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ABSTRACT The amplitude-frequency response of a nonlinear vibration system with the coexistence
of stiffness and viscous damping piecewise linearities are analysed by means of analytical, numerical
and experimental investigations. First, a mechanical model of the piecewise linear system under simple
harmonic base excitation is established, and the amplitude-frequency response equation is obtained by
the averaging method. Second, an experimental device is built to realize the piecewise linear system.
The stiffness and damping coefficients are identified by the least square method. Third, case studies are
conducted to illustrate the effect of the clearance and base excitation amplitude on the amplitude-frequency
response. The experimental results show that the introduction of the piecewise linear stiffness and damping
significantly decreases the response amplitude at the primary resonance. The piecewise linear stiffness,
damping coefficients, primary resonance frequency and frequency range of the bi-stable state depend on the
clearance and excitation amplitude. The experimental results are consistent with the theoretical predictions
and numerical simulation results of the method of backward differentiation formulas. This research provides
instructive ideas to the design of the nonlinear isolator in practical engineering.

INDEX TERMS Piecewise linearity, the averaging method, stability, amplitude-frequency response, param-
eter identification.

NOMENCLATURE
m1 the proof mass (kg)
t time (s)
x1 absolute displacement of the proof mass (m)
u displacement of the base excitation (m)
x2 relative displacement of the proof mass (m)
F1 piecewise linear restoring force (N)
F2 piecewise linear damping force (N)
1 clearance (m)
k1, k2 linear stiffness coefficient (N/m)
c1, c2 linear damping coefficient (N · s/m)
u0 displacement amplitude of the base

excitation (m)
u1 acceleration amplitude of the base

excitation (m/s2)
ω angular frequency of the base

excitation (rad/s)

The associate editor coordinating the review of this manuscript and

approving it for publication was Feiqi Deng .

� frequency of the base excitation (Hz)
τ dimensionless time
x dimensionless relative displacement of

the proof mass
l dimensionless clearance
ω1 primary frequency characteristic
εg dimensionless base excitation

characteristic
εξ1, εξ2 dimensionless damping characteristic
εη dimensionless stiffness characteristic
εf1 dimensionless piecewise restoring force
εf2 dimensionless piecewise damping force
ε small dimensionless parameter
a dimensionless relative displacement

amplitude
β phase of the dimensionless relative

displacement
ϕ angle of the dimensionless relative

displacement
( )′ d( )/dτ

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 4279

https://orcid.org/0000-0001-6369-6971
https://orcid.org/0000-0002-0257-5647


Y. Sun: Experimental Modeling and Amplitude-Frequency Response Analysis of a Piecewise Linear Vibration System

I. INTRODUCTION
Piecewise linear systems are systems where the stiff-
ness or damping coefficients remain constant over a range of
amplitude and dramatically change to another set of constant
values once a threshold is reached [1]. In general, piecewise
linear systems can be classified into two categories. The vec-
tor field of the first category is discontinuous due to the rigid
constraint or dry friction. The vector field of the second cat-
egory is nonsmooth but continuous, and the nonsmoothness
may be caused by a clearance or elastic constraint. Piecewise
linear systems have been used to represent switching cir-
cuit and resistors [2], [3], mechanical system with Coulomb
friction [4], [5], gene regulatory networks [6], [7], and so
on. Owing to the practical significance and wide application,
a great deal of effort has been devoted to the study of piece-
wise linear systems over the years.

The study on piecewise linear systems dates back to the
early 1930s. Den Hartog and Mikina [8] were the first schol-
ars to find an approximate solution for periodic motion of a
system with bilinear stiffness. Shaw and Holmes [9] analysed
the harmonic, subharmonic and chaotic motions of a period-
ically forced SDOF system with a piecewise linear restoring
force. Based on Shaw-Pierre nonlinear modes and Rauscher’s
approach, Uspensky et al. [10] presented a method to calcu-
late the forced vibration of the piecewise linear systems near
superharmonic resonances. Yu [11] and Ma et al. [12] pre-
sented Bozzak-Newmark andBozzak-Newmark-LCP numer-
ical schemes, respectively, to determine the responses of
MDOF piecewise linear systems. Xu et al. [13] computed
the periodic solution of a harmonically excited oscillator
with both stiffness and viscous damping piecewise linearities
by the incremental harmonic balance (HIB) method. Zou
and Nagarajaiah [14] were the first to study a piecewise
linear system with negative and positive stiffness by a modi-
fied Lindstedt-Poincaré method. For the forced vibration of
an oscillator with piecewise linear asymmetrical damping,
Silveira et al. [15] obtained the exact analytical solutions
by joining the solutions for the compression and expansion
phases and the approximate solutions by the HIB method.
Wang et al. [16] studied the effect of the system parameters
on the dynamical behaviours of a piecewise linear SDOF
oscillator with fractional-order derivative by the averaging
method.

