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ABSTRACT Joint communication and positioning based on a unified signal structure yields synergy
and can complement and assist system designs enabling higher coverage and quality of service for
both communication and positioning. For the time of arrival (TOA) based joint communication and
positioning the TOA estimation accuracy is crucial. It is known to translate directly into position estimation
accuracy. In the presence of multipath propagation, the estimation accuracy of signal arrival times in
return strongly depends on the actual as well as the estimated number of the physical path parameters,
the model order. In this work, we assess the performance and the mutual impact of simultaneous model
order and parameter estimation for channel-estimation-based joint communication and positioning. Besides
introducing a terrestrial channel-estimation-based unified joint communication and positioning system
framework, we discuss and numerically compare different methods to sequentially or jointly estimate the
parameters and the model order. We show that a TOA error-minimizing model order estimation is preferable
over estimating the correct model order. Furthermore, we compare the performance with a proposed focused
order-related lower bound. This bound determines the optimal model order for a chosen estimator. It depends
on the actual and hypothetical model order and it replaces the here unsuitable Cramer-Rao lower bound.
Secondly, the comparison shows that employing the parameter and model order-dependent inverse Fisher
information matrix yields a close-to-optimal approach. We numerically show for a realistic channel scenario
with many multipath parameters that the method is still accurate.

INDEX TERMS Parameter estimation, model selection, information theoretic criteria, information
complexity criterion, Fisher information.

I. INTRODUCTION
Future wireless communication system designs will integrate
positioning capabilities as a core system feature from
the beginning [1]. When it comes to designing a joint
communication and positioning system from scratch, channel
estimation-based multipath parameter estimation offers the
possibility to obtain positioning-relevant information like the
time of arrival (TOA) or the angle of arrival (AOA) and hence
can play a central role [2].

Wireless communication standards and novel joint com-
munication and positioning system concepts have adopted
the idea to gain synergy by using a unified signal struc-
ture for communication and positioning [3]. The authors
of [4]–[6] introduce a unified signal structure as an alternative
terrestrial approach to the global navigation satellite system
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(GNSS)-based system. The long term evolution (LTE) signal
design considers positioning reference signals from the
beginning. More precisely, the authors of [5] investigated
the positioning accuracy for such approaches. Furthermore,
the authors of [7] investigate a potential receiver design for
long term evolution (LTE) signals, whereas the authors of [8]
discuss potential mm-wave radar communication system
approaches.

For positioning, the multipath delays and the number
of multipath components (the number of propagating ray
clusters) have to be estimated. The latter determines the
model order. We assess a simultaneous model selection
and parameter estimation approach and provide numerical
results for a joint positioning and communication system.
To illustrate the relationship between related contribu-
tions and novel contributions, we categorize our overview
into open challenges, related contributions, and novel
contributions.
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A. OPEN CHALLENGES
Although the range of contributions in the area of model
selection [9]–[22] as well as in the area of parameter
estimation [23]–[30] indicates that both research areas
are rather mature, there are still open questions and
challenges:
• How to efficiently find the position in the presence of
a realistic multipath propagation scenario is still known
to be a challenging problem. Such a scenario usually
leads to a severe parameter estimation performance
degradation [1] compared to a single path scenario.
Fading multipath components and non-line-of-sight
conditions are difficult to extract from the additive
noise [2].

• Furthermore, an increasing number of parameters
entails an increasing estimation error due to a higher
problem complexity (overestimation). If, on the other
hand, the number of parameters is assumed too small
(underestimation), a systematic modeling error has
to be taken into account. Positioning applications
target an especially high estimation accuracy of the
positioning-relevant parameters. Therefore, methods
yielding the optimal parameter estimation performance
for positioning to simultaneously estimate the parame-
ters and model order (number of multipath clusters) can
still be improved.

• Especially for estimating the multipath fading channel
parameters it is obvious that automatically excluding
paths from the model with a power below the noise
power is beneficial [28]. Underestimating the model
order is beneficial in these cases. For positioning or
delay estimation, excluding paths potentially yields
a lower delay estimation error [6]. Following this
line of thought, the probability of correct detection
is not a sufficient performance measure to assess the
model order selection performance. Furthermore, the
Cramer-Rao Lower Bound (CRLB) [31] requires the
correct model order. If the correct model order is
too high for the number of observations, the CRLB
fails to assess the performance. The formulation of a
more practical, order-related lower bound is required.
Numerical results for simultaneous model selection
and parameter estimation should be compared to this
bound.

This contribution addresses all these challenges. We assess
a simultaneous model selection and parameter estimation
approach for a channel estimation-based joint communica-
tion and positioning framework targeting an optimal delay
accuracy. Moreover, we propose a novel, practical model
order-related lower bound. Similar to a problem stated in
radar [32] we assume here that the correct model order does
not necessarily yield the optimal performance. Our approach
employs the delay’s Fisher information matrix in the model
selection as a natural solution to exclude undesirable paths
in the model order detection. This approach outperforms
classical information-theoretic approaches.

B. RELATED CONTRIBUTIONS
In the following, we provide an overview of approaches and
contributions related to this work.

1) CONTRIBUTIONS USING REDUCED
COMPLEXITY MODELS
Instead of performing model selection and parameter esti-
mation together, [6], [33] propose model simplification to
yield an acceptable ranging accuracy to computational cost
tradeoff in multipath scenarios. Such approaches have the
drawback that they result in a positioning accuracy limited
by a modeling error, which can be very high depending on
the applied scenario.

2) CONTRIBUTIONS ASSUMING THE CORRECT
MODEL ORDER IS OPTIMAL
Many researchers assume that the model order can be
estimated correctly and that this is the optimal choice [23],
[24], [27], [34], [35]. The authors focused on the parameter
estimation results, employed the correct model order, and
neglected the possibility that this assumption is not always
the optimal choice. Often these contributions focus on
proposing a special estimation or detection algorithm. Hence
the simulation setups are designed to prove that the algorithm
reliably works in a minimalistic setup, like in a two-path
scenario. The impact of model selection and realistic channel
modeling exceeds the scope of these contributions.

3) CONTRIBUTIONS USING THE MODEL ORDER
DETECTION PROBABILITY OF CORRECT DETECTION
AS A PERFORMANCE MEASURE
In a range of contributions, researchers investigate and
compare different model selection methods by choosing the
probability of correct detection as a performance measure for
model selection [10], [11], [14], [16]–[19], [22], [36], [37].
These contributions present various strategies to estimate the
model order. Nevertheless, they do not consider the impact
on the parameter estimation performance or small sample
sizes. In [38], [39] the parameter estimation performance is
considered. The authors use higher-order arrays combined
with the parallel factor (PARAFAC) methods. These methods
have the advantage of performing robustly.

