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ABSTRACT Segmentation of liver lesions on non-contrast magnetic resonance imaging (MRI) is critical for
patientmanagement and treatment planning. In clinical treatment, the imaging process suffers from high-risk,
expensive, and time-consuming due to using contrast agents (CA). Furthermore, manual segmentation has
the disadvantages of tedious, low-reproducibility, and high misdiagnosis rate. Although some deep-learning
basedworks have attempted for liver lesions segmentation, they are all limited to the use of contrast-enhanced
MRI. To avoid the limitations comes fromCA,we proposed a Radiomics-guidedDensely-UNet-Nested Gen-
erative Adversarial Networks (Radiomics-guided DUN-GAN) for automatic segmentation of liver lesions
on non-contrast MRI. Radiomics-guided DUN-GAN includes a DUN segmentor and a Radiomics-guided
discriminator. It uses radiomics feature of the multi-phase contrast image as prior knowledge to guide the
extraction of key implicit contrast radiomics (ICR) features in non-contrast images, thus achieving the direct
lesions segmentation without CA for the first time. In the DUN segmentor, an innovative nested structure
of Densely-UNet-connection reliably completes the segmentation. The nested structure extracts global
features, semantic features, and ICR features by reasonably sharing features and maximizing information
flow. Those features are fused with a new direction strategy of multi-integration features to improve the
segmentation ability. In the innovative Radiomics-guided discriminator, the radiomics feature combined with
the semantic feature enhances the discrimination of Radiomics-guided discriminator. Moreover, it guides
the segmentor for multiple feature extraction via using the adversarial mechanism. Radiomics-guided
DUN-GAN learns the mapping relationship between images, extracting the key ICR in the non-contrast
image, and finally completing the accurate segmentation. Radiomics-guided DUN-GAN obtained the Dice
Similarity Coefficient results of 93.47±0.83% for the segmentation of lesions in non-contrast images from
250 clinical subjects. The results verify the Radiomics-guided DUN-GAN is accurate and robust, and it has
the possibility of becoming a safe, inexpensive, and time-saving medical assistant tool in clinical diagnosis.

INDEX TERMS Liver lesions, segmentation, radiomics-feature, multi-phase non-contrast MRI, GAN.

I. INTRODUCTION
Segmentation of the liver lesions is essential for patient
management and treatment planning. 1) The segmentation
guides physician to make preoperative planning, which can
effectively improve the success rate of lesions resection
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and the survival rate of patients [1]. 2) The quantitative
assessment of segmentation (e.g. volume, centroid, diam-
eter) helps physicians develop a treatment plan and pre-
dict patient survival. [2]. 3) The segmentation is considered
comprehensively with the patient’s age, clinical symptoms
and disease severity to guide the patient’s post-operative
treatment to prevent further liver failure. Meantime, clinical
segmentation is obtained by experienced radiologist through
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FIGURE 1. Our method directs segmentation of lesions without CA. The current methods are based
on segmentation of dynamic contrast-enhanced (DCE) images, and clinical methods rely on the
expertise of physician.

a visual examination. However, there are many constraints
by tedious, low-reproducibility and high misdiagnosis rate
in this approach (as shown in Fig. 1). Contrast agents (CA)
has many potential hazards after injection into the body, even
though it as chemical agents that clears the boundaries of
the lesion to help segmentation [3] (as shown in Fig. 1).
1) The use of CA has a potential of high risk. The CA after
injection remains in the tissue in some form (about 1% of
the injected dose), which may cause potential harm because
itself is potentially toxic [4]. Even more, it may trigger
an incidence of 10%-15% of contrast-induced nephropathy
(CIN) [5]. 2) The use of CA presents an expensive problem.
The scanning cost of the Dynamic Contrast-Enhanced Mag-
netic Resonance Imaging(DCE-MRI) image is high. If errors
occur during injection, CA materials will be wasted. 3) The
use of CA has a problem with time-consumption. Injection of
the CA costs additional patient time, and enhancement of the
imaging process itself requires variety of imaging techniques,
so it requires longer imaging waiting time. Therefore, the seg-
mentation of non-contrast image has become a clinically
urgent need for patients with liver-related diseases, especially
those with impaired kidney function.