The application of the piecewise linearity in vibration
control is well developed. Deshpande et al. [1] proposed
the optimum parameters of the primary suspension and
jump-avoidance conditions of the secondary suspension for
a piecewise linear vibration isolation system. Zhong and
Chen [17] established the relationship between the system
parameters and the topological bifurcation solution of a
piecewise linear vehicle suspension. Joglekar and Mitra [18]
presented piecewise linear SDOF/MDOF oscillators to repre-
sent cracked beams and employed a wavelet-based method to
analyse the vibration behaviours. Based on Rauscher method
and calculations of the autonomous system nonlinear modes,

Uspensky and Avramov [19], [20] studied nonlinear modes
of the free and forced torsional vibrations for a piecewise
linear system. Shui and Wang [21] and Mustaffer et al. [22]
presented a dynamic vibration absorber with an adjustable
piecewise linear stiffness and experimentally analysed the
characteristic and performance of the absorber, respectively.
Yao et al. [23] attached a nonlinear energy sink (NES) with
piecewise linear stiffness to suppress the vibration of a forced
primary vibration system, and the effectiveness of the NES
was proven by experiments. In design of energy harvesters,
Tien and D’souza [24] proposed a new vibration harvester
composed of a piecewise linear oscillator and an adjustable
gap, which has an optimal vibration performance over a
broad frequency range and the best performance at resonance.
Zhang et al. [25] experimentally designed a vibration har-
vester with piecewise linear stiffness characteristic, which
may work in a broadband and low-frequency range. Using
the methods of Floquet theory, Filippov method and finite
different method, El Aroudi et al. [26] studied the stabil-
ity and bifurcation behaviour of a piecewise linear spring-
mass-damper system for vibration-based energy harvesting
applications. Shi et al. [27] investigated the vibration trans-
mission characteristic of the SDOF oscillator and coupled
2DOF oscillators with bilinear stiffness and bilinear damping
by the harmonic balance method and numerical integrations.
Dai et al. [28] studied the dynamic behaviour, vibration
transmission and power flow of impact oscillators with
linear and quasi-zero-stiffness (QZS) nonlinear constraints.
Dai et al. [29] further revealed the effects of the design param-
eters and locations of the nonlinear constrains on the response
and vibration transmission of impact oscillators with nonlin-
ear motion constrains created by the diamond-shaped linkage
mechanism. Narimani et al. [30] focused on the availability of
the averaging method to find the closed-form solution for the
frequency response of a piecewise linear isolator with a hard
nonlinearity. The analytical result of the averaging method
agreed well with both experimental results and numerical
simulation.

From the above literature review, many studies have exam-
ined piecewise linear systems in terms of theoretical pre-
diction and numerical simulation, including the analysis of
stability, bifurcation, chaos motion, and amplitude-frequency
characteristic. However, limited work has been done in
experimental studies. In this paper, a mechanical structure
with stiffness and viscous damping piecewise linearities is
designed and assembled, which has the advantages of simple
structure, easy implementation and low cost. Different from
the research focus of Ref. [30], the objective of this paper is
twofold. The first objective is to identify the piecewise linear
coefficients of the built experiment model and verify the
correctness of the identification results. The other objective
is to discuss the effect of the clearance and base excitation
amplitude on the amplitude-frequency response of the piece-
wise linear system by experimental verification combined
with theoretical analysis and numerical calculation.
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The paper is organized as follows. In Section II,
the mechanical model of a SDOF piecewise linear system is
presented. The amplitude-frequency response of the system is
obtained by the averaging method. In Section III, the stability
analysis of the steady-state response is completed through the
eigenvalue analysis method. Section IV is devoted to explore
the amplitude-frequency characteristic experimentally. Con-
clusions are given in Section V.

II. MECHANICAL MODEL AND PERTURBATION ANALYSIS
The mechanical model of the piecewise linear system under
investigation is presented in Fig. 1(a). x1 and u are the abso-
lute displacements of proof mass m1 and the base, respec-
tively. x2 = x1-u is the relative displacement of proof
mass m1 with respect to the base. F1(x2) and F2(dx2/dt)
are the piecewise linear restoring force and damping force,
respectively. The stiffness and damping coefficients are illus-
trated in Fig. 1(b) and (c).1 is the clearance. The stiffness and
damping coefficients are k1 and c1 for x2 ≤ 1. The stiffness
and damping coefficients increase to k2 and c2 for x2 > 1.