4) FREQUENCY-DOMAIN-BASED JOINT MODEL ORDER
SELECTION AND PARAMETER ESTIMATION CONTRIBUTIONS
Recent approaches [40], [41] to simultaneously estimate the
model order and the parameters rely on a signal model
described in the frequency domain. These models come
with a systematic error. The parameter estimation results
are compared to the CRLB and not to an order specific
bound demonstrating the suitability for positioning. These
contributions also do not address particular application
associated requirements. Consequently, the authors do not
consider channel conditions for which an underestimated
model yields superior results. In [17], the authors propose
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a promising shift-invariance based order selection technique
for exponential data modeling. This technique was then
further employed in a proposal for joint parameter estimation
and model order selection in [40]. The authors could
numerically show the impact of model order selection on the
parameter estimation. Aswewill clarifywhen introducing the
system framework used here, formulating the signal model in
the frequency domain like in [17], [21], [40]–[44] is impos-
sible without some undesired signal design impairments like
oversampling for the here investigated joint communication
and positioning framework. Secondly, it is not possible
without accepting a limited estimation accuracy. The con-
tributions in [17], [40]–[43] furthermore do not investigate
a lower performance bound tailored to simultaneous model
selection and parameter estimation for positioning.

5) CONTRIBUTIONS EMPLOYING SEQUENTIAL PROCESSING
AND BAYESIAN ESTIMATION
The authors of [45] base their work on a sequential
signal model and propose and assess a particle algorithm
for sequential Bayesian parameter estimation and model
selection. Sequential processing requires initial guesses for
the parameter estimation problem. Similar to [45], the authors
of [46] employ a Bayesian strategy to jointly estimate
the model order and parameter estimation by population
Monte Carlo simulation. Bayesian approaches exploit the
parameters’ a priori distributions. In a practical scenario,
the physical channel parameters’ a priori distributionswill not
be known to the receiver side.

6) COMPRESSIVE SENSING JOINT MODEL ORDER
SELECTION AND PARAMETER ESTIMATION
CONTRIBUTIONS (ON-GRID DELAY MODEL)
Compressive sensing constitutes a valid approach for joint
model selection and parameter estimation. In [47], the authors
investigated the relation between sparse reconstruction and
parameter estimation with model order selection, proposing
to use sparsity parameters via compressive sensing. Their
approach mimics classic order selection criteria. On the other
hand, compressive sensing entails the necessity of defining
an inexact ‘‘on-grid’’ delay model.

C. NOVEL CONTRIBUTIONS
We summarize the novel contributions in this article as:
• Overcoming the limitations of reduced complexity
models by performing model selection and parameter
estimation simultaneously or jointly. We propose to
determine the delay estimates for different hypothetical
model orders. We then propose to choose the estimator
and the model order yielding the best delay estimation
accuracy.

• Assessing a soft information-based simultaneous model
order selection and parameter estimation designed to
yield accurate delay estimates for a joint communication
and positioning system.We demonstrate that the follow-
ing technique is particularly suited to perform well in

such systems. Here we use a soft information complexity
criterion (ICOMP). The ICOMP criterion utilizes the
Fisher information matrix as a complexity measure.
We can see this as tuning to exclude low energy paths
for multipath parameter estimation and model selection.

• Focusing the model order detection to the positioning-
relevant parameters, the delays. The results [6]
(page 74 and page 123) indicate that simply assuming
the correct model order is not the optimal choice
for positioning. We formulate a for TOA error
performance beneficial automatism to estimate the
model order optimally. Our approach takes into account
the instantaneous channel conditions.

• Providing a theoretical, more practical, and appropriate
focused order-related bound (FORLB) than the CRLB
to quantify a lower theoretical bound for the joint
model selection and parameter estimation performance
in general.

• Applying the simultaneous model selection and param-
eter estimation to the proposed generalized joint com-
munication and positioning signal model. We show
numerical results for a continuous delay model and
time-domain processing to circumvent additional sys-
tematic error sources as described in the subsubsec-
tions I-B4 and I-B6. Furthermore, we use the channel
parameters’ invariance and apply block-wise estimation.
Using global optimization, we overcome the necessity
of initial guesses. To target a realistic receiver design,
we assume that we do not know the a priori parameter
probability distribution.

• Investigating the impact of a realistic fading channel
and the availability of a small number of measurements
for simultaneous model selection and parameter esti-
mation. We show that our approach yields an accurate
parameter estimation performance in realistic channel
scenarios.

We organized this article as follows: Firstly, we present
a generalized joint communication and positioning system
framework based on channel estimation. Then, different
model order estimation strategies and parameter estimation
strategies are discussed. Afterward, we propose the model
order related bound. Finally, we numerically assess the
mutual impact of model order estimation and parameter
estimation for a typical wireless outdoor-channel model.

D. NOTATION
Re(·) and Im(·) stand for the real and the imaginary
component of a complex value. We denote vectors by a bold
lower case letter notation, whereas we denote matrices by
a bold upper case letter notation. Further, (·)H denotes the
Hermitian transpose of a matrix. Hypotheses are represented
by ˜(·) and estimates by ˆ(·). The operator vec(·) reshapes a
matrix into a vector by transferring the matrix column-wise
into the vector. The pseudo-inverse of any matrix is denoted
by (·)†.
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II. THE SYSTEM FRAMEWORK
A. THE SIGNAL MODEL
To calculate the position of a mobile user via the TOA
or the AOA without ambiguity, several reference objects
with coordinates known to the system are required. Among
other network nodes, neighbouring base stations or access
points can serve as reference objects. Either the network
can determine the position of a device moving in the area
spanned by the reference objects, or the device can determine
its position via employing signals of multiple base-stations
or access points. Since both options are possible and the
positioning relevant parameter estimation is carried out for
each link separately, in order to achieve a high positioning
accuracy, a high single-link parameter estimation accuracy is
required. To obtain accurate positioning estimates, we target
high-resolution TOA and AOA estimates for each link.
Hence, for the sake of clarity, we investigate one single link,
keeping in mind that we require at least three links in an
actual joint communication and positioning setup. At the
transmitter side, a data matrix X and a known pilot matrix P,
which we here assume to choose optimally, are constructed
and combined according to rules specified by the actual
multiplexing scheme. Together they build the virtual training
matrix V. The term virtual training indicates that in addition
to the regular pilots the communication data itself can serve
as pilot data by iteratively employing the detected data at the
receiver side for channel estimation for joint communication
and positioning [4]. Differentmultiplexing schemeswill yield
a different composition. Independent of the multiplexing
scheme the information in V is supposed to be fully used
jointly for communication and positioning in the following
manner: We inherently use the pilot symbols in P as a part of
V for channel estimation for communication at the receiver
side. We principally know that the underlying model for the
channel depends on the positioning relevant parameters like
themultipath delays and that we can use the channel estimates
to estimate these parameters. Hence, we propose to doubly
exploit the channel estimates for communication, for data
detection, and for positioning, for parameter estimation. Note
that for the communication detection performance purely
training-based estimators are already sufficient, whereas this
is not the case for positioning. Positioning algorithms rely on
accurate channel estimates. Consequently, we use the total
signal energy of the transmitted signal in V by employing
an iterative semi-blind channel estimation strategy [4].
By iteratively including the detected communication data
symbols as additional ‘‘virtual’’ pilots we can asymptotically
approach an optimal channel estimation performance for
the positioning side. We illustrate our joint signal design
in our framework in Figure 1. Physically, a pulse shaping
filter specified by gTx(τ ) is applied before transmission over
the physical channel and a matched receiver filter gRx(τ ) is
applied at the receiver side.

