to different levels
as opposed to that in standard pooling operations (e.g., max
or average-pooling). Given the feature maps with a size of
a x a (e.g., 13x13), a pyramid level of n x n bins can be
implemented as a sliding window pooling, where the win-
dow size win = [a/n] and stride str = |a/n], with [-] and
[-] denoting ceiling and floor operations [20]. The network
structure can have a [-level spatial pyramid pooling layer.
Hence, the first fully connected (FC) layer concatenates the [
outputs from the spatial pyramid pooling layer. For example,
a feature map (size of 13 x 13) before the SPP layer, which
is composed of a 3-level spatial pyramid pooling where the
pooling size and stride for each level are (5, 4), (7, 6), and (13,
13), will be converted to 3 x 3,2 x 2, and 1 x 1 bins. Subse-
quently, the next FC layer will take these values as input.

The following points summarize the advantages of adopt-
ing an SPP layer. First, the SPP layer generates a fixed-length
representation regardless of the input size. Second, the SPP
layer can utilize features at multiple levels (multiple scales).
Finally, based on these features, the SPP layer can increase
the scale invariance of a network and suppress the overfitting
problem [20], [31], [32]. Due to the advantages of SPP,
several studies in various domains have attempted to adopt
the SPP layer to develop their own CNNs. The studies from
[31], [33]-[35] showed that an SPP-based CNN architecture
could improve the performance of image classification tasks.
A few other works have also reported advantages of adopting
the SPP layer for object detection [36] and for biomedical
tasks [37]. On the other hand, many studies also attempted
to revise the underlying concept of the SPP mechanism and
apply it to temporal domain tasks. Although the main idea
was identical to that of the SPP method, the target of the
task was in the form of time-series data. Several studies
[38]-[41] presented how a temporal pyramid pooling (TPP)
method can be utilized in action recognition tasks. Further-
more, the authors of [42] applied a TPP approach to identify
music data.

Previous studies utilized the concept of the pyramid pool-
ing mechanisms (i.e., spatial and temporal) to improve the
performance of CNN architectures for various tasks. In this
study, we focus on how to adopt and revise the concept of
pyramid pooling for the classification of motor imagery EEG
signals.

IV. PYRAMID POOLING FOR MI-EEG CLASSIFICATION

A. TEMPORAL PYRAMID POOLING LAYER

In this section, we describe the architecture of the pro-
posed multilayer TPP approach. Typically, the current
CNN architecture consists of several convolutions, pool-
ing blocks, and fully-connected layers. Specifically, several
CNNs for motor imagery EEG classification usually per-
form two types of convolution operations in its first building
block [16], [17].
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FIGURE 1. Convolution layers of CNNs for MI EEG classification.
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FIGURE 2. lllustration of standard pooling.

Figure 1 provides more details about temporal and spatial
convolution operations for 2D EEG signals (i.e., time step x
electrodes) sampled from three electrodes during 2 seconds
at a sampling rate of 250Hz. The first convolution layer of a
network is generally a temporal convolution layer in which a
convolution operation is performed over time steps for each
electrode (left side of Figure 1). In the case of Figure 1, a tem-
poral convolution operation is performed with 40 convolution
filters with a size of 25x 1, and thereby resulting in a feature
map with a size of 3 x 476 x 40. Subsequently, a spatial
convolution operation is performed with 3 x 1 convolution
filters for all channels. The resultant feature maps are passed
into the fully connected layer through the subsequent pooling
and convolution layers.

Figure 2 illustrates the process of the standard pooling
operations (e.g., max-pool and average-pool) on 2D EEG
signals. It is similar to the standard pooling operation in a
2D image domain, wherein the pooling layers of the CNNs
for the EEG domain also utilize 2D feature maps from the
previous convolution layers as inputs. Afterwards, a standard
pooling operation similar to max pooling or average pooling
with a size of k x 1 is performed. It is well-known that
a standard pooling operation can act as a sub-sampling of
the feature maps. However, a pooling operation with an
inappropriate size can result in the loss of important informa-
tion [25]. According to [25], traditional pooling operations
can be useful to reduce the redundancy of representation
and the network parameters; however, they often fail to
consider the spatial hierarchies between objects. Similarly,
a standard pooling operation applied to the EEG feature
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FIGURE 3. lllustration of temporal pyramid pooling.