FIGURE 1. Mechanical model of the piecewise linear system and
representation of the stiffness and damping.

According to Fig. 1, the governing differential equation of
the system is

m1d2x1
/
dt2 + F1 (x2)+ F2

(
dx2
/
dt
)
= 0 (1)

where F1 (x2) =


k2x2 + (k2 − k1)1 x2 < −1
k1x2 |x2| ≤ 1
k2x2 − (k2 − k1)1 x2 > 1,

F2
(
dx2
/
dt
)
=


c2dx2

/
dt x2 < −1

c1dx2
/
dt |x2| ≤ 1

c2dx2
/
dt x2 > 1

Assuming u = u0 sin (ωt) and substituting x1 = x2 + u
into (1), we obtain

m1d2x2
/
dt2 + F1 (x2)+ F2

(
dx2
/
dt
)
= m1u1 sin (ωt)

(2)

where u1 = u0ω2.

To analyse the primary resonance response of the system,
small damping, weak nonlinearity, and soft excitation are
assumed. Letting x0 = 0.01 m, the dimensionless transform
parameters are

ω1 =

√
k1
m1
, τ = ω1t, x =

x2
x0
, l =

1

x0
,

r =
ω

ω1
, εξ1 =

c1
m1ω1

, εξ2 =
c2

m1ω1
,

εη =
k2 − k1
m1ω

2
1

, εg =
uω2

ω2
1x0

, εδ =
(k2 − k1)1

m1ω
2
1x0

,

where ε is a small dimensionless parameter.
Setting x ′ = dx

/
dτ , the dimensionless form of (2) is

x ′′ + x + εξ1x ′ + εf1 (x)+ εf2
(
x ′
)
= εg sin (rτ) (3)

where

f1 (x) =


ηx + δ x < −l
0 |x| ≤ l
ηx − δ x > l

(4)

f2
(
x ′
)
=


(ξ2 − ξ1) x ′ x < −l
0 |x| ≤ l

(ξ2 − ξ1) x ′ x > l

(5)

By the averaging method [30], the approximate solution
of (3) can be written as

x = a sin (rτ + β) = a sinϕ (6)

where a andϕare the functions of τ .
The velocity is required to have the same form as the case

when ε = 0, that is,

x ′ = ar cosϕ (7)

Equations (6) and (7) imply that

a′ sinϕ + aβ ′ cosϕ = 0 (8)

Differentiating (7) with respect to τ , we have

x ′′ = a′r cosϕ − ar(r + β ′) sinϕ (9)

Substituting for x ′ and x ′′ in (3) yields

a′r cosϕ − ar(r + β ′) sinϕ + a sinϕ + εξ1ar cosϕ

+ εf1 (a sinϕ)+ εf2 (ar cosϕ) = εg sin (rτ) (10)

Solving (8) and (10) fora′andβ ′, we obtain

a′r =
1
2

(
ar2 − a+ εg cosβ

)
sin (2ϕ)

− [εf1 (a sinϕ)+ εf2 (ar cosϕ)] cosϕ

− (εg sinβ + εξ1ar) cos2 ϕ (11)

aβ ′r =
(
−ar2 + a− εg cosβ

)
sin2 ϕ

+ [εf1 (a sinϕ)+ εf2 (ar cosϕ)] sinϕ

+
1
2
(εξ1ar + εg sinβ) sin (2ϕ) (12)
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Equations (11) and (12) indicate that a and β slowly vary
with τ for small ε and primary resonance. In other words,
a and β hardly change during the period of oscillation 2π ,
which enables us to average out the variations in ϕ in (11)
and (12). Averaging these equations over the period of 2π
and considering a and β to be constant while performing
the averaging, the following equations describing the slow
variations in a and β are obtained:

a′r =
1
2π

ar (εξ1 − εξ2) [−2ϕ0 + π − sin (2ϕ0)]

−
1
2
(εξ1ar + εg sinβ) (13)

aβ ′r =
1
2

(
−ar2 + a− εg cosβ

)
−

2
π
εδ cosϕ0

+
εηa
2π

[π − 2ϕ0 + sin (2ϕ0)] (14)

in which ϕ0 = arc sin
(
l
/
a
)
.