Let C denote the number of multipath components, here
the model order. The number of receive antennas is denoted
by Nr . Further, let the complex path weights of multipath

clusters be denoted by γc,v for v ∈ {0 . . .Nr − 1}, c ∈
{1, . . . ,C} and the cluster delays be denoted by τ =

[τ1, . . . , τC ]. The physical channel cv(t, τ ) is modeled as the
superposition of weighted Diracs delayed by the multipath
cluster delays:

cv(t, τ ) =
C∑
c=1

γc,v(t)δ(τ − τc). (1)

Thereby, τ1 is the positioning relevant TOA.
For a moderate mobile velocity the complex path weight

γc,v behaves quasi-static in blocks of a certain length.
Consequently, we assume block-fading over K times the
symbol duration T . That means we assume a quasi-static
channel over the time duration KT and that we omit the
time-dependency over this block length. From one block to
another, however, the complex-valued path amplitudes are
assumed to be time-varying. Note that we can assume the
delays in τ to be quasi-static over a certain consecutive block
number I . We will use this property to enlarge the number of
measurements for the later formulated parameter estimation
problem by observing KTI measurements. Further, for the
matter of convenience, to formulate an equivalent discrete-
time channel model (EDTCM) expression the physical
channel is convolved with the convolution of the pulse
shaping filter gTx(τ ) and the receiver filter gRx(τ ), specified
by g(τ )

g(τ ) = gTx(τ ) ∗ gRx(τ ). (2)

An overall channel impulse response function hv(t, τ ) with
v ∈ {0 . . . ,Nr − 1} can be expressed by the convolution of
g(τ ) with cv(τ )

hv(t, τ ) =
C∑
c=1

γc,v(t)g(τ − τc). (3)

Let the channel memory length be denoted by L+1. Sampling
at the receiver side with a symbol period T yields the
(L + 1 ) × Nr EDTCM coefficients hl,v(i) for l ∈ {0, . . . ,L},
v ∈ {0, . . . ,Nr − 1} and i ∈ {0, . . . , I − 1}:

hl,v(i) =
C∑
c=1

γc,v(i)g(lT − τc). (4)

To obtain a more convenient matrix vector notation let us
define the channel matrix H, the so-called spatial signature
matrix 0 and the delay-dependent pulse matrix G(τ ) entry-
wise so that for the single-input multiple-output (SIMO) time
series case we have for i ∈ {0, . . . , I − 1}

[H]l,v(i) = hl,v(i) with H(i) ∈ C(L+1×Nr ) (5)

[0]c,v(i) = γc,v(i) with 0(i) ∈ CC×Nr (6)

[G(τ )]l,c = g(lT − τc) with G(τ ) ∈ R(L+1)×C . (7)

Further, a horizontal matrix concatenation for all time indices
i yields

H = [H(0), . . . ,H(I − 1)] with H ∈ C(L+1×Nr I ) (8)

0 = [0(0), . . . ,0(I − 1)] with 0 ∈ CC×Nr I . (9)
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FIGURE 1. The core system framework under investigation yields synergy by relying on a channel estimation
concept for communication and positioning.

Then, the matrices 0, G(τ ) and H are related by

H = G(τ )0. (10)

Let N(i) be a complex Gaussian distributed noise matrix and
Y(i) denote the received signals matrix. The row ranks of both
matrices have to match the row rank of V, which depends on
the actual multiplexing scheme. Then the system equation can
be written as

Y(i) = V(i)H(i)+ N(i). (11)

As pointed out earlier, the virtual training matrixV includes a
multiplexing dependent combination of the data in X and the
pilots in P. Without loss of generality V = X+ P (for TDM
and CDM) and Y(i),N(i) ∈ C(K−L)×Nr .

B. CHANNEL ESTIMATION
Here channel estimation is exploited for communication and
for positioning in the receiver as is visualized in Fig. 1.
We use a semi-blind channel estimation approach using the
total signal energy as training. Why we use this approach,
we will illustrate in the following paragraph. For data detec-
tion, a purely training-based channel estimation approach
yields an acceptable bit-error-rate performance. However,
it fails to yield the required accuracy for positioning.
In a training-based channel estimation approach, the signal
model includes a significant part carrying the communication
signal data and a minor part carrying the training symbols.
Then the chosen signal design determines how to divide
the signal resource block into training and signal parts
exactly [34], [59]. Training-based channel estimation utilizes
only the received values for the complete signal resource
block without exploiting the detected data symbols itera-
tively. Since the training part is only a small percentage of this
utilized resource block, the training-based channel estimation

mean squared error is known to approach an error-floor for
increasing signal-to-noise ratio [4], [59]. As can be seen from
Fig 1 channel estimates are fed to the parameter-estimation
algorithm that calculates estimates of the physical path
parameters like the delay τ̂ . The accuracy of these estimates
is proportional to the accuracy of the channel estimates.
This dependency becomes clear by assessing the CRLB for
the physical path parameters [4]. The parameter estimation
accuracy in return impacts the position estimation accuracy.
This dependency means that opposed to pure communication
systems, joint communication and positioning requires a
high channel estimation accuracy exceeding the performance
attainable by training-based estimators.

Different approaches can improve the channel esti-
mation performance compared to training-based channel
estimation. The straightforward approach to optimize the
channel estimation performance targets an optimal training
design [60], [61]. Recently, some approaches to improve
the pilot-design consider massive MIMO scenarios and the
possibility to use parameter estimates gained at the receiver
as feedback to the transmitter [62], [63].

Let us assume that the pilot design is optimal. Approaches
like successive interference-cancellation as assessed in [59]
or signal stripping [57], [58] aim at removing the undesired
signal parts from the received signal. They improve the chan-
nel estimation performance compared to the training-based
estimation by removing the systematic error.