It is a great challenge to segment the lesions from the
non-contrast MRI image directly, and no one has tried so
far, even though there are many methods to successfully
achieve segmentation of liver lesions in DCE-MRI (contrast
MRI) image. 1) The lesions is almost invisible in non-contrast
image, and even if it can be seen, it is a blurry border, which
makes it impossible for doctors to perform accurate manual
segmentation [6]. 2) The size, shape and position of lesions
vary from person to person, with vast differences and com-
plexity, resulting in a high rate of misdiagnosis. 3) Lesions are
characterized by low contrast with surrounding tissues [7],
different types of contrast levels (high/low intensity lesions),
heterogeneous density and various shapes.

The segmentation in non-contrast images is feasible in
other closer fields, such as cardiac field. Xu et al. [8] proposed
simultaneous segmentation and quantification of myocardial

infarction (MI) without contrast agents. MI can be seen in the
contrast-enhanced image, but it is invisible in non-contrast
images. In the MRI image sequence without CA, Xu utilizes
2D+t method to capture temporal motion features, which is
a key feature of the motion of each pixel. A motion pattern of
each pixel on the myocardium is established on key features
to delineate the infarction area from MR images without CA
accurately. However, themethod does not solve the segmenta-
tion of the liver without CA in the absence of temporal motion
features in the static image.

Radiomics feature [9] on the DCE-MRI images has the
same potential for locating lesions as the temporal motion
features. The Radiomics feature, which characterizes the
potential micro-structure and heterogeneity of tumors, has
a favorable performance in decoding tumors, but invisible
in non-contrast images. And, multi-phase MR imaging has
different information to promise for characterization of pre-
cursor lesions [7]. Critical contrast-enhanced phases include
the arterial, portal venous(PV), and delay phases. Therefore,
the Radiomics feature of multi-phase DCE-MRI images can
guide the extraction of implicit contrast radiomics (ICR) fea-
tures in non-contrast images. Adversarial learning achieves
just it. This is defined as a Radiomics-guided adversarial
mechanism.

We proposed a Radiomics-guided Densely-UNet-Nested
(DUN) Generation Adversarial Network (Radiomics-guided
DUN-GAN) for automatic segmentation of liver lesions
without CA. Under the guidance of the innovative
Radiomics-guided adversarialmechanism, Radiomics-guided
DUN-GAN inputs the visible Radiomics feature of the
multi-phase DEC-MRI(T1-Delay, T1-Arterial and T1-PV)
image as guided prior knowledge to the discriminator. The
guided-feature is integrated with semantic features through a
Radiomics-guided connection layer (RgCL) to improve dis-
criminating power. Moreover, it guides segmentation through
adversarial learning. Segmentation is achieved through an
innovative structure of Densely-UNet-Nested. This structure
accurately extracts and shares global and semantic features in
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the non-contrast image by expanding the receptive field and
changing the information flow. All features form fusion fea-
tures with enhanced characterization capabilities through an
innovative direction strategy of multi-integration feature. The
fusion features are utilized by Radiomics-guided DUN-GAN
to extract key ICR features for accurate segmentation of
lesions without CA.

This study has advances over our preliminary study
in MICCAI 2019 conference [10], which provided a
single-phase Radiomics-guided GAN to achieve automatic
segmentation of liver lesions in non-contrast images for the
first time. This study contributions and advantages of our
method are as follows:
• The newly proposed multi-phase radiomics-guided
mechanism successfully added multi-phase DCE-MRI
to discriminator as prior knowledge. It provides an inno-
vative adversarial mechanism of multi-phase radiomics-
guide. The mechanism innovatively combined the
three-phase DCE-MRI and non-contrast MRI via an
adversarial mechanism for the first time, which more
conducive to the feature extraction of ICR.

• A new direction strategy of multi-integration fea-
ture is designed to effectively fuse multiple features.
It uses three strategies, Radiomics-guided connection
layer (RgCL), global attention map guidance layer and
D-connection, to integrate different features reasonably
and efficiently. Integrated features take advantage of the
specific information of the Radiomics-guided feature,
advanced information of the global-compensate feature
and deep information of the semantic feature, which
have a stronger learning ability to improve the accuracy
and speeds up rate of the segmentation.

• Global attention model newly added into the generator
in the manner of global-guided improve DUN-generator
to extract ICR better, which improves the performance
of tumor segmentation. And, it integrates with other
features through an integrated strategy of feature-related
to reduce runtime.

Besides, the newly proposed pixel-level guided hybrid loss
function can make the network converge faster and smoother.
And, this study also addsmore statistical verification, detailed
experimental analysis, and rigorous discussion.