For the stationary solutions of (13) and (14), that is, a′ =
β ′ = 0, bysin2 β + cos2 β = 1, we have{(
−ar2+a

)
−

4
π
εδ cosϕ0+

εηa
π

[π−2ϕ0+sin (2ϕ0)]
}2

+

{
1
π
ar (εξ1−εξ2) [−2ϕ0+π−sin (2ϕ0)]−εξ1ar

}2
= (εg)2 (15)

β = arcsin
{
ar (ξ1−ξ2) [−2ϕ0+π−(sin 2ϕ0)]−πξ1ar

πg

}
(16)

III. STABILITY ANALYSIS
The perturbation of the stationary solutions is assumed to
be a = a0 + 1a and β = β0 + 1β, where a0 and β0
are the stationary solutions of (15) and (16), and 1a and
1β are small perturbations. Substituting a = a0 + 1a and
β = β0 +1β into (13) and (14) and applying Taylor series,
the linear equations of 1a and 1β can be obtained:

1a′ = E ′1 (a0)1a−
1
2
εξ11a−

εg cosβ0
2r

1β (17)

1β ′ =
εg cosβ0
2a20r

1a+
εg sinβ0
2a0r

1β + E ′2 (a0)1a (18)

where

E ′i (a0) =
dEi (a)
da

∣∣∣∣
a=a0

E1 (a) =
a
2π

(εξ1 − εξ2) [−2ϕ0 + π − sin (2ϕ0)]

E2 (a) = −
2
arπ

εδ cosϕ0 +
εη

2πr
[π − 2ϕ0 + sin (2ϕ0)]

Thus, the characteristic equation is

λ2 + Pλ+ Q = 0 (19)

where λ is the characteristic root,

P = −E ′1 (a0)+
1
2
εξ1 −

εg sinβ0
2a0r

Q =
εg sinβ0
2a0r

[
E ′1 (a0)−

1
2
εξ1

]
+
εg cosβ0

2r

[
E ′2 (a0)+

εg cosβ0
2a20r

]

Based on Routh-Hurwitz criterion, the stationary solutions
are stable for P > 0 and Q > 0; otherwise, the solutions are
unstable. We emphasize that a saddle-node-type bifurcation
occurs when a real eigenvalue of (19) changes sign, which
results in the jumping phenomena. When ω1 = 20π rad/s,
εξ1 = 0.01, εξ2 = 0.015, εg = 0.01, εη = 0.5, and
εδ = 0.1, the frequency-amplitude response of the piecewise
linear system compared to a linear response for primary reso-
nance is shown in Fig. 2. From Fig. 2, the primary resonance
peak is significantly reduced, and the multi-steady state arises
due to the piecewise linear stiffness and damping. Addition-
ally, the theoretical solution is consistent with the numerical
solution obtained by the method of backward differentiation
formulas (BDF). Thus, the averaging method can handle the
presented model.

FIGURE 2. Frequency-amplitude response for the primary resonance (The
black solid line represents the stable state for l = ∞; the red solid and
dashed lines represent the stable and unstable states derived from (15)
for l = 0.2, respectively; the green dots represent the stable state by
numerically solving (3).).

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
To validate the above analysis, an experimental structure
is designed and assembled as shown in Fig. 3. The proof
mass 1 is attached with base 2 via five steel sheets 3 and 4.
Two limiting stoppers 5 are fixed on a perforated aluminium
plate 6, which are symmetrical about the middle steel sheet 4.
Acceleration sensors 7 and 8 are used to measure the absolute
acceleration signals of the proof mass and base, respectively.
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FIGURE 3. Photo of the experimental structure (1. proof mass, 2. base, 3.
and 4. steel sheets, 5. limiting stopper, 6. perforated aluminium plate, 7.
and 8. acceleration sensors).

FIGURE 4. Frequency-amplitude response of the linear system (red dots:
experimental data; black line: fitting result.).

FIGURE 5. Experimental results of the absolute acceleration amplitude of
the proof mass versus excitation frequency for u1 = 0.49 m/s2 and
1 = 4.637 mm (The marks ‘‘+’’ correspond to the large initial
displacement x1(0) and velocity dx1(0)/dt of the proof mass; the marks
‘‘�’’correspond to the small initial displacement x1(0) and velocity
dx1(0)/dt of the proof mass.).

From Fig. 3, the limiting stoppers work, and the collision
occurs when the relative displacement of the proof mass to
the base exceeds a certain value.

FIGURE 6. Measured acceleration time histories for � = 10.25 Hz: (a) the
base, (b) the proof mass (red and green lines correspond to large and
small initial displacement x1(0) and velocity dx1(0)/dt of the proof mass,
respectively.).