map results in the temporal sub-sampling of feature maps.
In particular, inappropriate sub-sampling of feature maps in
the temporal domain may yield a discontinuous and discrete
representation of data. Hence, this can lead to information
loss which can make the training of classification models
more difficult. In this work, we focus on the advantages
of a pyramid pooling approach to address the aforemen-
tioned limitations of recent CNN-based architectures for
EEG decoding. Among the benefits of adopting the pyramid
pooling method, we expect that multi-scale feature extraction
and fusion can be promising options to effectively represent
EEG signals. Therefore, we propose to replace a standard
pooling layer with a TPP layer to preserve informative data
in the EEG decoding domain. The workflow of the TPP layer
is illustrated in Figure 3. In contrast to the standard pooling
layer illustrated in Figure 2, a TPP layer simultaneously
performs multiple pooling operations with different pooling
sizes. Figure 3 depicts that the primary objective of a pyramid
pooling layer is to perform multiple temporal sub-sampling
with different scales and then fuse the data collected to gener-
ate an integrated feature map. This is similar to an SPP layer
used in 2D image classification and object detection tasks.
As mentioned above, the SPP method used in computer vision
tasks exploits multi-level spatial bins, and has been shown to
be robust to the variance in object deformations and spatial
layout [30]. It is well known that the EEG signals are inher-
ently dynamic, unstable, inconsistent, and have a low signal-
to-noise ratio. For example, the EEG signals measured from
an individual on the same day for the same task can exhibit
different patterns. Furthermore, There is also an inconsis-
tency in the way each individual performs motor imagery
tasks. For example, the timing and duration of each subject’s
motor imagination will be different even for the same motor
command (e.g., move left-hand). Similar to the SPP method,
therefore, the TPP approach studied in this paper exploits
multi-level temporal bins to strengthen the original network
against the variance in the stability of the EEG signals. Thus,
instead of temporal subsampling of EEG signals with a fixed
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size, a TPP layer attempts to perform a multi-level subsam-
pling operation such that various perspectives of the EEG
signals are extracted during both training and testing phases.
In this study, the number of pooling operations in each TPP
layer was set to 3. For example, given the feature map with
a size of 120 x 1 from the previous convolution layer, a TPP
layer extracts three separate feature maps with a size of 40 x 1,
20 x 1, and 15 x 1 using three different pooling operations
with different scales, i.e., 3 x 1, 6 x 1, 8 x 1, respectively.
Finally, the feature maps from the three different pooling
operations are concatenated into a single feature map with
a size of 75 x 1. We expect that the CNN architectures can
extract more informative feature maps using this new pooling
operation in the EEG signals, thus, improving classification
accuracy.

Originally, the main goal of the original SPP-layer [20]
used in the image domain was to output a fixed-length feature
representation from the input images with arbitrary scales.
Therefore, an SPP layer is placed between the last convo-
lution layer and the first fully-connected layer. Similarly,
for the EEG domain, a TPP layer can be placed between
the last convolution layer and the first fully-connected layer,
as illustrated in Figure 4. In this case, we only replace the
last standard pooling layer of the original networks with the
proposed TPP layer. Similar to a conventional network archi-
tecture, the final dense layer is connected to the last feature
map of the network, and the signals are classified as two-class
or four-class motor imagery signals using a Softmax function.

B. MULTI-LAYER TEMPORAL PYRAMID POOLING

As mentioned above, time series data, such as EEG signals,
can be discontinuous and discrete after passing through a set
of convolutions and pooling operations, thereby resulting in
unavoidable information loss. This can be more critical for
deeper networks such as DeepNet [16] and EEGNet [17].
In the computer vision field, it is well known that each
layer of a CNN has a different level of abstraction [43]. For
example, lower layers in a CNN represent simple aspects of
an image,such as the edges, whereas higher layers represent
increasingly sophisticated aspects of an image, such as the
shapes and patterns in the image. Based on this observation,
we designed an extended version of the TPP layers, termed
as multilayer temporal pyramid pooling architecture (MTPP),
which attempts to extract multiscale temporal features from
each abstraction layer and exploits them by fusion. The TPP
layers placed at different levels of the network will attempt
to decode different levels of semantics from the EEG data.
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FIGURE 5. Architecture of CNNs with multilayered temporal pyramid
pooling.

Hence, using multilayered TPP, we expect that a variety
of informative data can be extracted, preserved, and for-
warded to subsequent layers of the network. To this end,
in addition to the utilization of a single TPP layer before the
first fully-connected layer, we also apply the proposed TPP
mechanism to every pooling layer of the original network,
as shown in Figure 5. In the MTPP approach, the intermediate
feature maps extracted from each TPP layer are used as inputs
for the subsequent conv/pooling layers. In this context, our
feature fusion approach can be considered a feature-level
self-augmentation since it tries to enrich a feature repre-
sentation by generating multiple views from the feature
itself. A similar approach, called Mosaic augmentation, was
observed from the object detection task in the computer vision
field [44], which picks a set of different images of different
scales and ratios and then merges them into a single image.
Even though there exist 1) no semantic relationships between
the sub-images included in the merged one, and 2) unavoid-
able border lines between the sub-images, the experimental
results showed the effectiveness of the mosaic augmentation
technique. Conversely, the proposed MTPP architecture can
be deemed a feature-level self-augmentation version of the
mosaic technique customized for the EEG domain. Consid-
ering the success of a similar approach in the computer vision
field, we also expect that the proposed approach can be used
for both multi-scale feature representation and feature-level
augmentation to improve the overall performance.

In our study, every TPP layer at different abstraction levels
of the network shares the same configuration (e.g., pooling
size and stride). In the next section, we discuss how the
proposed TPP layers improve the performance of the original
CNNs for classification of MI EEG signals. Additionally,
we analyze how the changes in configuration of the TPP
layers affect the overall performance.

V. EXPERIMENT

A. DATASET AND PREPROCESSING

To evaluate the effects of the proposed approach, we con-
ducted an extensive experiment on BCI competition IV 2a and
2b datasets [21]. The BCI competition IV-2a and 2b datasets
were obtained from 9 subjects via recording the EEG signals
during 4/2-class motor imagery tasks, respectively. The EEG
signals were recorded at a sampling frequency of 250 Hz. The
signals were band-pass filtered between 0.5 Hz and 100 Hz,
and a notch filter was applied at 50 Hz for noise removal.
The dataset IV-2a included a set of EEG signals measured
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from 22 electrode positions, while the dataset IV-2b included
EEG signals measured from 3 electrode positions. Figure 6
shows the protocol of the four-class (i.e., left-hand, right-
hand, feet, and tongue) motor imagery classification task to
collect the IV-2a dataset. Each trial begins with a fixation
cross with an additional beep sound. After two seconds,
a visual cue (an arrow pointing either to the left, right, down
or up, corresponding to one of the four classes) appears on the
screen for 1.25 seconds, followed by an MI task for a period
of 3 seconds. Figure 7 illustrates a protocol of a two-class
(i.e., left-hand and right-hand) motor imagery classification
task to collect the IV-2b dataset. Each trial begins with a
fixation cross with an additional beep sound. Three seconds
later, a visual cue (an arrow pointing either to the left or right)
is presented for 1.25 seconds. Then, a subject is supposed
to imagine the corresponding hand movement over a period
of 3 seconds [45]. The dataset IV-2a consists of two sessions
for each subject. The first session consists of training data and
the second session consists of test data. Each session includes
288 trials (i.e., 72 trials per class). The dataset IV-2b consists
of five sessions for each subject. The first three sessions
consist of training data and the remaining sessions are with
test data. The first two sessions include 120 trials per session
and the remaining sessions have 160 trials per session. On an
average, the training data for each subject consists of 400 tri-
als (120+120+160), and the test data consists of 320 trials
(160+160) for each subject.