Comparing the mean squared error performance and the
CRLBs of the channel estimation approaches training-based,
training based with interference-cancellation and semi-blind
channel estimation, semi-blind channel estimation outper-
forms the two competitors [59]. Semi-blind channel estima-
tion utilizes the complete signal plus pilot resource-block
energy optimally and shows a superior error performance.
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Besides the training symbols, additional data symbols iter-
atively serve as virtual training [4], [59]. In this contribution,
we focus on the simultaneous parameter estimation and
model selection for JCAP. Consequently, here we assume
that we have an optimal virtual training matrix that can
be employed iteratively via semi-blind channel estimation.
Since we know that semi-blind channel estimation employs
nearly the whole matrix V(i) as training and for the sake of
simplicity, we assume for now thatV(i) is fully constructed of
training symbols. Then the channel estimation Ĥ(i) is usually
carried out according to

Ĥ(i) = V†(i)Y(i) (12)

Ĥ = [Ĥ(0), . . . , Ĥ(I − 1)] (13)

ĥ = vec(Ĥ). (14)

These channel estimates have twofold purpose: Firstly,
we use them for data detection, and secondly, we use them
for positioning in the following manner: We interpret the
discrete channel estimates in each column of Ĥ as snapshot
measurements, which we can use to estimate the physical
path parameters, by fitting the a priori known model function
in (3) to these measurements. Using all columns in H
instead of only a single column (SISO and single-snapshot
measurement case) increases the number of observations as
well as the number of unknowns.

C. PARAMETER ESTIMATION
Given any reasonable hypothetical parametrization θ̃ having
the delay vector τ as a subvector and furthermore, given any
cost function, �(θ ), related to this arbitrary parametrization,
the parameter estimation θ̂ in general reads:

θ̂ = argmin
θ̃

{�}. (15)

1) DETERMINISTIC MAXIMUM LIKELIHOOD ESTIMATION
Let the stacked parameter vector for a deterministic
parametrization θdml be

θdml = [τ ,Re{vec(0)}, Im{vec(0)}] ∈ R1×(C+2Nr IC). (16)

We have various possibilities to formulate the delay estimator.
For the purpose of a convenient notation let us rearrange the
values of the receivedmatrix in a long vector instead such that

y = vec{Y}. (17)

Then common way is to formulate the parameter estimation
as a received values dependency θ̂dml-y:

θ̂dml-y = argmin
θ̃

{(y− ỹ(θ̃))H (y− ỹ(θ̃ ))}, (18)

ỹ = V vec(G(τ̃ )0̃)︸ ︷︷ ︸
h̃

. (19)

Assuming that semi-blind channel estimation is inherently
performed in a first step, another equivalent and less complex

cost function is obtained by formulating the delay estimator
θ̂dml-h as a dependency of these channel estimates:

θ̂dml-h = argmin
θ̃

{(ĥ− h̃(θ̃))H (ĥ− h̃(θ̃ ))},

h̃(θ̃ ) = vec(G(τ̃ )0̃). (20)

Since the estimation error on the channel estimates and the
noise on the received values can be described by a complex
Gaussian distribution, this kind of nonlinear least-squares fit
in (20) and in (19) is known to be equivalent to the maximum-
likelihood (ML) estimator.

Note that, if the delays in τ were known, the linear
parameters 0 could be estimated in closed form. Hence, 0̃
in (20) and in (19) can already be substituted beforehand by
its estimation result depending on τ :

0̃ = G†(τ̃ )Ĥ. (21)

This parameter separability into the nonlinear and linear com-
ponents and the possibility of resubstituting the closed-form
expression applies to both (20) and (19) again and this would
leave us with four slightly different estimation options for the
delay estimation.

In [48](page 16) we provided proof for the fact that the cost
functions (20) and (19) are equivalent and the delay estimates
are the same

θ̂dml-h = θ̂dml-y = θ̂dml. (22)

Consequently, we discard the cost function, which is based
on the received values in (19), and will carry on with
the cost function based on the channel estimates (20)
only. Following the principles of separable nonlinear least-
squares estimation [31] (page 255), this substitution yields
an elimination of the dependence on the linear parameters

τ̂ = argmin
τ̃
{ĥHP⊥G(τ̃ )ĥ︸ ︷︷ ︸

�dml

}, (23)

with the orthogonal projection matrix

P⊥G(τ̃ ) = I−G(τ )G†(τ ). (24)

Hence, the deterministic ML (DML) estimation task is
reduced from a (2Nr IC+C)-dimensional problem in (20) to a
C-dimensional problem in (23). The estimator (23) is called a
deterministic estimator, since the treatment of the parameters
is deterministic.

2) STOCHASTIC MAXIMUM LIKELIHOOD ESTIMATION
Exploiting a time series of measurements, that is I � 1,
allows us to treat the problem as either a deterministic or a
stochastic estimation problem.More specifically, we can treat
the complex path amplitudes as stochastic variables, if they
underly the characteristic of a known distribution like the
circular complex normal distribution. Then, we can replace
the deterministic parameter vector by a set of parameters
containing the mean and covariance matrix elements. For
instance, assume that the complex path amplitudes are
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identically and independently distributed complex normal
random variables. Let Cγ denote the correlation matrix of
the complex path weights. Then, a covariance matrix system
representation is

Cĥ = G(τ )CγGT (τ )+ Cw, with (25)

Cĥ =
1
Nr I

ĤĤH , (26)

with the so-called sample correlation matrix Cĥ and error
correlation matrix Cw (∼ σwI). Let η be an auxiliary
vector harbouring only the lower diagonal elements of the
matrix Cγ , taken column wise from the matrix. Now the
underlying overall parametrization of (26), including both
delays and covariance matrix, are given by

θ sml = [τ , diag{Cγ },Re{η}, Im{η}, σ 2
w] ∈ R1×(C2

+C+1).

(27)

Since it is reasonable to assume that 2Nr I > C comparing
the vector lengths of θdml and θ sml, it becomes clear that
the overall stochastic formulation of the estimation problem
yields less overall unknowns than the deterministic problem
formulation. Nonetheless, there also are reasons to stick
to the more complex deterministic maximum likelihood.
Consider that, if we treat the parameters as deterministic
it means that we use less a priori information since we
exploit no information on any underlying distribution. This
proves to be an advantage in cases, where the underlying
distribution varies, cannot be specified, or is too complicated.
Acknowledging that the number of unknowns is huge, when
choosing a deterministic modelling framework at the receiver
side, we are on the safe side, in that respect that we can cover
the estimation of a broadermodel range. For this contribution,
we are primarily interested in estimating the multipath delays
and since we modelled them as static variables over I
consecutive measurements, the number of parameters C for
the desired vector τ̂ is the same for the stochastic as for the
deterministic model as can be seen from (16) and (27).

For the deterministic model the cost function in (23)
is specifically determined by the deterministic maximum
likelihood (DML) estimator and for the stochastic model it
is determined by the concentrated form [49] of the stochastic
maximum likelihood (SML) estimator [50]:

�sml = trace{P⊥G(τ̃ )Cĥ}. (28)

3) DISCUSSION ON A SUBOPTIMAL FREQUENCY-DOMAIN
BASED CLOSED-FORM SOLUTION
Other alternative approaches to solve the underlying esti-
mation problem here can be applied here and therefore we
shortly want to discuss them here.