The dynamical model in (1) is used to describe the vibra-
tion of the experimental structure. Some notes on the physical
parameter of (1) are as follows.

(a) During the experiments, the base is harmonically
excited by a shaker. The amplitude u1 and frequency ω of
the base acceleration can be adjusted by the M+ p vibration
controller.

(b) The value of 1 is determined by the installation loca-
tion of the two limiting stoppers.

(c) k2-k1 and c2-c1 are used to denote the deformation and
energy loss during the collision, respectively. Taking (15) as
the fitting model, the value of k2 and c2 can be determined to
fit the experimental data by the least square method [31].

(d) As a preliminary, the values of m1, k1 and c1 are
identified in the case of no collision. Appling sine acceler-
ation excitation with an amplitude of 0.294 m/s2 to the base,
the measured frequency-amplitude response of the linear
system is recorded as the red dots shown in Fig. 4, where
� = ω/(2π). By the least square method, the parameters
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FIGURE 7. FFT plot of time histories from Fig. 6: (a) the base, (b) the
proof mass (red and green lines correspond to large and small initial
displacement x1(0) and velocity dx1(0)/dt of the proof mass,
respectively).

are identified as m1 = 0.61 kg, k1 = 2073.67 N/m, and
c1 = 0.39 N · s/m.

B. EXPERIMENTAL RESULTS
In the experiments, the fixed-frequency sine excitation is
applied to the base. The sampling frequency is 512 Hz, and
the total sampling time is 32 s. The experimental amplitude-
frequency responses of the piecewise linear system are
recorded and analysed at different values of the clearance 1,
base acceleration amplitude u1 and frequency �, which are
compared with the theoretical and numerical values.

Case 1 u1 = 0.49 m/s2 and 1 = 4.637 mm
Fig. 5 shows the experimental result of the absolute accel-

eration amplitude of the proof mass versus excitation fre-
quency for u1 = 0.49 m/s2 and1 = 4.637 mm. From Fig. 5,
the bi-stable state exists in the frequency range [9.5625 Hz,
10.75 Hz]. In other words, the acceleration amplitude of the
proof mass may dramatically decrease from the high branch
to the low branch by reducing the initial displacement x1(0)
and velocity dx1(0)/dt of the proof mass.

FIGURE 8. Experimental results of the relative displacement amplitude of
the proof mass versus excitation frequency for u1 = 0.49 m/s2 and
1 = 4.637 mm (The marks ‘‘+’’ correspond to the large initial
displacement x2(0) and velocity dx2(0)/dt of the proof mass; the marks
‘‘�’’correspond to the small initial displacement x2(0) and velocity
dx2(0)/dt of the proof mass.).

FIGURE 9. Comparison of the experimental, theoretical and numerical
amplitude-frequency responses for u1 = 0.49 m/s2 and 1 = 4.637 mm
(‘‘©’’: numerical results; ‘‘+’’: experimental results; green solid line:
stable theoretical result; green dashed line: unstable theoretical result;
black solid line: linear system).

For � = 10.25 Hz, the measured steady-state acceleration
time histories of the system at different initial conditions are
plotted in Fig. 6. Fig. 7 demonstrates the FFT plot of time
histories shown in Fig. 6. In Figs. 6-7, the red and green
lines correspond to the large and small initial displacement
x1(0) and velocity dx1(0)/dt of the proof mass, respectively.
From Fig. 6, with the constant acceleration amplitude of
0.49 m/s2 of the base, the acceleration amplitude of the proof
mass increases from 2.81 m/s2 to 31.75 m/s2 when the initial
displacement and velocity of the proof mass increase.

By the signal processing, the experimental results of the
relative displacement amplitude of the proof mass versus
excitation frequency are shown in Fig. 8. Taking (15) as the
fitting model to fit the experimental data shown in Fig. 8,
the values of k2 and c2 are identified as k2 = 3747.44 N/m
and c2 = 0.560 N · s/m by the least square method.

Fig. 9 shows the experimental amplitude-frequency
response compared to the theoretical and numerical
responses. The green solid and dotted lines represent the sta-
ble and unstable steady-state response given by the averaging
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FIGURE 10. Experiment-based relative displacement time history for
� = 10.25 Hz (red and green lines correspond to large and small initial
displacement x2(0) and velocity dx2(0)/dt of the proof mass,
respectively.)