II. RELATED WORK
A. HAND-CRAFTED FEATURE-BASED METHODS
In existing researches, there are many successful interactive
and automatedmethods of segmentation of liver lesions based
on hand-crafted feature. The common first-type method is
based on the statistical shape model [11]and some form
of deformation, which was extremely successful in the
challenge of liver disease segmentation at the 2008 MIC-
CAI conference. Besides, methods based on gray level and
texture have been developed. Another-type method intro-
duces different interaction methods to guide segmentation,
such as based on graphical cuts [12], [13], region-based
threshold method [14], level set [15]–[17], B-spline [18]

and machine learning method. 1)Region-based segmentation
algorithms [19], [20] mostly use the similarity of features
within the same region for image processing. For example,
Sethi et al. [19] segment cancerous regions by selecting
appropriate thresholds for different images. Region growing
method extract connected regions from images by growing
according to pre-defined criteria. It makes up for the lack of
spatial relationship that threshold segmentation does not or
seldom consider. For example, Baazaoui et al. [21] proposed
an entropy-based fuzzy region growing method to segment
single or multiple liver cancer lesions. 2) The level set method
has been gradually applied to liver segmentation due to its
advantages of involving numerical calculation of curves and
surfaces [22]. Amarajothi et al. [23] combines shape and
intensity prior knowledge with level set model to achieve
more accurate segmentation of hepatocellular carcinoma.
3) Machine learning has gradually attracted the attention of
researchers. Huang et al. [24] proposed an extreme learn-
ing machine (ELM) based on random feature subspace set
for liver lesion segmentation. 4) There is also a combina-
tion of various methods. Zhang et al. [25] preprocessed the
image by image enhancement and watershed transformation
and trained it by support vector machine (SVM). Similarly,
Kuo et al. [26] proposed an SVM classifier with texture
feature vectors for liver lesion segmentation.

The method based on hand-crafted features can achieve
better segmentation results. However, the method depends
on the prior knowledge of the algorithm in the process of
segmentation, such as selecting the appropriate threshold,
seed points in the region growth, the number of features
of machine learning, and limited expressive power when
dealing with large changes in appearance and shape, which
directly affects the segmentation results. In practical applica-
tion, the speed and robustness of the method have not met
the clinical requirements due to the limitation of low-contrast
real data. Therefore, there is an urgent need for an automatic
segmentation method that does not depend on hand-crafted
features.

B. DEEP LEARNING-BASED METHODS
Convolutional Neural Networks (CNNs), as one of the rep-
resentatives of deep learning, has completely changed the
natural image processing by utilizing its highly representa-
tive features of hierarchical learning( [27]–[29]), and have
witnessed the successful application in the field of medical
image analysis( [30]–[33]). Many researchers follow this
trend and propose using various CNNs to learn the fea-
ture representation in liver and lesion segmentation appli-
cations. For example, Ben-Cohen [34] proposed using FCN
for liver segmentation and liver metastasis detection in CT
examination.

Deep learning methods have become an alternative and
crucial branch of traditional segmentation of liver lesion.
It is divided into three categories. 1) Traditional 2D model,
such as Cascaded-FCN [35], FCN based on VGG-16 [34].
Sun [36] designed a multi-channel FCN to segment liver
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FIGURE 2. The structure of our Radiomics-guided DUN-GAN, which consists of three innovations. 1) An innovative nested system of
Densely-UNet-connection is created in the Densely-UNet-Connection (DUN) segmentor. 2) A new integrated strategy of feature-related to
integrate multiple features to form fusion features that can aid in the extraction of ICR features. 3) An innovative adversarial mechanism of
Radiomics-guided is proposed in the Radiomics-guided discriminator.

lesions from CT images, in which probability maps are gen-
erated by feature fusion from different channels. 2) 2.5D
model, such as the UNet [37] of residual connections, uti-
lizing the similarity between slices [38]. 2.5D refers to the
use of 2D convolution neural network and input from adja-
cent slices of volume images. During the ISBI LiTS chal-
lenge in 2017, Han [37] proposed a 2.5D FCN-24 model
to segment liver lesions, in which residual blocks were
used as repetitive building blocks, and UNet connections
were designed throughout the coding and decoding parts. 3)
3D model, such as 3D FCN [39], densely connected vol-
ume ConvNets [40], H-DenseUnet [41], SynSeg-Net [42],
and Tripartite-GAN [43]. Christ et al. [35] proposed cas-
caded FCN architecture and dense 3D conditional random
field (CRF) to automatically segment liver and liver lesions.