The first other approach to parameter estimation bases
on examining the channel coefficients in the frequency
domain, yielding two advantages. The frequency domain
channel coefficients can simply be divided by the DFT of
sampled g(τ ), to obtain a deconvolved time-domain signal.
Secondly, the frequency-domain deconvolved signal exhibits

an underlying rotational invariance among its subspaces.
We can exploit this invariance to find a set of linear equations,
which, in return, yield a closed-form search-free solution for
the delay estimates, called estimation of signal parameters via
rotational invariance (ESPRIT) [24], [25]. Another advantage
of the algorithm is that no initial guess for optimization is
required to solve the problem. Therefore, it is commonly
thought of as a practical method in the initial delay acquisition
phase before initiate tracking. Moreover, this method is
especially practical for signal models employing orthogonal
frequency division multiplexing (OFDM) like in [34], since
the signal model already is inherently tailored to frequency
domain processing. Hence, it is essential to point out that
the ESPRIT algorithm is in principle desirable for the delay
estimation in a JCAP framework.

Similarly, as explained in detail in [27], if we apply
ESPRIT for delay estimation to the underlying signal model,
we require oversampling. Oversampling yields a better model
approximation and therefore can improve the systematic
delay estimation errors occurring due to the underlyingmodel
mismatch that is present in case the delays are not integermul-
tiples of 1/J (which they are naturally not) if we say that J is
the oversampling factor. Moreover, the Fourier-transformed
data model requires a discrete Fourier transform of the
sampled version of g(τ ), which introduces aliasing leading
to a delay estimation bias. Contrary to the optimal estimator
in (23) the ESPRIT based estimator is a sub-optimal
approach. Although the ESPRIT delay estimation method is
a practical and in many scenarios especially suitable delay
estimation tool for joint communication and positioning, it is
not as suitable as the Maximum Likelihood estimator in (23)
to assess the in the following sections proposed simultaneous
model selection and parameter estimation methods. For the
Maximum Likelihood Estimator as can be expected we
could show for the proposed signal model in previous works
that at least in case the model order is always known
the estimator approaches the optimal performance given
by the Cramer-Rao Lower Bound (CRLB). The ESPRIT
method is already known to yield a suboptimal result and
hence cannot approach the CRLB tightly. This error will
consequently depend on the chosen parameters. It will depend
on the chosen oversampling factor for the signal model.
In the numerical results, we will see that the combination of
ML-based model selection and parameter estimation as well
yields sub-optimal results. Knowingly combining different
error sources by employing ESPRIT together with model
selection would shift our contributions focus from generally
investigating how optimal this combination can practically
get to the question of how much the overall performance
degradation would be by combining it with different optimal
and suboptimal estimation techniques. The second reason
for not further investigating the ESPRIT method in this
framework in this contribution is the ESPRITS’s algorithm’s
requirement of oversampling in the signal model. For the
proposed joint communication and positioning system the
effect of oversampling was studied and discussed in depth
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in [51], [52] and the authors concluded that the achievable
gain for the positioning side of the system is most pronounced
for an increase from no oversampling to J = 1, to J = 2.
On the other hand, for the communication side of the system,
J = 1 already yields sufficient statistics and therefore
oversampling for the communication side entails a huge
complexity without improving the bit error rate performance.
Consequently, if possible, we prefer to choose methods that
do not require oversampling in the signal model.

Another similar frequency domain based option to deter-
mine the delays is the estimation via multiple signal classifi-
cation (MUSIC) originally proposed in [29]. Similarly, as for
the delay estimation with ESPRIT, the signal model for the
associated delay estimation problem relies on a similar signal
model and hence also on oversampling as can be understood
from studying the data model provided in [30].

4) DISCUSSION ON COMPRESSIVE SENSING APPROACH
To exploit the benefits of compressive sensing to recover
the physical path parameters, the authors of [57] state the
problem formulation again in the frequency domain. The
authors of [57] assess a joint communication and radar
sensing framework based on using compressive sensing to
determine the physical path parameters. The authors combine
the approach with special signal processing techniques.
The authors refer to these techniques as signal-stripping
and clutter-reduction. With the signal stripping approach,
the authors of [57], and [58] yield a problem formulation
that circumvents additional communication data based errors.
Such techniques aim at targeting a high physical path
parameter estimation accuracy. Targeting high precision
estimates is a crucial factor for all joint communication and
positioning designs. Mainly, the position estimates degrade
when inaccurate physical path parameter estimates feed
the positioning algorithms. We explained in section II-B
that semi-blind channel estimation techniques potentially
perform superior due to the higher exploited virtual training
percentage of the overall transmit signal energy. The authors
of [47], [57] use an on-grid delay model to exploit
a one-dimensional compressive sensing strategy. In this
contribution, we target an optimal model to circumvent even
slight modeling mismatches to simplify the discussion on the
numerical results that we provide for simultaneous parameter
estimation and model selection. Simultaneous estimation
of the model order and the parameters will inherently
entail model mismatches unequal to the correct model
order. Additional model mismatches would unnecessarily
complicate the discussion and interpretation.

5) OPEN QUESTIONS FOR COMBINING MODEL SELECTION
AND PARAMETER ESTIMATION
If the delays have been estimated, in a next step the complex
path weights can be determined via (21). More importantly,
we actually used C in (3) and hence in (23) as if it would be a
known number at the receiver. Unfortunately, this usually is
not the case. The model order C has to be estimated.

We further investigate flexible methods to determine the
optimal model order based on the instantaneous channel con-
ditions and measurements. Some further questions arise, like:
Which model order leads to the best parameter estimation
performance? Which model order estimation method is most
suited for this particular purpose of joint communication and
positioning. More specifically, how should model selection
be chosen to yield an optimal estimation performance for the
positioning relevant parameter, the line-of-sight delay?

For parameter estimation, the optimality criterion is the
well known Cramer-Rao Lower Bound (CRLB). Unfor-
tunately, as we will show, for joint model selection and
parameter estimation, this bound fails as a practical opti-
mality criterion. Consequently, it is helpful to formulate an
alternative lower bound to see, which is the best achievable
performance and whether the proposed methods approach
this bound and which joint model selection and estimation
method is closest to this bound.

Furthermore, it is interesting to see whether the model
order should be estimated separately from or together with
the parameter estimates.

There is another reason to have a closer look at model
order detection for this framework: The most popular
and well-known model order selection strategies based on
information-theoretic criteria mandatorily require us to fulfil
a few conditions regarding the underlying signal. Hence, their
applicability to this framework has to be verified.

III. MODEL SELECTION AND PARAMETER ESTIMATION
Now let us assume the model order C is unknown and
hence we wish to estimate it. Consequently, we equip (15)
with a hypothetical model order C̃ such that �C̃ is the ML
cost function for this hypothetical order C̃ . Then the delay
estimate for C̃ then is τ̂ C̃ with

τ̂ C̃ = argmin
τ̃ C̃

{�C̃ }. (29)

whereas �C̃ monotonically decreases, the delay estimation
error monotonically increases with an increasing model
order C̃ . To find the optimal τ̂Ĉ , we seek a method that
smartly balances between minimizing the lack of fit (29) and
minimizing the estimation error.