FIGURE 11. Numerical relative displacement time history for
� = 10.25 Hz (red line: x2(0) = 0.03 m and dx2(0)/dt = 0.02 m/s; green
line: x2(0) = 0.001 m and dx2(0)/dt = 0.001 m/s).

method. The mark ‘‘+’’ represents the experimental results,
and ‘‘©’’ represents the numerical results obtained by numer-
ically solving (2). The black solid line represents the the-
oretical result of the corresponding linear system (that is,
1 = ∞). Obviously, the experimental result is consistent
with the theoretical and numerical results, which proves the
correctness of the identification result. Thus, the averaging
method is valid to predict the dynamical behaviour of the
experimental model. From Fig. 9, the maximal relative dis-
placement amplitude of the proof mass is reduced by 25.8%
when the piecewise linearity is introduced.

For � = 10.25 Hz, Figs. 10 and 11 show the experiment-
based and numerical relative displacement time histories of
the proof mass. Comparing Figs. 10 and 11, we observe that
the numerical simulation result is clearly consistent with the
experimental result.

Case 2 u1 = 0.735 m/s2 and 1 = 4.637 mm
Similar to Case 1, the experimental result of the absolute

acceleration amplitude of the proof mass versus excitation
frequency is shown in Fig. 12. The observed bi-stable state
is in the frequency range of [9.625 Hz, 11 Hz]. Fig. 13 shows
the experimental result of the relative displacement amplitude

FIGURE 12. Experimental results of the absolute acceleration amplitude
of the proof mass versus excitation frequency for u1 = 0.735 m/s2 and
1 = 4.637 mm (The marks ‘‘+’’ correspond to the large initial
displacement x1(0) and initial velocity dx1(0)/dt of the proof mass; the
marks ‘‘�’’correspond to the small initial displacement x1(0) and initial
velocity dx1(0)/dt of the proof mass.).

FIGURE 13. Experimental results of the relative displacement amplitude
of the proof mass versus excitation frequency for u1 = 0.735 m/s2 and
1 = 4.637 mm (The marks ‘‘+’’ correspond to the large initial
displacement x2(0) and velocity dx2(0)/dt of the proof mass; the marks
‘‘�’’correspond to the small initial displacement x2(0) and velocity
dx2(0)/dt of the proof mass.).

of the proof mass versus excitation frequency. In Fig. 13,
the maximum relative displacement is 11.48 mm.

Based on the experimental data in Fig. 13 and (15), k2 and
c2 are calculated as k2 = 3630.01 N/m and c2 = 0.766 N ·
s/m. Fig. 14 displays the comparison of the experimental,
theoretical and numerical results of the amplitude-frequency
response. These three results are basically consistent. Com-
pared to that of the linear system, the resonance peak of the
piecewise linear system is reduced by 41.89%. Fig. 15 shows
the experiment-based relative displacement time history of
the proof mass for � = 10 Hz, which is validated by the
numerical simulation shown in Fig. 16.

Case 3 u1 = 0.98 m/s2 and 1 = 4.637 mm
Letting u1 = 0.98 m/s2 and1 = 4.637 mm, Fig. 17 shows

the change in measured absolute acceleration amplitude of
the proof mass versus excitation frequency. The bi-stable
state occurs in the frequency range [9.625 Hz, 11.25 Hz].
The maximum absolute acceleration amplitude is 66.46 m/s2.
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FIGURE 14. Comparison of the experimental, theoretical and numerical
amplitude-frequency response for u1 = 0.735 m/s2 and 1 = 4.637 mm
(‘‘©’’: numerical results; ‘‘+’’: experimental results; green solid line:
stable theoretical result; green dashed line: unstable theoretical result;
black solid line: linear system).

FIGURE 15. Experiment-based relative displacement time history for
� = 10Hz (red and green lines correspond to large and small initial
displacement x2(0) and velocity dx2(0)/dt of the proof mass,
respectively.).

FIGURE 16. Numerical relative displacement time history for � = 10 Hz
(red line: x2(0) = 0.04 m and dx2(0)/dt = 0.01 m/s; green line:
x2(0) = 0.001 m and dx2(0)/dt = 0.001 m/s).

Using the experimental data in Fig. 18 and (15), k2 and c2 are
determined to be k2 = 3759.20 N/m and c2 = 0.795 N · s/m.
Fig. 19 shows the comparison of the experimental, the-

oretical and numerical results of the amplitude-frequency

FIGURE 17. Experimental results of the absolute acceleration amplitude
of the proof mass versus excitation frequency for u1 = 0.98 m/s2 and
1 = 4.637 mm (The marks ‘‘+’’ correspond to the large initial
displacement x1(0) and initial velocity dx1(0)/dt of the proof mass; the
marks ‘‘�’’correspond to the small initial displacement x1(0) and initial
velocity dx1(0)/dt of the proof mass.).