Typically, EEG signals can be divided into alpha
(8-12 Hz), beta (12-31 Hz), gamma (> 32 Hz), theta
(4-7 Hz), delta (<4 Hz), and mu (8—13 Hz) bands. However,
only a set of specific bands are selected and used to handle
a specific BCI task. For example, mu and beta bands desyn-
chronize over the sensorimotor cortex, which is contralateral
to an imagined movement [17]. Therefore, these bands can
be used for decoding motor imagery intents. A frequency
range of 4-38 Hz was chosen in this study similar to that
selected by [16] to cover the mu and beta bands. In addition
to the frequency range, most of the setups for preprocessing
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EEG signals, such as the length and timing of EEG segments,
were inherited from those reported in the state-of-the-art
CNN-based studies on decoding motor imagery EEG signals
[16], [17]. The preprocessing steps used for our experiment
are summarized as follows: 1) Raw EEG signals from datasets
IV-2a and IV-2b were bandpass filtered between 4-38 Hz. 2)
EEG segments of different lengths and timing were extracted
from each dataset for analysis. For the IV-2a dataset, 4.5 sec-
onds of an EEG segment from -0.5 to 4 seconds around
the onset of the visual cue was extracted from each trial,
as depicted in Figure 6. This is based on the finding of [16]
that EEG segments starting from 500ms before the cue pro-
duced better performances for CNNs on the I'V-2a dataset. For
the IV-2b dataset, 2.0 seconds of an EEG segment from 0.5 to
2.5 seconds after the onset of the visual cue was extracted
from each trial, as illustrated in Figure 7. As the optimal setup
of the EEG segments for the CNNs on the IV-2b dataset was
not reported in [16], [17], we applied the traditional setting
reported by [11]. Finally, for training and testing networks
with dataset [V-2a, a set of 2D EEG signals composed of 22
(the number of electrodes) x 1,125 (250Hz x 4.5s) values
were prepared. On the other hand, for training and testing net-
works with dataset [V-2b, a set of 2D EEG signals composed
of 3 (the number of channels) x 500 (250Hz x 2s) values
were prepared. According to the evaluation protocol of [45],
a classifier was trained and tested for each subject.

The state-of-the-art CNNs [16], [17] with and without
the proposed MTPP architecture were implemented using
the BrainDecode framework [16], which provides various
features for EEG processing. All the experiments were con-
ducted on a workstation PC equipped with 2 NVidia GeForce
RTX 2080 Ti GPUs, 64GB RAM, and an Intel Core i9-7920x.

B. PERFORMANCE EVALUATION

To validate the effectiveness of the proposed method,
we re-implemented the state-of-the-art CNN-based approa-
ches, such as ShallowNet [16], DeepNet [16], and EEGNet
[17], to replace the standard pooling layers used in the net-
works with the proposed TPP layers. The structures of Shal-
lowNet, DeepNet, and EEGNet are depicted in Tables 13, 12,
and 14, respectively, in the Appendix. As presented
in Tables 13, 12, and 14, each network has a different number
of pooling layers of different types. The DeepNet architecture
adopts 4 max-pooling layers while ShallowNet and EEGNet
adopt a single and two average-pooling layers, respectively.
Therefore, DeepNet and EEGNet can utilize both the single
standard TPP layer (Figure 4) and the multilayered TPP archi-
tecture (Figure 5), while ShallowNet can only utilize a single
standard TPP layer (Figure 4). The revised version of the
original networks (i.e., ShallowNet, DeepNet, and EEGNet)
are abbreviated as Shallow++-, Deep++, and EEGNet++
throughout the manuscript. The original (ShallowNet, Deep-
Net, and EEGNet) and the revised networks (Shallow-++,
Deep++, and EEGNet++) share the same configuration
except for the types of pooling layers (i.e., standard pooling
for the original networks and temporal pyramid pooling for
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the revised networks). In our experiment, we used a 3-level
pyramid pooling (i.e., 3 pooling operations with different
sizes) approach. The pooling sizes of each window for each
network that are used to decode the dataset IV-2a are sum-
marized in Table 1. Similarly, the parameters used to decode
dataset IV-2b are summarized in Table 2. With this setup,
we first compare the classification accuracy of each network
with and without the proposed TPP layers.

TABLE 1. Pooling sizes of TPP layers for each network on dataset IV-2a.

Shallow++  Deep++  EEGNet++
pool window #1 120x1 3x1 6x1
pool window #2 260x 1 8x1 42x1
pool window #3 290x 1 25x1 98x1

TABLE 2. Pooling sizes of TPP layers for each network on dataset IV-2b.