There are threshold-based model section strategies as well
as strategies based on information-theoretic criteria. The
main drawback of threshold-based strategies is that a tuning
parameter has to be introduced and adjusted. On the other
hand, themain drawbacks of methods, based on the principles
of information-theory often are twofold: Firstly, the underly-
ing signal measurements and the model have to fulfil special
requirements, e.g., the measurements should be identically
and independently (iid) distributed. Secondly, their derivation
inherently requires a large number of available samples they
consequently disqualify in the single snapshot measurement
scenario. In the following, we first briefly introduce a suitable
threshold-based method applicable to this system framework
and afterwards we briefly review and discuss the most
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popular information-theoretic criteria and their suitability for
this system framework. Finally, a method using the Fisher
information belonging to the parameter estimates is proposed
and assessed for this system.

A. THRESHOLD AND LEAST-SQUARES ERROR
DISTRIBUTION BASED METHOD
The method described in the following yields a solution that
is applicable if multiple channel estimates are available and it
is also applicable if only a single (snapshot) channel estimate
is available. Let χ2 denote the so-called χ2-distribution [53].
Since the channel estimation error is Gaussian distributed,
the least squares error �dml is

�dml ∼
σ 2

2
χ2. (30)

Further, note that the χ2-distribution depends on the number
of degrees of freedom µ. This number µ is equal to the
number of all (independent and dependent) measurements
minus the number of unknowns, i.e. the parameter estimation
problem dimension, which is determined by the number of
multipath components. At this point we are considering the
deterministic maximum-likelihood scenario. The degrees of
freedom µ are calculated as

µ = 2(L + 1)Nr I − (2Nr I C̃ + C̃). (31)

By multiplying with the factor two, we have taken into
account that the (L+1)Nr I measurements as well as theNr I C̃
amplitudes of the unknowns in the parameter vector in (16)
are complex valued. Note that in the singlemeasurement case,
µ = 2(L + 1)− 3C̃ . From (23) we see that the estimator for
a hypothetical model order C̃ then is

τ̂ C̃ = argmin
τ̃ C̃

{ĥHPG
⊥(τ̃ C̃ )ĥ}. (32)

Then, the idea is to choose an order-specific threshold εC̃
based on a tuning parameter, which for this method is a
confidence level α, typically chosen close to 1 and which is
chosen such that the probability P

(
�LS ≤ εC̃

)
P
(
�LS ≤ εC̃

)
= α, (33)

like in [20]. Let the maximum hypothetical model order
be denoted by Cmax. Then these values of εC̃ for C̃ ∈

{1, . . . ,Cmax} are found by either table-lookup or via
calculation by considering the inverse cumulative density
functions [53, page 815]. Let �LS denote the least squares
cost function (here equivalent to the DML cost function).
With a once found εC̃ we can formulate a simultaneous model
order and parameter estimator as

τ̂ C̃ = argmin
τ̃ C̃

{
�(τ̃ C̃ )

}
, (34)

Ĉ = min
{
C̃|

2
σ 2
w
�LS(C̃, τ̂ C̃ ) ≤ εC̃

}
. (35)

Note that the maximum number of theoretically identifiable
paths can be determined by reasonably demanding that µ

exceeds zero, that is µ > 0. Then

C̃max =


⌊2
3
(L + 1)

⌋
if Nr I = 1,⌊

1

1+ 1
Nr I

(L + 1)

⌋
else

(36)

Considering realistic channel models applicable to this
problem, like for instance the WINNER models [54],
the actual number of clusters typically ranges from C ∈
{8, . . . , 20}, yielding a total number of 3C ∈ {24, 36 . . . , 80}
parameters that have to be estimated given L+1 observations.
If for instance L = 9, then we would have 10 observations.
According to (36), the maximum number of theoretically
identifiable multipath components would be six. Hence,
we would have to take into account a receiver-sided
modelling error.

B. CLASSICAL INFORMATION-THEORETIC CRITERIA
The following methods require the availability of multiple
channel estimates. Generally information-theoretic criteria
consist of two additive terms: The negative log-likelihood
−ln

(
L(ĥ|θ C̃ )

)
(or a multiple thereof) and a penalty term

P(C̃), which penalizes complexity according to the spe-
cial information theoretic underlying paradigm. Here, joint
parameter estimation and model selection can be performed
in the following manner:

C(θ̂ C̃ ) = − ln
(
L(ĥ|θ̂ C̃ )

)
+ P(C̃), or (37)

θ̂ C̃ = argmin
θ̃ C̃

{
−ln

(
L(ĥ|θ̃ C̃ )

)}
, (38)

Ĉ = argmin
θ̂ C̃

{C(θ̂ C̃ )}. (39)

First, the optimal parameter vector θ̂ C̃ has to be found
for every C̃ and then the optimal model order (depending
on C̃) is chosen from the set of optimal parameter vectors
θ1, . . . θCmax . The maximum model order is determined
via Cmax. Due to the opposing monotony of negative
log-likelihood and penalty, we can compare for C̃ sequen-
tially knowing that if we have found a minimizing model
order, we can stop the comparison. The minimum description
length (MDL) criterion [10] is known to be asymptotically
consistent. Consequently overfitting, like for the less suited
Akeike’s information criterion (AIC) [9], [55] is no issue.
The MDL criterion origins in the area of coding theory and
targets the model providing the shortest description for the
measurements and it is known to perform as well as the
Bayesian information criterion (BIC) [11]. The MDL penalty
depends on the model order k (dimensionality of θ̃ C̃ ) and on
the number of independent measurements N :

CMDL(θ̂ C̃ ) = −ln
(
L(ĥ|θ̂ C̃ )

)
+

1
2
klnN . (40)

Unfortunately, information-theoretic criteria like the MDL
require the specific assumption that the number of parameters
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does not grow linearly with the number of measure-
ments [37]. Consequently, this rules out using a deterministic
description for the parameter estimation problem. This
restriction, and the fact that we need multiple measurements
in the first place is a disadvantage compared to the earlier
introduced threshold dependent χ2-based method. If we
assume that the complex path amplitudes fade over time in
such manner that they are independent and identically and
complex Gaussian distributed random variables, the stochas-
tic system description in (26) and the parametrization in (27)
apply. In [12] the authors propose a model selection solution
that circumvents the effort to perform the multi-dimensional
global optimization Cmax-times, by choosing a different but
equivalent problem formulation and parametrization based on
the underlying related eigen-decomposition. The approach
exploits the fact that the maximum-likelihood estimates of
this alternative parametrization can be calculated in closed
form. Consequently, it allows to first calculate the model
order in closed form. Afterwards, the parameter estimation
can be performed for the estimated model order. Let li =
λi, ∀i ∈ {0, . . . ,L} denote the eigenvalues of Cĥ, sorted in
descending order

l0 > l2 > . . . > lL .