Since the GAN was proposed by Goodfellow et al. [44],
it has shown great potential in the process of medical
image analysis. For instance, Zhao et al. [43] proposed
a Tripartite-GAN to synthesize liver contrast-enhanced
MRI for liver tumors detection. Huo et al. [42] pro-
posed a SynSeg-Net to perform segmentation tasks on
the medical image without ground truth labels [Refer-
ence]. And Xu et al. [45] proposed a PSCGAN that
simultaneously synthesizes an equivalent image of late-
gadolinium-enhancement and segment the diagnosis-related
tissues from cine MR images [Reference]. All these works
demonstrated that GAN has great power in the field of med-
ical image analysis.

The 2D model can not extract the depth information of
the image sufficiently, so the segmentation accuracy is rel-
atively low. On the other hand, 2.5D and 3D models need a
lot of parameters, and they also have high requirements for
hardware configuration. Limited resources limit the deep and

complexity of 3D models. Meanwhile, with the deepening
of CNNs, a new research problem arises: with information
regarding input or gradient passes through multiple layers,
it may disappear at the end (or beginning) of the network.
Many recent publications have addressed this or related
issues, many models, such as ResNets [28], Highway Net-
works [46], Densely Net [47], UNet [48], pass signals from
one layer to the next through identity connections, creating
short paths to allow better information and gradient flows.
Therefore, we propose a nested system of Densely-UNet.

III. RADIOMICS-GUIDED DUN-GAN
Radiomics-guided DUN-GAN is the first to complete the
accurate segmentation of lesions without CA in an innovative
way. The framework consists of two adversarial networks:
a DUN segmentor (Section III.A) and a Radiomics-guided
discriminator (Section III.B)(as shown in Fig. 2). The two
networks interact with each other.

A. DENSELY-U-CONNECTION SEGMENTOR
The segmentor includes a Dilated-Densely-Block(DDB) for
extracting semantic feature, a global attention map extrac-
tion and guidance layer, and a U- Connection for sharing
guidance information. 1) Dilated convolution extracts more
detailed features by expanding the field of view, which better
deals with low-contrast areas caused by non-contrast agents.
2) Dilated and Densely are combined (as shown in Fig. 3(a))
to better reduce the impact of gradient disappearance on the
stability of the model. 3) New global attention model (GAM)
(as shown in Fig. 3(b)) reveals advanced information and
compensates for the pixel-level local features of the target
in low-contrast images. That is, the segmentor replaces the
convolution of the UNet with the DDB convolution block,
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FIGURE 3. The structure of our Densely-U-Connection (DUN) Segmentor, which includes DDB, GAM, TD and TP.
(a) DDB consists of Dilated Convolution and Dense layer. It goes through a series of operations of standard
DilatedConv, BN, and ReLU activation functions. (b) The global connection added a global attention feature with
guidance information to the network to guide the segmentation.

and innovatively nests two jump connection to form the DUN
segmentor. Such a nested connection can both maximize
the flow of information and share more details during the
segmentation process, stably and accurately extracting ICR
features with adversarial function.

1) SEMANTIC FEATURE EXTRACTION OF
DILATED-DENSELY-BLOCK
The DenseNet has been proven to perform well in segmen-
tation while significantly improving the flow of informa-
tion between layers, so we use it as an extraction module
for semantic features(as shown in Fig. 3(a)). Within each
Dense block, the density connection method directly con-
nects any layer to subsequent layers, thus avoiding repeated
learning of features. Consequently, the `th layer receives the
feature-maps of all preceding layers, x0, . . . , x`−1 as input:

x` = H` ([x0, x1, . . . , x`−1]) (1)

The above H`(.) represents a non-linear transformation,
which is a combined operation, which may contain a series
of BN (Batch Normalization), ReLU, Pooling, and Conv
operations.

Using Dilated convolution instead of traditional convolu-
tion to improve the feature extraction ability. Dilated convolu-
tion helps expand the receptive field, capturing a wider range
of background information without reducing the resolution of
the image or additional parameters. Finally, the receptive field
is expanded, and the semantic features of the non-contrast
image are extracted more efficiently. During the experi-
ment, the dilation rate set to {1, 2, 4, 8} for each 3 × 3
kernel size. And, transition Down (TD) is a series of oper-
ations consisting of Conv, Batch Normalization (BN), ReLU,

and Polling. Transition Up (TU)is the opposite operation of
TD, consisting of DeConv, BN, and ReLU.