Shallow++  Deep++  EEGNet++
pool window #1 40x 1 3x1 8x1
pool window #2 200x 1 6x1 64x1
pool window #3 250% 1 19x1 74x1

Table 3 compares the average classification accuracy of
the CNN architectures used on the BCI competition IV-2a
dataset. Table 3 shows that the proposed MTPP layers
improved the average classification accuracy of the original
networks with some exceptions. First, in the case of the net-
works with a single TPP layer (i.e., TPP column), ShallowNet
achieved a significant performance improvement of 5.06%p
(73.57 to 78.63, p<0.05 with Wilcoxon signed-rank test) and
DeepNet achieved a moderated performance improvement
of 2.63%p (58.37 to 61.00, p<0.1 with Wilcoxon signed-rank
test), respectively. However, EEGNet failed to realize any
performance improvement from adopting the single TPP
layer. Rather, it showed a decrease in the average classifi-
cation accuracy (i.e., 71.95 to 71.80). Conversely, the per-
formance of both DeepNet and EEGNet slightly improved
when adopting the multilayered TPP architecture. DeepNet
showed a moderate performance improvement of 2.7%p
(58.37 to 61.07, p=0.12 with Wilcoxon signed-rank test)
while EEGNet achieved a marginal performance improve-
ment of 1.24%p (71.95 to 73.19, p=0.21 with Wilcoxon
signed-rank test). However, their performance improvements
were not statistically significant. In summary, among the
various configurations, ShallowNet with a single TPP layer
achieved the highest average classification accuracy (i.e.,
78.63) and performance improvement compared to its orig-
inal configuration (45.06), and outperformed all the other
methods with regard to the average classification accuracy.
From this experiment, it is evident that ShallowNet, with
only a single max-pooling layer, even significantly benefits
from the TPP method. Furthermore, it was observed that a
multilayered TPP approach results in a higher performance
gain for deeper networks (i.e., DeepNet and EEGNet).
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TABLE 3. Average classification accuracy of each network with and
without TPP layers on dataset IV-2a. The numbers in parentheses denote
the improvement in performance when compared to that of the original
architecture. Stars indicate statistically significant differences compared
to the original network (Wilcoxon test, p<0.1:*, P<0.05:**, P<0.01:***).

Original TPP MTPP

ShallowNet 73.57 78.63%* (+5.06) N/A
DeepNet 58.37 61.00*% (+2.63)  61.07 (+2.70)
EEGNet 71.95 71.80 (-0.15) 73.19 (+1.24)

TABLE 4. Average classification accuracy of each network with and
without TPP layers on dataset IV-2b. The numbers in parentheses denote
the improvement in performance when compared to that of the original
architecture. Stars indicate statistically significant differences compared
to the original network (Wilcoxon test, p<0.1:*, P<0.05:**, P<0.01:***).

Original TPP MTPP

ShallowNet 76.02 78.00%* (+1.98) N/A
DeepNet 75.65 75.13 (-0.52) 78.05%* (+2.40)
EEGNet 81.79 81.82 (+0.03) 82.83%* (+1.04)

Table 4 compares the average classification accuracy of
the CNN architectures applied on the BCI competition IV-2b
dataset. Table 4 indicates that the results from the IV-2b
dataset show a slightly different pattern when compared
to those from the IV-2a dataset. For the IV-2b dataset,
adopting a single TPP layer does not contribute to perfor-
mance improvement of deeper networks (i.e., DeepNet and
EEGNet). Only ShallowNet realized a moderate, statistically
significant performance improvement of 1.98%p (76.02 to
78, p<0.05 with Wilcoxon signed-rank test). In the case
of EEGNet, there were no significant changes (40.03%p)
in classification accuracy. Moreover, it was observed that
the performance of DeepNet with a single TPP layer even
decreased from 75.65 to 75.13 (—0.52%p). However, both
DeepNet and EEGNet could benefit from the multilayer
TPP architecture. In particular, DeepNet achieved a sta-
tistically significant improvement in performance, gaining
2.4%p compared to that of the original DeepNet architec-
ture (75.65 to 78.05, p<0.05 with Wilcoxon signed-rank
test). EEGNet also achieved a slight, but statistically signif-
icant performance improvement of 1.04%p (81.79 to 82.83,
p<0.05 with Wilcoxon signed-rank test). To sum up, among
the various configurations, EEGNet with the multilayer TPP
approach achieved the highest average classification accuracy
(i.e., 82.83) and outperformed all the other methods. DeepNet
achieved the highest performance improvement (i.e., 2.40)
with the multilayer TPP approach. Similar to the previous
experiment, it was also observed that a multilayered TPP
approach leads to higher performance gain for deeper net-
works (i.e., DeepNet and EEGNet).

The experimental results on BCI competition IV-2a
and 2b datasets reveal the following implications. First,
a single-layer TPP approach generally works better for
shallow networks (i.e., ShallowNet). As we observed from
Tables 3 and 4, the single TPP layer did not significantly
contribute to the performance improvement, except for Shal-
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lowNet. Furthermore, both DeepNet and EEGNet even expe-
rienced a decrease in performance when using a single TPP
layer. One of the main architectural differences between Shal-
lowNet and deeper networks (i.e., DeepNet and EEGNet)
is the number of convolutions and pooling layers applied.
In case of the deeper networks, more convolution and pool-
ing operations are applied to the feature maps. Therefore,
we expect only limited data to remain at the TPP layer, placed
at the end of the network, so that only a limited amount of
performance improvement was achieved.