Following the derivations in [12], the solution for the model
order estimation can be formulated for our purpose as

Ĉ = argmin
C̃

−ln


L+1∏
i=C̃+1

l1/(L+1−C̃)i

1
L+1−C̃

L+1∑
i=C̃+1

li


(L+1−C̃)Nr I

+
1
2
C̃(2(L + 1)− C̃)ln (INr )


.

(41)

If we use this method although the complex amplitudes are
not independent and identically distributed complexGaussian
distributed random variables, we condone a model mis-
match. Then we cannot really say how large the impact of the
modeling error will be on the overall performance. Another
approach in [13] is based on a subspace decompostion and
was designed to cover coherent and incoherent scenarios.

C. THE INFORMATION COMPLEXITY CRITERION
The information complexity criterion (ICOMP) promises
to determine the model order more judiciously [14] than
the previously discussed criteria, since it uses the inverse
estimated Fisher information matrix. It is designed to choose
the model order yielding the lowest estimation error and
not mandatorily the true model order. For the purpose
of joint communication and positioning this behaviour is
desirable, since the goal is a low TOA estimation error. The
ICOMP can be constructed via (37) too and consists of three
additive terms. The first term involves the likelihood and
therefore provides a value measuring the lack of fit, whereas

the second and the third additive terms constitute penalty
terms employing the inverse Fisher information matrix F−1

θ̂ C̃
,

that is the estimated optimal parameter covariance matrix
approximated by

F−1
θ̂ C̃
≈
σ 2
w

2
Re
{
JHθ C̃ Jθ C̃

}−1
. (42)

Here, Jθ C̃ denotes the Jacobian matrix. The information
complexity criterion as applied here then is:

CICOMP(θ̂ C̃ ) = −2ln
(
L(ĥ|θ̂ C̃ )

)

+2

k2 ln
 tr

(
F−1
θ̂ C̃

)
k

− 1
2
ln|F−1

θ̂ C̃
|

 .
(43)

With k = 2Nr I C̃ + C̃ and the eigenvalues λ1, . . . , λk of F−1
θ̂ C̃

(43) can be compactly written as

CICOMP(θ̂ C̃ ) = −2L(ĥ|θ̂ C̃ )+ k · ln


1
k

k∑
j=0
λj(

k∏
j=1
λj

)1/k

 , (44)

θ̂ C̃ = argmin
θ̃ C̃

{
ln
(
L(ĥ|θ̃ C̃ )

)}
, (45)

Ĉ = argmin
C̃
{CICOMP(θ̂ C̃ )}. (46)

In (43), the first of the two penalty terms is interpreted as a
lack of parsimony term and the second term is interpreted as
a profusion of complexity term, which takes into account the
parameter estimates interdependencies.

IV. LOWER PERFORMANCE BOUNDS
Usually, when a maximum-likelihood estimator is involved,
the well known Cramer-Rao lower bound (CRLB) can be
determined as a lower bound for the MSEs. The CRLB is
known to be an asymptotical bound that only is valid if three
conditions are fulfilled: Firstly, the underlying model has to
be specified correctly. Secondly, the SNR has to be high
enough. Thirdly, the number of observations has to be large
enough. Note that here we cannot even guarantee to fulfil
one of these conditions. These conditions indicate that the
CRLB alone will not tell us what we are actually interested
in, which is to know which model order dependent time
of arrival MSE can optimally be attained when employing
trustworthy estimates τ̂1,C̃ for all C̃ ∈ {1, . . . ,C}. Before we
formulate the optimal attainable model order and the related
squared error (SE) of the TOA, we shortly introduce the
actual CRLB, since we will additionally use it to explain the
numerical results visually. The CRLB matrix belonging to
an arbitrary parameter vector θ is known to be the inverse
Fisher information matrix. Obviously, the CRLB depends
on the underlying parametrization. Note that the channel
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estimation error σ 2
w can be substituted by either the single

entry channel estimation CRLB or by a further noise estimate
that extends the parameter vector by another element. For the
DML parametrization the CRLB matrix can asymptotically
be formulated as a blockmatrix

CRLB(τ ) =
σ 2
w

2
Re{JgT (τ )Pg

⊥(τ )Jg(τ )� (0H0)T }−1,

(47)

where

[Jg]l,c =
∂g(lT − τc)

∂τc
. (48)

In the single measurement case, the asymptotical result
in (47) has to be modified to

CRLB(τ ) =
σ 2
w

2
Re{BHJgT (τ )Pg

⊥(τ )Jg(τ )B}−1, (49)

with

B = diag{γ }. (50)

Due to space limitations, for the stochastic maximum
likelihood CRLB we refer to [56].

From experience we know that if we know the correct
model order, at least for low orders and asymptotical
conditions (high SNR and many samples), the MSE attains
the CRLB. Note that, if we would assume that choosing the
correct model order would lead to the best performance in
terms of TOA MSE, we would mistakenly determine the
CRLB for the correct model order as the best achievable
TOA MSE performance, at least if the SNR is high enough.
The CRLB calculation requires the correct model and hence
model order.

To foresee the best achievable performance, based on
the assumption that the estimates in τ̂ C̃ are reliable and
close to optimal, we formulate a focused order-related
lower bound (FORLB) expression, that depends on the
order-dependent focus parameter of interest τ1,C̃ and on the
estimate τ̂1,C̃ :

Ĉopt = argmin
C̃
{(τ1 − τ̂1,C̃ )

2
} (51)

FORLBτ1 = (τ1 − τ̂1,Ĉopt
)2. (52)

In our application estimating a reduced model order occa-
sionally yields improved parameter estimates. In such cases
this focused model order-related lower bound indicates
the optimal achievable performance. The FORLB requires
parameter estimates that we trust to be optimal or at least
close to optimal, for the different hypothetical model orders.
Therefore, both bounds can be seen as an aid to optimize
estimation and detection algorithms based on specific models
and available information. We should not see them as the
absolute lowest bound that can be achieved, since changing
the estimator or the modelling or the a priori knowledge
always changes the bounds as well. Any a priori knowledge
would result in a beneficial estimation bias tightening the

MSE to CRLB. Here we assume that we have no a priori
knowledge apart from the assumption that we can define
bounds for the hypothetical delays specified by a coarse
estimation step that we can carry out beforehand and that
yields accuracy within a sampling period T .