FIGURE 18. Experimental results of the relative displacement amplitude
of the proof mass versus excitation frequency for u1 = 0.98 m/s2 and
1 = 4.637 mm (The marks ‘‘+’’ correspond to the large initial
displacement x2(0) and initial velocity dx2(0)/dt of the proof mass; the
marks ‘‘�’’correspond to the small initial displacement x2(0) and initial
velocity dx2(0)/dt of the proof mass.).

FIGURE 19. Comparison of the experimental, theoretical and numerical
amplitude-frequency response for u1 = 0.98 m/s2 and 1 = 4.637 mm
(‘‘©’’: numerical results; ‘‘+’’: experimental results; green solid line:
stable theoretical result; green dashed line: unstable theoretical result;
black solid line: linear system).

response for u1 = 0.98 m/s2 and1 = 4.637 mm. These three
results are consistent with one another. Figs. 20 and 21 show
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TABLE 1. Effect of u1 on the experimental amplitude-frequency response of the piecewise linear system.

FIGURE 20. Experiment-based time history for � = 11 Hz (red and green
lines correspond to large and small initial displacement x2(0) and velocity
dx2(0)/dt of the proof mass, respectively.)

FIGURE 21. Numerical time history for � = 11 Hz (red line: x2(0) = 0.04
m and dx2(0)/dt = 0.01 m/s; green line: x2(0) = 0.001 m and
dx2(0)/dt = 0.001 m/s).

the experiment-based and numerical relative displacement
time histories of the proof mass for � = 11 Hz, respectively.
The experimental result is clearly consistent with the numer-
ical result.

Table 1 shows the effect of u1 on the experimental
amplitude-frequency response of the piecewise linear system
for1 = 4.637 mm, where9 =

x2max|linear− x2max|piecewiselinear
x2max|linear

×

100%. As indicated in Table 1, some characteristics are sum-
marized.

1) The primary resonance peak of the piecewise linear
system is lower than that of the corresponding linear system.

FIGURE 22. Experimental results of the absolute acceleration amplitude
of the proof mass versus excitation frequency for u1 = 0.98 m/s2 and
1 = 5 mm (The marks ‘‘+’’ correspond to the large initial displacement
x1(0) and initial velocity dx1(0)/dt of the proof mass; the marks
‘‘�’’correspond to the small initial displacement x1(0) and initial velocity
dx1(0)/dt of the proof mass.).

FIGURE 23. Experimental results of the relative displacement amplitude
of the proof mass versus excitation frequency for u1 = 0.98 m/s2 and
1 = 5 mm (The marks ‘‘+’’ correspond to the large initial displacement
x2(0) and initial velocity dx2(0)/dt of the proof mass; the marks
‘‘�’’correspond to the small initial displacement x2(0) and initial velocity
dx2(0)/dt of the proof mass.).

In terms of engineering applications, it is beneficial for the
vibration isolation.

2) Frequency range of the bi-stable state is widened,
and the primary resonance frequency increases when u1
increases.

3) k2 remains basically unchanged, and c2 increases
when u1 increases. Thus, the value of k2 depends on 1.
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FIGURE 24. Comparison of the experimental, theoretical and numerical
amplitude-frequency responses for u1 = 0.98 m/s2 and 1 = 5 mm (‘‘©’’:
numerical results; ‘‘+’’: experimental results; green solid line: stable
theoretical result; green dashed line: unstable theoretical result; black
solid line: the linear system).

FIGURE 25. Experiment-based time history for � = 10.5 Hz (red and
green lines correspond to large and small initial displacement x2(0) and
velocity dx2(0)/dt of the proof mass, respectively.).

The collision becomesmore violent with increasing u1, which
may result in more energy loss. c2 increases accordingly.
Case 4 u1 = 0.98 m/s2 and 1 = 5 mm
With constant u1 = 0.98 m/s2 and increasing 1, the mea-

sured acceleration and displacement response versus the
excitation frequency are shown in Figs. 22 and 23, respec-
tively. The observed frequency range of the bi-stable state is
[9.25Hz, 10.75Hz]. The values of k2 and c2 are determined to
be k2 = 3291.68 N/m and c2 = 0.74 N ·s/m. The comparison
of the identification results of Cases 3 and 4 indicates that
increasing 1 decreases k2 and c2. In addition, the frequency
range of bi-stable state varies with the value of 1.