Second, deeper networks (i.e., DeepNet and EEGNet)
experienced greater advantages from the proposed mul-
tilayer TPP approach than from the single-layer TPP
approach. On dataset 1V-2a, the multilayer TPP approach
resulted in the performance improvement for both Deep-
Net (42.7) and EEGNet (41.24), even though statistical
significance was not observed (p=0.18-20 with Wilcoxon
signed-rank test). Conversely, on dataset IV-2b, both Deep-
Net and EEGNet benefited from the application of the
multilayer TPP approach with a statistical significance
(p<0.05 with Wilcoxon signed-rank test). This is also con-
sistent with our expectation mentioned in Section IV-B that
the MTPP can act as both multi-scale feature representation
as well as feature-level self-augmentation. The multi-scale
self-augmented feature generated by the TPP layer was more
effective for the dataset IV-2b which has a set of EEG signals
with relatively short length (i.e., 2.0s). This also implies
that the proposed method can contribute to the reduction
of inference delay which is important for the practical use
of BCI applications. As mentioned in Section IV-B, all the
standard pooling layers are replaced with TPP layers in our
multilayer TPP approach. Instead of arbitrary subsampling
of temporal information through standard pooling operations,
we attempted to extract multiscale features and aggregate
them for further processing. Therefore, the results of the
multilayer TPP approach can be interpreted that various
important temporal information were effectively captured by
each TPP layer and then forwarded to the subsequent lay-
ers, thereby contributing to the performance improvement of
deeper networks.

Finally, EEGNet achieved the lowest performance gain
from using the TPP approaches. However, the classification
accuracy of EEGNet was still comparable to that of the
other architectures. The single TPP layer failed to improve
the performance of EEGNet for both datasets. Additionally,
the performance improvement by a multilayer TPP approach
was less than 1.3%p. As mentioned above, the main idea of
EEGNet is to adopt a depth-wise separable convolution layer,
which reduces the number of parameters, thereby configuring
a compact structure. The number of parameters of EEGNet
trained for both datasets IV-2a and IV-2b are much lower
than those of ShallowNet and DeepNet (reviewed in the next
section), implying that the amount of available information
that the TPP layers can extract is very limited. Thus, there
was only little room for performance improvement. Hence,
we expect relatively lower performance benefits of adopting

3119



IEEE Access

K.-W. Ha, J.-W. Jeong: TPP for Decoding MI EEG Signals

TABLE 5. Subject-level classification accuracy on BCl competition IV-2a dataset. Stars indicate statistically significant differences compared to the FBCSP

algorithm (Wilcoxon test, p<0.1:*, P<0.05:**, P<0.01:***).

Subject  FBCSP  ShallowNet  Shallow++  DeepNet Deep++ EEGNet EEGNet++
#1 76.00 81.25 89.93 67.36 78.13 78.13 83.68
#2 56.50 54.86 56.25 42.01 39.93 57.99 49.31
#3 81.25 84.38 89.93 76.74 80.90 93.40 92.36
#4 61.00 82.99 80.90 56.25 56.94 63.54 61.46
#5 55.00 53.13 70.49 28.82 27.08 52.78 63.19
#6 42.25 51.39 58.68 33.68 39.93 52.43 54.86
#1 82.75 92.36 93.40 68.75 76.39 88.89 88.54
#8 81.25 81.60 83.33 75.69 72.57 79.17 80.90
#9 70.75 80.21 84.72 76.04 77.78 81.25 84.38

Average 67.75 73.57** 78.63%%* 5837k 61.07**  T1.95%* 73.19%*

TABLE 6. Subject-level classification accuracy on BCl competition IV-2b dataset. Stars indicate statistically significant differences compared to the FBCSP

algorithm (Wilcoxon test, p<0.1:*, P<0.05:**, P<0.01:***).

Subject FBCSP  ShallowNet  Shallow++ DeepNet Deep++ EEGNet EEGNet++
#1 73.50 70.00 76.25 68.75 75.31 78.44 78.75
#2 59.40 53.93 56.07 56.07 59.29 66.07 66.43
#3 61.90 53.13 55.63 53.75 55.00 64.06 67.50
#4 71.50 96.88 96.25 95.63 95.31 95.94 95.00
#5 61.40 85.94 89.06 82.81 89.38 91.88 94.38
#6 70.10 76.25 80.00 77.81 80.94 83.13 84.38
#7 69.60 77.19 77.81 75.63 75.94 82.81 85.31
#8 62.00 90.94 87.81 88.44 90.94 90.00 92.19
#9 75.50 80.00 83.13 81.88 80.31 83.75 81.56

Average 67.21 76.03%* 78.00%* 75.65% 78.05%*%  81.79%** 8283k

TPP layers on EEGNet to be attributed to the compactness of
the EEGNet.

Next, we provide the classification accuracies for each
subject from the classification models. In this experiment,
we added a well-known classical classification method,
FBCSP-based algorithm [14], as another baseline method.
The reported scores in these experiments are from the best
performing model (i.e., Deep++ and EEGNet++ indi-
cate the revised version of DeepNet and EEGNet with a
multi-layer TPP approach).

Table 5 presents the subject-level results of performance
evaluation on BCI competition IV-2a dataset. First, most
of the CNN-based approaches, except DeepNet (58.37) and
Deep++ (61.07), outperformed the traditional FBCSP-based
method (67.75). ShallowNet and Shallow++ showed per-
formance improvements of 5.82%p (p<0.05 with Wilcoxon
signed-rank test) and 10.88%p (p<0.01 with Wilcoxon
signed-rank test) higher than those observed using FBCSP
method, respectively. Similarly, EEGNet and EEGNet++
realized performance improvements of 4.2%p (p<0.05 with
Wilcoxon signed-rank test) and 5.44%p (p<0.05 with
Wilcoxon signed-rank test) higher than those observed
using the FBCSP method, respectively. Contrarily, the pro-
posed TPP layers contributed to improving the performance
for most subjects. In particular, Shallow++ worked bet-
ter than the original ShallowNet, except for subject No.4.
More specifically, Shallow++ demonstrated a performance
improvement of 5.96% on average. Deep++ achieved an
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average performance improvement of 5.21%, except for sub-
jects No.2, No.5, and No.§, compared with that observed
using the the original DeepNet architecture. EEGNet++ out-
performed the original EEGNet architecture with an average
performance improvement of 4.7%, except for subjects No.2,
No.3, No.4, and No.7.