2) GLOBAL ATTENTION MODEL
Global attention model(GAM) enables the network to focus
on the target region in a large image context. It reveals
advanced information that compensates for pixel-level local
features of objects in low-contrast images. Therefore, adding
global attention feature maps as guidance information to
the segmentor can improve the accuracy of segmentation.
As shown in Fig. 3(b), an attention map is convoluted by two
convolution layers, followed by the ReLU activation. In order
to multiply attention map with the input feature map, we set
the channel number of the first convolutional layer to half
of the input image, and the channel number of the second
convolutional layer is 1. We also use a residual connection
in the attention module. Then the global attention feature
maps are fused with local feature. The global attention feature
map itself compensates for the local feature of the target and
guides the decode path of UNet through providing guided
information.

3) U-CONNECTION FOR SHARING GUIDANCE
INFORMATION
UNet has been successfully applied in the segmentation field.
It uses downsampling to gradually reduce the spatial res-
olution, while the upsampling process gradually increases
the semantic dimension to recover the abstract image of
the representation. The segmentor connects the layer infor-
mation and the upsampled shared low-level information (for
example, boundary information, discriminator competition
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feedback information) through a U-skip connection, so that
the decoder learns related information lost in the encoder.
Finally, ICR features that compete with Radiomics-feature
are learned, and image segmentation without CA is
completed.

The parameter details and feature sizes for each layer of
the DUN Segmentor as follows in Tab. 1.

TABLE 1. It shows the parameter details and feature sizes for each layer
of the Densely-UNet-Nested (DUN) Segmentor. The DDB block mainly
performs the feature extraction process, and the whole segmentation is
completed by downsampling and upsampling of the TD and TU.

B. RADIOMICS-GUIDED DISCRIMINATOR
The Radiomics-guided discriminator includes a semantic fea-
ture extraction model(SFEM), a Radiomics-feature extrac-
tion model(RFEM), and a Radiomics-guided Connection
Layer (RgCL). Radiomics feature serves as guidance infor-
mation, which guides the discriminator to extract more repre-
sentative semantic features through RgCL. It can even guide
the segmentor to learn the ICR feature through the adversarial
mechanism. Finally, the mapping between images is learned
and the accurate segmentation is completed.

1) SEMANTIC FEATURE EXTRACTION MODEL(SFEM)
To extract semantic feature extraction, classical image seg-
mentation network VGG16 [27] is adopted. It uses sev-
eral convolution layers with smaller convolution kernels to
improve a convolution layer with larger convolution kernels.
It reduces the parameters and carries out more non-linear
mappings simultaneously, which improves and enhances the
fitting expression ability of the network. The input of the
semantic feature extraction network is the result of segmentor
or ground truth image in 64 × 64 patch, and the output is
the probability of the real or generated image. In the classic
VGG16 frame, each layer of convolutional layer contains
2 × 4 convolution operations. The size of the convolution
kernel is 3×3, the convolution step 1, the pooled kernel 2×2,
the step size 2.

2) RADIOMICS-FEATURE EXTRACTION MODEL(RFEM)
Radiomics feature characterizes the microstructure and het-
erogeneity of the potential lesions [9]. The Radiomics
feature is extracted and selected using the open-source

platform-PyRadiomics [49], which uses several engineering
hard-coded feature algorithms to process and extract radio-
logical features from medical image data. Radiology utilizes
data characterization algorithms for comprehensive and auto-
mated quantification of phenotypic features, such as shapes
and textures, and reflects biological properties such as inter-
nal heterogeneity.

For each phase CE-MRI, Radiomics feature is character-
ized by micro -structure feature(M-feature) and heterogene-
ity feature(H-feature). M-feature was characterized using
mesh surface, pixel, diameter and other shape features;
H-feature was characterized using gray level co-occurrence
matrix(GLCM), gray level-size zone matrix(GLSZM) and
other texture features. PyRadiomics extracted radiologi-
cal features for each lesion. The entire feature extraction
process is completed by the radiomics feature extraction
model(RFEM). In RFEM, the image and the corresponding
mask image are input to the Pyradiomics platform. The plat-
form characterizes the microstructure and heterogeneity of
the lesion by extracting shape and texture features. PyRa-
diomics automatically selects the most important 75 features
and performs data analysis on the features.