The experimental result of the amplitude-frequency
response is plotted in Fig. 24 in comparison with the numeri-
cal and theoretical responses. From Fig. 24, the primary res-
onance peak of the piecewise linear system is 47.33% lower
than that of the linear system. The experiment-based relative
displacement time history of the proof mass for� = 10.5 Hz

FIGURE 26. Numerical relative displacement time history for � = 10.5 Hz
(red line: x2(0) = 0.05 m and dx2(0)/dt = 0.01 m/s; green line:
x2(0) = 0.001 m and dx2(0)/dt = 0.001 m/s).

FIGURE 27. Experimental results of the absolute acceleration amplitude
of the proof mass versus excitation frequency for u1 = 1.47 m/s2 and
1 = 4.32 mm (‘‘+’’: large initial displacement x1(0) and initial velocity
dx1(0)/dt of the proof mass; ‘‘�’’: small initial displacement x1(0) and
initial velocity dx1(0)/dt of the proof mass.).

FIGURE 28. Experimental results of the relative displacement amplitude
of the proof mass versus excitation frequency for u1 = 1.47 m/s2 and
=4.32 mm (The marks ‘‘+’’ correspond to the large initial displacement
x2(0) and initial velocity dx2(0)/dt of the proof mass; the marks
‘‘�’’correspond to the small initial displacement x2(0) and initial velocity
dx2(0)/dt of the proof mass.).

is drawn in Fig. 25, which is constant with the numerical
simulation result in Fig. 26.
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FIGURE 29. Comparison of the experimental, theoretical and numerical
amplitude-frequency responses for u1 = 1.47 m/s2 and 1 = 4.32 mm
(‘‘©’’: numerical results; ‘‘+’’: experimental results; green solid line:
stable theoretical result; green dashed line: unstable theoretical result;
black solid line: the linear system).

FIGURE 30. Experiment-based time history for � = 11.5 Hz (red and
green lines correspond to large and small initial displacement x2(0) and
velocity dx2(0)/dt of the proof mass, respectively.).

Case 5 u1 = 1.47 m/s2 and 1 = 4.32 mm
Based the above four groups of experiments and corre-

sponding identification results, k2 and c2 in Case 5 are pre-
dicted to be higher than those in Case 4. For u1 = 1.47 m/s2

and 1 = 4.32 mm, the measured absolute acceleration and
relative displacement response versus excitation frequency
are plotted in Figs. 27 and 28, respectively. The observed
frequency range of the bi-stable state is [10 Hz, 12.125 Hz].
From Fig. 28, the primary resonance peak of the proof mass
is 13.05 mm. k2 and c2 are identified as k2 = 4400 N/m and
c2 = 1.356 N · s/m, which are consistent with the prediction.
Fig. 29 shows the experimental amplitude-frequency

response in comparison with the numerical and theoreti-
cal responses. From Figure 29, the maximum amplitude-
frequency response in the case of piecewise linearity is
reduced by 67.37% compared to that in the case of linearity.

Figs. 30 and 31 present the experiment-based and numer-
ical relative displacement time histories of the proof mass
for � = 11.5 Hz, respectively. The two results are clearly
corresponded.

FIGURE 31. Numerical time history for � = 11.5 Hz (red line: x2(0) = 0.04
m and dx2(0)/dt = 0.01 m/s; green line: x2(0) = 0.001 m and
dx2(0)/dt = 0.001 m/s).

V. CONCLUSION
In this paper, the amplitude-frequency response of a piece-
wise linear system subjected to the base harmonic excitation
is investigated. Based on the theoretical analysis, numerical
calculation and experimental verification, the following con-
clusions are drawn.

(1) The analytical results given by the averaging method
is consistent with the numerical and experimental results.
Therefore, the averaging method is applicable to predict the
dynamic behaviour of such piecewise linear system.

(2) The primary resonance response peak of the piecewise
linear system is obviously less than that of the linear system.
In particular, for u1 = 1.47 m/s2, the primary resonance
response peak at 1 = 4.32 mm is reduced by 67.37%
compared to that at 1 = ∞. From the viewpoint of engi-
neering application, it may provide new ideas for the design
of nonlinear isolators.

(3) The piecewise linear stiffness and damping coefficients
depend on the installation location of the limiting stoppers
and amplitude of the base acceleration excitation. The pri-
mary resonance frequency, primary resonance response peak
and frequency range of the bi-stable state change accordingly.

(4) With the fixed installation location of the limiting
stoppers (that is,1 = const), k2 almost remains constant, and
c2 increases with the increase in excitation amplitude. With
the fixed excitation amplitude, k2 and c2 decrease with the
increase in 1.
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