Table 6 summarizes the subject-level results of classifi-
cation accuracy on BCI competition IV-2b dataset. In this
dataset, the FBCSP-based method obtained an average clas-
sification accuracy of 67.21%, which was still lower than the
worst performing network (i.e., DeepNet), which produced
a classification accuracy of 75.65%. All the CNN-based
approaches produced statistically significant performance
improvements when compared to that resulting from the
application of the FBCSP method. In particular, EEGNet
and EEGNet++ observed the highest performance improve-
ments when compared to the FBCSP method (i.e., +14.58%p
and +15.62%p, p<0.01 with Wilcoxon signed-rank test).
On the other hand, the proposed TPP layers contributed
to the performance improvement for all the CNN-based
approaches. However, the TPP layers negatively affected the
classification performance for subject No.4. All the CNN
approaches when adopted with the MTPP layers experienced
an average decrease in performance of -0.62%p for subject
No.4. Furthermore, performance degradation was observed in
certain other cases. The performance of Shallow-++ for sub-
ject No.8 decreased by 3.13%p compared to the performance
of the original ShallowNet (90.94 to 87.81). Additionally,
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in the case of subject No.9, the performance deteriorated
for Deep++ (from 81.88 to 80.31) and EEGNet++ (from
83.75to 81.56). These negative results imply that further opti-
mizations are required to realize a more robust performance.

C. CHANGES IN PERFORMANCE BASED ON NETWORK
PARAMETERS

In this section, we analyze the effects of different network
configurations on the overall performance of the CNNs.
Specifically, the effects of the window level of the TPP
on the classification accuracy and the number of trainable
parameters of each network were analyzed. As explained in
Section III, an [-level pyramid pooling layer consists of [
pooling operations wherein each operation has a different
pooling size. If the window level of TPP is set to be 3, then
3 intermediate pooled features are extracted in a pooling layer
and aggregated into a single feature representation.

Figure 8 shows the change in average classification accu-
racy based on the window level of the pyramid pooling
applied on the IV-2a dataset. As shown in Figure 8, the per-
formances of Shallow++ and EEGNet++- slightly improved
as the window level of pyramid pooling increased. On the
other hand, the Deep++ realized the best result (61.2) with
2-level pyramid pooling. However, this was not significantly
different from that observed with the 3-level TPP (61.1). For
this dataset, the average performance of a 2-level pooling
was 70.4 while that with a 3-level pooling was 71.0. Sim-
ilarly, Figure 9 shows the changes in average classification
accuracy based on the window level of pyramid pooling
applied on the IV-2b dataset. In this case, the performance
of Deep++- slightly improved as the window level increased.
Furthermore, the Deep++ experienced the highest improve-
ment in performance corresponding to 0.8%p (77.3 to 78.1)
while the Shallow++ and EEGNet++ architectures exhib-
ited negligible improvements in performance (i.e., 77.9 to
78.0 for Shallow++ and 82.9 to 82.8 for EEGNet++). For
this dataset, the average performance of a 2-level pooling was
79.3 while that applying a 3-level pooling was 79.6. Thus,
as seen in Figures 8 and 9, we found that the overall average
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FIGURE 8. Change in accuracy based on the window level of pyramid
pooling on dataset IV-2a.
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FIGURE 9. Change in accuracy based on the window level of pyramid
pooling on dataset IV-2b.

performance of the revised networks tended to increase as the
window level of pyramid pooling increased.

We also investigated the effects of the window level in a
temporal pyramid pooling operation on subject-level clas-
sification accuracy. For this analysis, we chose the net-
work and TPP configurations which achieved performance
improvements with a strong statistical significance (p<.05)
as seen in Tables 3 and 4. Among the networks with a single
TPP method, only ShallowNet++ achieved significant per-
formance improvements on both datasets IV-2a and IV-2b.
DeepNet++ and EEGNet++ could achieve significant per-
formance improvements on dataset IV-2b only when the mul-
tilayer TPP approach was used.

Tables 7 and 8 show the effects of window level in a
single (or multilayer) TPP on the performance for each sub-
ject. The numbers in each column indicate the performance
improvement compared to the performance from the original
networks (i.e., without the TPP approach). The numbers that
are bold in Tables 7 and 8 indicate the winning methods for
each subject.

First, how the window level of a single TPP layer used
in ShallowNet++ affects the performance for each subject
on both datasets is summarized in Table 7. As described
in Table 7, it cannot be said that a specific window level was
always effective for all the subjects in both the datasets. For
example, the results for dataset IV-2a show that the 2-level
window configuration was effective for subjects No.2, No.3,
and No.7, while subjects No.1l, No.5, No.8, and No.9 did
benefit from the 3-level window configuration. A similar pat-
tern is also observed for dataset IV-2b. In particular, subject
No.4 in dataset IV-2a and subjects No.4 and No.8 in dataset
IV-2b did not benefit from the proposed method, consistent
with the results presented in Tables 5 and 6.