3) DISCRIMINATOR AFTER RgCL
RFEM extracts the Radiomics features (fx , gx and hx) corre-
sponding to the images of three-phase CE-MRI (T1-Delay,
T1-ART and T1-PV). And SFEM extracts the semantic
features Vx of segmented images or ground truth images.
The features are reconnected and fully connected to form
connectable vectors. At the same time, it is extracted and
reshaped to extract 225 dimensions (75 each from T1-Delay,
T1-ART and T1-PV). Mean, variance, skewness, and kur-
tosis were computed over the feature vectors within each
lesion. Therefore, a total feature (Tx = 225 × 4) were
computed for each lesion. Finally, Tx and Vx are con-
nected through Radiomics-guided Connection Layer (RgCL)
to form Radiomics-guided fusion feature. After this feature
is Softmax, the identification result is obtained. The whole
process is shown in Fig. 4.
The guidance of Radiomics features consists of two parts:

1. Radiomics-guided fusion feature continuously optimizes
VGG16 through discriminator loss function back propaga-
tion. Under the guidance of Radiomics, VGG16 performs
parameter adjustment to extract the semantic features with
characterization ability, thereby improving the identification
ability. 2. Radiomics-guided fusion feature has stronger char-
acterization ability, and can guide the work of the splitter
through the confrontation mechanism(Fig. 4).

C. ADAPTIVE PIXEL-LEVEL-GUIDED HYBRID
LOSS FUNCTION
The loss function contains discriminator loss lossD and seg-
mentor loss lossS . The overall losses are as follows:

min
S

max
D

LGAN (S,D) = Ey∼pdata(y)
[
logD(y)

]
+ Ex∼Px (x)

[
log(1−D(S(x))

]
(2)
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FIGURE 4. Radiomics-feature is used as a priori knowledge to identify and segment. 1. Under Radiomics-guided
adversarial mechanism, Radiomics-feature guiding the extracting of more representative semantic features through the
discriminator loss function. 2. It guides the extraction of implicit contrast radiomics (ICR) features in non-contrast images
through the adversarial mechanism of Radiomics-guided.

Among them, input image x and its corresponding base fact
y, and use xi, yi to represent the input and ground truth values
at the pixel location, respectively.S tries tominimize this goal,
while opponent D tries to maximize it.
In the game of GAN [44], the discriminator and seg-

mentor are individually trained iteratively, so the objec-
tive function is also optimized separately. By competing,
the two models are simultaneously enhanced, and follow the
minimum-maximum game process. Firstly, the discriminator
is optimized, and the lossD is as follows:

LD=max
D

LGAN (S,D)

=Ey∼pdata(y)
[
logD(y)

]
+ Ex∼px (x)

[
log(1−D(S(x)))

]
(3)

Among them, Ey∼pdata(y) represents the ground truth of
segmentation, Ex∼px (x)represents the predicted segmentation.
Dy denotes the demotes the probability of the ground truth
of segmentation and Sx denotes the predicted segmenta-
tion comes from our segmentor. The discriminating result is
expected to be close to 1 during the training. For the generated
sample, we want its discriminant results D(S(x)) to be closer
to 0. Therefore, during training, the loss function adjusts the
parameters of S to minimizeD(S(x)) and the parameters of D
to maximize logD(x), and finally to balance the losses.

After completing the optimization of the discriminator
model, it is necessary to achieve the optimization of the
generated model. Existing work has proven that combin-
ing GAN losses with more traditional losses can effectively
reduce ambiguity. Based on MICCAI, we use the generalized
Jaccard instead of Dice index. On the one hand, Jaccard is
differentiable and can be used to calculate backpropagation.
On the other hand, it is a more appropriate distance measure
relative to the Dice index. Therefore, we redefine the adaptive

lossS function

LS = minLGAN (S,D)+ w1 ∗ LJaccard (S)

+w2 ∗ LPix_CE (S) (4)

minLGAN (S,D) = Ex∼px (x)
[
log(1−D(S(x)))

]
(5)

LJaccard (S) = −log
|y ∩ yi | + ε

|y| + | yi | − |y ∩ yi | + ε
(6)

LPix_CE (S) = −
1

n
∑

x y ln(a) + (1− y) ln(1− a)
(7)

The right side of Eqn(4) combines the traditional lossS with
the Jaccard index and the pixel classification cross-entropy
loss function, and automatically adjusts S by weighting
parameters w1 and w2. First, in the optimization process, let
the result of the discrimination D(S(x)) be close to 1, that
is, let the total value be the smallest. Second, the weight-
ing parameters w1 and w2 are a constant value indicating
the weighting of the three losses. We solve equation (4) by
alternately optimizing between S and D by using their respec-
tive loss functions. In Eqn(4), to prevent the denominator
from being zero, we define ε as a very small number, using
ε = 1× 10−15.