V. NUMERICAL RESULTS
The final goal is to assess the performance in realistic
multipath scenarios, in the presence of a LOS component.
Therefore, in this contribution, we use a clustered delay line
model by employing the slightlymodifiedWINNERB1-LOS
(outdoor) scenario as provided in [54]. The Rician factor
is R = 3.3. The main values for the excess delays and
cluster powers are tabulated in Table 1 and are only modified
in unifying the three parts of the second cluster within a
single delay. We know that by utilizing semi-blind channel
estimation techniques in combination with a small percentage
of pilot versus a large percentage of data, we can at least
asymptotically yield a channel estimation MSE performance
that converges to the performance that would be reached
by transmitting only pilots and no data. Hence, for this
contribution, we ignore the performance degradation due to
semi-blind channel estimation, and we assume that we have
a virtual training matrix, which consists of training data
only. Further, here we assume that a length I = 100 time
series of blocks of length K = 1000 BPSK random pilot
symbols are transmitted. Each symbol is assigned to a symbol
duration of T = 100 ns. To build the EDTCM channel taps,
we employed T -spaced samples of a raised-cosine function
g(τ ) with roll-off equal to 0.3 for g(τ ). We window this
functionwith a half window of size 3T .We assume, if not said
otherwise, Nr = 1. Furthermore, we model the channel as a
clustered delay line model. We follow [54] to construct the
complex path weights. We set the carrier frequency to 2GHz
and we set the receiver velocity to 50 km/h. For the χ2-based
and the ICOMPmethod we use the DML parametrization and
for theMDL results we used the SML Eigen-parametrization.

TABLE 1. WINNER B1 LOS/NLOS clustered delay line model.

In order to evaluate the performance of joint model
selection and parameter estimation we compare the χ2-based
method, the MDL-based method and the ICOMP-based
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FIGURE 2. Counter intuitively, for the optimal condition, which is the
FORLB, the probability of estimating the model order incorrectly,
P(Ĉ 6= C), is not decreasing faster than the estimators for a multipath
channel with C = 4 in the high signal-to-noise-ratio region.

FIGURE 3. The TOA MSE performance for a multipath channel with C = 4
shows that the mean optimal FORLB approaches the CRLBs for different
correct model orders in different SNR regions. The best performance is
obtained by the ICOMP method.

method. The comparison with Ĉ = C emphasizes that
estimating the model order is beneficial. As a lower
performance measure, we employ both the order specific
CRLBs and the FORLB. Fig. 2 shows the probability of
false detection for a channel with C = 4 and Fig. 3
shows the MSEs for the TOA for the different algorithms,
for Ĉ = C and the FORLB. Note that we calculated all
TOA MSEs by using only the 98% percentile in order to
exclude bad outliers. For the probability of correct detection,
two different choices of α show that choosing a value
close to 1 yields a similar performance. The probability

FIGURE 4. The probability distributions for Ĉ for the different model order
selection methods and the FORLB show that optimal distribution for each
model order is wider than the distributions obtained via algorithms.

of false detection decreases later, i.e. for higher SNR, for
the ICOMP criterion-based method than for the χ2-based
method. Comparing the MSEs of those algorithms, which
show the worst behaviour for correct detection, nevertheless,
perform better than those, which lead to estimating the correct
model order earlier. This behaviour can be understood by
studying Fig. 4, which depicts the probability for estimating
a hypothetical model order C̃ , showing that the methods
which lead to a lower TOA MSE shown in Fig. 3, tend
to estimate a lower model order. Note that the FORLB
indicates that the distribution for the hypothetical model order
should generally be wider. Further, we can see that if the
probability for estimating a specific hypothetical model order
is very high for a specific SNR, the TOA MSE approaches
the CRLBτ1 for that specific model order. Note that the
gap between the FORLBτ1 and the MSEs can be explained
by the fact that the FORLBτ1 is constructed, by laying
focus on the TOA, whereas the algorithms are designed to
yield a compromise for all components. An optimal solution
would target minimizing the squared TOA bias plus the TOA
variance. Unfortunately, the TOA bias is unknown, since it
depends on the actual τ1.
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FIGURE 5. The probability distributions for Ĉ for the different model order
selection methods and the FORLB show that optimal distribution for each
model order is wider than the distributions obtained via algorithms.

Principally, the same behaviour as in Fig. 4 can also be
seen for the realistic scenario C = 8 in Fig. 5. We depicted
this realistic scenario and the scenario C = 4 via squared
error distributions instead of MSEs to provide more detailed
information. For this realistic scenario, we further see that
the TOA SE performance degrades for the very high SNR
region Fig. 6 to 11. In the high SNR region, choosing
high model orders close to Cmax becomes more probable
and hence the result more often becomes unreliable. Fig. 3
shows MSEs versus SNRs: The MSEs approach different
CRLBS for different SNR regions. Approaching different
CRLBs is an atypical trend. The Fig. 6-8 and Fig. 9-11
provide deeper insight into the squared error distribution
for the selection and estimation strategies compared to the
squared error distribution for the best solution we can choose,
the FORLB. The figures show split violin plots.1 A violin
plot shows the actual distribution for each point, which is

1A violin plot is similar to the better-known boxplot. The violin plot
is more intuitive and informative since it depicts the data distribution.
A boxplot, on the other hand, provides insight about only five values that
are known to be significant for normally distributed data. These significant
values are the median, upper and lower quartile and the user-specified
whiskers and sometimes additionally outliers.

FIGURE 6. Split violin plot comparing the normalized squared error and
the FORLB (C = 4, χ2 based).

FIGURE 7. Split violin plot comparing the normalized squared error and
the FORLB (C = 4, MDL).

FIGURE 8. Split violin plot comparing the normalized squared error and
the FORLB (C = 4, ICOMP).

reasonable if the data is not normally distributed, as in this
case. Hence we can see that all three compared algorithms for
C = 4 and C = 8 provide close to optimal results for a major
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FIGURE 9. Split violin plot comparing the normalized squared error and
the FORLB (C = 8, χ2 based).

FIGURE 10. Split violin plot comparing the normalized squared error and
the FORLB (C = 8, MDL).

FIGURE 11. Split violin plot comparing the normalized squared error and
the FORLB (C = 8, ICOMP).

part of the estimation approaches. The MSE degradation
can be explained by a few non-trustworthy estimates that
belong to the minority of the overall data, and it is lowest
for the Fisher information based ICOMP detection method.

Especially in the very high SNR region, the probability to
optimally select a higher model order is higher. We pay
this possibility with lower estimation reliability. We can use
different mechanisms to either detect an unreliable behaviour
or to enforce a lower MSE by defining different additional
constraints, like for instance constraining σ̂ 2

τ1
to be smaller

than an upper, user-defined SE limit that we should not
exceed.

VI. CONCLUSION
Combining model selection and parameter estimation in a
joint communication and positioning system outperforms
parameter estimation approaches based on assuming either
the correct or a very low or very high model order. Firstly,
the calculation and comparison with an assisting focused
order-related lower MSE bound, that depends on the correct
and the hypothetical model order, can be used to see, which
model order we should optimally choose for a particu-
lar estimator and SNR. Secondly, the comparison shows
that employing the parameter and model order-dependent
inverse Fisher information matrix yields a close-to-optimal
approach. The approach evenworks in inherently problematic
and ill-conditioned estimation problems, by balancing lack of
fit and parsimony in favour of achieving optimal estimation
accuracy. Further investigations should find solutions that
are even closer to the optimal solution and optimally do not
require a successive evaluation of all hypothetical solutions.
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