The effect of the window level in the multilayered
TPP used in DeepNet++ and EEGNet++4- architectures on
subject-level performance is summarized in Table 8. Similar
to the result in Table 7, we cannot conclude that a specific
window level was always effective for all subjects. In the
case of DeepNet++, the 2-level window configuration was
effective for subjects No.5 and No.8, while subjects No.1,
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TABLE 7. Effect of the window level in a single TPP approach
(ShallowNet++).

Dataset IV-2a Dataset IV-2b
Subject  2-level ~ 3-level ~ 2-level  3-level
#1 +7.99 +8.68 +6.25 +6.25

#2 +3.47 +1.39 +3.21 +2.14
#3 +8.68 +5.56 +2.50 +2.50
#4 -4.17 -2.08 -0.31 -0.63
#5 +9.03  +17.36  +1.25 +3.12
#6 +7.29 +7.29 +5.63 +3.75
#7 +1.39 +1.04 +0.62 +0.62
#3 -0.69 +1.74 -5.00 -3.13
#9 +1.04 +4.51 +2.50 +3.13

TABLE 8. Effect of the window level in a multilayer TPP approach on
dataset IV-2b.

DeepNet++ EEGNet++
Subject  2-level ~ 3-level ~ 2-level ~ 3-level
#1 +3.13 +6.56 +1.56 +0.31

#2 +1.79 +3.21 +3.22 +0.36
#3 +0.62 +1.25 +1.25 +3.44
#4 +0.00 -0.31 -0.31 -0.94
#5 +6.88 +6.56 -0.94 +2.50
#6 +0.94 +3.13 -0.94 +1.25
#7 +0.31 +0.31 +2.50 +2.50
#3 +3.75 +2.50 +2.81 +2.19
#9 -2.81 -1.56 +0.63 -2.19

No.2, No.3, and No.6 did benefit from the 3-level window
configuration. In the case of EEGNet++, subjects No.l,
No.2, No.8, and No.9 did benefit from the 2-level window
configuration, while the performances for subjects No.3,
No.5, and No.6 were improved when using the 3-level win-
dow configuration. Similar to the case of ShallowNet++,
we could also find that certain subjects failed to benefit from
the proposed multilayered TPP approach. The results from
this investigation imply that a higher window level does not
necessarily yield better performance in terms of subject-level
motor imagery classification. Also, it was observed that net-
work architecture and a subject’s characteristics must be
carefully considered to achieve a robust performance.

Next, we compared the number of trainable parameters
based on the window level of the TPP. Table 9 and 10 sum-
marize the results of datasets IV-2a and IV-2b, respectively.
These results show that the number of parameters tends to
increase as the window level of pyramid pooling increases.
However, this does not apply to all cases, as was also reported
in [20]. For example, the number of parameters of the Shal-
lowNet architecture for the IV-2a dataset decreased from
47,364 (original) to 38,404 (2-level) and 38,884 (3-level).
This is potentially due to the difference in the pooling sizes
for each window, compared to that of the original network.
This also implies that the performance of ShallowNet can be
improved even with a lower number of trainable parameters.
Based on these results, we configured our revised networks
with a 3-level window. However, we could not observe any
specific pattern in the effects of pooling size for each window
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TABLE 9. Number of parameters based on the window level of pyramid
pooling on dataset IV-2a.

Shallow++  Deep++  EEGNet++
original 47,364 284,479 3,700
2 38,404 286,079 3,956
3 38,884 324,479 4,276

TABLE 10. Number of parameters based on the window level of pyramid
pooling on dataset IV-2b.

Shallow++  Deep++  EEGNet++
original 8,082 265,802 1,634
2 6,482 270,202 1,442
3 7,042 279,002 1,506

TABLE 11. Training and testing times of CNN architectures for each
dataset (unit: s).

Dataset IV-2a Dataset IV-2b
Training  Testing  Training  Testing
Shallow 54.86 0.08 8.52 0.01
Shallow++ 53.66 0.08 8.73 0.01
Deep 161.2 0.13 89.15 0.18
Deep++ 161.2 0.13 474.15 0.35
EEGNet 14.57 0.02 11.41 0.01
EEGNet++ 16.54 0.02 12.98 0.01

on the overall performance. Therefore, we chose the pooling
sizes used in each network that showed the best performance
during the experiments.

Finally, we compared the training and testing times of each
network for each dataset to validate the feasibility of the
proposed approach for online BCI applications. According
to the analysis presented in [16], the FBCSP method was
substantially faster to train than the CNN-based approaches;
however, the online application of the trained neural networks
did not suffer from the speed disadvantage compared to the
FBCSP method. The authors of [16] revealed that the high
prediction speed of ShallowNet and DeepNet make them well
suited for decoding in real-time BCI applications. As the
processing time of the networks with the proposed method
are highly dependent on the original networks, therefore,
we compared the training and testing times of the revised
networks that adopt the proposed TPP layers with those of
the original networks. Table 11 summarizes the comparison
of training and testing times required for processing all the
trials of a single subject between the original and the revised
networks. As described in this table, we could not find a
significant difference between the original networks and the
revised networks for all the cases except for DeepNet on
dataset IV-2b. Therefore, it is believed that the prediction
speeds of the revised networks using the proposed method
were fast enough to be used for real-time BCI applications.
However, it was also inferred that more sophisticated opti-
mization techniques need to be considered to reduce the
training time of the networks.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we discussed the concept of pyramid pooling
designed to improve the performance of CNNs. We then
implemented two types of pyramid pooling for decoding
motor-imagery EEG signals. First, a basic TPP approach
was applied by replacing the last standard pooling layer of
the network with the TPP layer. This was similar to a SPP
approach commonly used in the field of computer vision.
Subsequently, we extended the concept of single-layer TPP to
a multilayered approach by replacing every standard pooling
layer of the network with a TPP layer. Furthermore, extensive
experiments were conducted on the BCI competition IV-2a
and 2b datasets to assess the effect of the proposed method.
The experimental results demonstrated that the proposed
method could successfully improve the performance of the
original CNN architectures for decoding MI EEG signals.
Specifically, we observed that a single TPP layer led to a
significant improvement in the performance of ShallowNet.
On the other hand, the results indicated that multilayer TPP is
more useful for deeper networks such as DeepNet and EEG-
Net. However, the negative effects of the proposed method
were also observed in some cases.