IV. EXPERIMENTAL STUDIES
A. DATA ACQUISITION
Our study data ultimately includes 250 subjects, 130 with
an MRI-definitive typical appearance of a hemangioma, and
120 with a new untreated diagnosis of hepatocellular car-
cinoma(HCC). These data are provided after approval by
the McGill University Health Centre. Participants provided
written informed consent to participate in the study. All sub-
jects underwent initial standard clinical liver MRI protocol
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Algorithm 1 Radiomics-Guided DUN-GAN
Train
Input: Non-contrast MRI image x and its corresponding
ground truth
mask of contrast-T1-Dealy MRI images y; Contrast-T1-
Dealy MRI Delay;
Contrast-T1-Arterial MRI Art; Contrast-T1-Portal-Venous
MRI PV ;
The loss balanced weights w1 and w2; Initial learning rates
lrs and lrd ;
Mini-batch size n; The number of iterations T .
Output: Learned parameters 2seg, 2dis
1: Initialize the parameters 2seg, 2dis randomly and con-
struct model;
2: for step in T do
3: Fed xn, yn, Delayn, Artn and PVn← xn, yn, Delayn, Artn
and PVn represent the x, y,Delay,Art and PVwith mini-batch
size n;
4: /* The forward propagation of S(xn): */
5: x` = H` ([x0, x1, . . . , x`−1])
6: S(xn) = Densely− Unet-NestedS(xl)
7: /* The forward propagation of D(·): */
8: D(S(xn))=RgCL(VGG16(S(xn))+PyRadiomics(S(xn))

+PyRadiomics(Delayn)
+PyRadiomics(Artn)+PyRadiomics(PVn))

9: D(y(n))=RgCL(VGG16(D(yn))+PyRadiomics(D(yn))
+PyRadiomics(Delayn)+PyRadiomics(Artn)
+PyRadiomics(PVn))

10:/* The backward propagation of S(xn): */
11: 2seg = 2seg-lrs

`
(LS = minLGAN (S,D) + w1 *

LJaccard (S) +w2 * LPix_CE ( S))
12:/* The backward propagation of D(·): */
13: 2dis = 2dis-lrd

`
LD

14:End for

Test
Input: Non-contrast MRI image x
Output: Segmentation result of x
1: /* The forward propagation of S(xn): */
2: x` = H` ([x0, x1, . . . , x`−1])
3: S(xn) = Densely− Unet-NestedS(xl)
4:End

examinations with corresponding pre-contrast (T2FS [5mm;
256 × 256 px], diffusion-weighted images [6mm; 256 ×
256 px], T1-Pre-contrast [4mm; 512 × 512px]), and
contrast-enhanced images (arterial [4mm; 512 × 512 px],
Portal-Venous [4mm; 512× 512 px], late [4 mm; 512× 512
px], 5-Min Delay [4mm; 512× 512 px]) were collected after
using gadolinium CA. Gadolinium contrast used in these
protocols was gadobutrol 0.1 mmol/kg on a 3T MRI scanner
(GE Signa). A radiologist with 7 years of experience in MR
Liver imaging analyzed the three-phase CE-MRI and verified
manual segmentations of the delayed in each scan as ground
truth.

TABLE 2. Training configuration of the Radiomics-guided DUN-GAN. The
parameters involved in the training process include the learning rate of
the training model, batch size, optimization, and learning motivation.

B. IMPLEMENTATION DETAILS
For training, the non-contrast T2FS images of 256 × 256
without cropping are instantly inputted into the segmentor.
At the same time, all the input selected slices to the dis-
criminator are directly resized to size 256 × 256. Among,
ground truth (T1-delay images) of 512 × 512 need to
directly manual adjusted to 256× 256. And, the three-phase
CE-MRI and the corresponding mask are also adjusted to
256× 256. The setting of loss weight is described in section
3.3. Radiomics-guided DUN-GAN is implemented using the
PyTorch package and MATLAB R2017a on a desktop com-
puter with an Inter(R) CPU i5-6500 (3.19GHz). Because of
its efficiency, the experiment uses a single NVIDIA GTX
1080 GPUwith 8 GB of memory. The training configurations
of the Radiomics-guided DUN-GAN are listed in Tab. 2. The
network is optimized by a stochastic gradient descent method
with a momentum of 0.9 and a weight attenuation of 0.005.