Even though we proposed a novel mechanism and val-
idated its effectiveness through various experiments, there
remains a lot of room to improve the quality of feature
representation for decoding motor imagery EEG signals.
Recently, various techniques for feature extraction and rep-
resentation have been proposed and evaluated in the com-
puter vision and deep learning fields. Examples of these
include an atrous (dilated) convolution operation [46]—[48]
and an encoder-decoder architecture with a deconvolution
or up-sampling operation [49], [50]. Despite the success of
the aforementioned techniques for visual feature representa-
tion, they have not been extensively studied in the MI-EEG
BCI domain. Atrous convolution is known to enlarge the
field of view of filters to incorporate a larger visual con-
text even with the same number of parameters [46]. In the
EEG domain, we expect that the proper adaptation of atrous
convolutions can facilitate the extraction and representation
of spatio-temporal features. However, the effects of atrous
convolution in recent CNN architectures for motor imagery
classification are still not clear. Hence, more studies on the
optimized network architecture, such as dilation factors, are
required. On the other hand, an upsampling mechanism was
introduced and applied to various semantic segmentation
tasks [49]. The authors of [49] applied an upsampling mech-
anism which can reconstruct dense feature maps from coarse
representation of images, thereby improving the quality of
semantic segmentation outputs. Despite the success of an
encoder-decoder architecture in the computer vision field,
obtaining a fine grained representation of EEG feature maps
from the coarse ones is still challenging. However, there
will be a lot of potential to address various issues of MI-
EEG-based systems if an upsampling mechanism can be
successfully realized and integrated with atrous convolution
layers.
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TABLE 12. Architecture of DeepNet. In case of DeepNet with a single TPP
layer, only the pooling layer in the 4th block is replaced with the TPP
layer. In case of DeepNet with MTPP layers, every max-pooling layer in
the network is replaced with a TPP layer.

Blocks Layers Configuration
Convolution 25 kernels, 1x 10
1 Convolution 25 kernels, Ex 1
Max-pooling 1x3
9 Convolution 50 kernels, 1x10
Max-pooling 1x3
3 Convolution 100 kernels, 1 x 10
Max-pooling 1x3
4 Convolution 200 kernels, 1x10
Max-pooling 1x3
Fully connected Flatten
5
Softmax

TABLE 13. Architecture of ShallowNet. In case of ShallowNet, only a
single pooling layer exists. Therefore, a pooling layer in the 2nd block is
replaced with a TPP layer to implement ShallowNet with a TPP layer.

Blocks Layers Configuration
1 Convolution 40 kernels, 1x25
Convolution 40 kernels, Ex 1
2 Average pooling 1x75
Fully connected Flatten
3
Softmax

In addition to the atrous convolution and upsampling
mechanisms, self-supervised learning [51], [52] is another
promising approach to overcome current limitations of
MI-EEG-based applications. In a self-supervised learning
pipeline, a network model first tries to learn the feature
representations from the data themselves without relying on
predefined annotations. This is done through a pretext (proxy)
task which is a form of unsupervised learning where the
data provide supervision. Once the model training through
the pretext task is completed, intermediate layers (feature
layers) of the trained network are used for fine tuning on
a specific task (downstream task) of interest. For example,
[53] proposed a self-supervised learning framework to learn
image features from the object rotation prediction task (pre-
text task), and exploit the learned features for image classifi-
cation, object detection, and segmentation tasks (downstream
tasks). The authors of [53] showed that a model trained
with a self-supervised learning mechanism can achieve a
performance comparable to those of the models learned in a
supervised manner. This approach is particularly useful for
a domain where it is difficult to collect a large amount of
training data and their corresponding labels. We believe that it
will be possible to learn the informative feature representation
of the EEG signals based on the self-supervised learning
framework, if an appropriate design of a pretext task for the
EEG domain is proposed.

As stated above, various advanced techniques for learn-
ing feature representation of data have been proposed in
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TABLE 14. Architecture of EEGNet. In case of EEGNet with a single TPP

layer,
layer.

only the pooling layer in the 2nd block is replaced with the TPP
In case of EEGNet with MTPP layers, every average-pooling layer

in the network is replaced with a TPP layer.

Blocks Layers Configuration
Convolution 8 kernels, 1 x64
1 Depth-wise convolution 16 kernels, Ex 1
Average pooling 1x4
2 Separable convolution 16 kernels, 1x16
Average pooling 1x8
Fully connected Flatten
3
Softmax

recent years. However, the application of these techniques to
the MI-EEG field still requires significant research. For future
studies, we plan to optimize the TPP module and integrate the
proposed MTPP approach with other advanced deep learning
techniques, such as atrous convolution, upsampling layers,

and

self-supervised learning, to ensure more robust and reli-

able performance. Finally, we will study how the improved
version of the proposed approach can be applied to other
domains.

APPENDIX
CNN ARCHITECTURES

See

Tables. 12, 13, 14.
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