To evaluate the performance of our network, a standard
ten-fold cross-validation is employed. Due to the limited data
set, expanded 50 data based on 200 data sets of MICCAI,
and simple data enhancements were performed, including
horizontal flip, vertical flip, and 90o, 180o, 270o rotation.
Ten-fold cross-validation ensures that all images are used for
training and testing, and each image is only used for testing
once. Ourmethod does not involve any post-processing at any
stage.

C. CONFORMANCE ASSESSMENT
We evaluate the consistency between our algorithm and
expert manual segmentation through the following indicators.

1) THREE MEASURES
In this study, the evaluation of the segmentation results of
liver lesions mainly uses those three measures [50]: Dice sim-
ilarity coefficient (DSC), Precision and Recall. The results of
the calculation of the lesion segmentation results for each test
data are compared with the ground truth. Among, Precision
and Recall indicators are calculated based on the confusion
matrix [51]. The elements of the i-th row and the j-th column
of the confusion matrix represent the number of images with
predicted grade i and ground truth grade j. The concrete
equality is as follows:

1) Dice Similarity Coefficient(DSC). The DSC calculation
formula is:

DSC =
2× |Seg ∩ Ref
|Seg| + |Ref |

× 100 (8)
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Among them, Seg is the result of algorithm segmentation,
and Ref is the result of ground truth. The DSC value is close
to 1, the more accurate the lesion segmentation result is.
On the contrary, the segmentation result does not substan-
tially coincide with the gold standard, and the detection of
lesions fails, or the segmentation error occurs.

2) Precision. The precision calculation formula is:

Precision =
TP

TP+ FP
× 100 (9)

Among them, TP is Truth Positive that the classification
results are consistent with the ground and belong to positive
samples. FP is False Positive that classification result is
inconsistent with the gold standard, and the negative samples
are divided into positive samples. Precision refers to the ratio
between the number of positive samples correctly classified
and the number of all positive The value is close to 1 means
the less the negative sample is misclassified into positive
samples.

3) Recall. The Racall calculation formula is:

Recall = Sensitivity =
TP

TP+ FN
× 100 (10)

Recall refers to the ratio of the number of positive samples
correctly classified to the number of all positive samples. The
value is close to 1, the fewer positive samples are misclassi-
fied into negative samples.

Precision and recall rate are mutually influential. Gener-
ally, high accuracy leads to low recall rate and low Precision
leads to high recall rate. In practice, the Precision and recall
rate should be kept as high as possible. In practical appli-
cations, the Accuracy and recall rate should be as high as
possible.

2) ROC CURVE AND PR CURVE
The Receiver Operating Characteristic (ROC) curve and the
Precision-Recall (PR) curve are drawn from the confusion
matrix, which is used to evaluate the classification perfor-
mance of the machine learning algorithm for a given data
set. ROC curve, which combines sensitivity and specificity
by graphic method, can accurately reflect the relationship
between specificity and sensitivity of the method and is a
comprehensive representation of test accuracy. Themore con-
vex the ROC curve is, the closer it is to the upper left corner,
which indicates that the diagnostic value of ROC curve is
greater. The Area Under Curve (AUC) can evaluate diag-
nostic accuracy. PR curve combines recall rate and accuracy
with the graphic method, which can accurately reflect the
relationship between them. The PR curve is to the upper right
corner, the greater its diagnostic value. ROC and PR curves
are relatively simple and intuitive. The clinical accuracy of
the analysis method can be observed by graphics and can be
directly judged by the naked eye.

V. EXPERIMENTAL RESULTS AND EVALUATION
Radiomics-guided DUN-GAN is the first to complete
the segmentation of liver lesions without contrast agents.

The segmentation results can prove that our results out-
perform other methods, and the best result with a DSC
of 93.47± 0.83 is obtained. The results verify that the
Radiomics-guided DUN-GAN is accurate and robust, and
it has the possibility of becoming a safe, inexpensive and
time-saving medical assistant tool in clinical diagnosis.

A. QUALITATIVE EVALUATION RESULTS OF
RADIOMICS-GUIDED DUN-GAN
1) SEGMENTATION RESULTS
Fig. 5 shows that Radiomics-guided DUN-GAN outperforms
other networks inaccurate image segmentation without CA.
In Fig. 5, the first row represents the type of lesion that
can be observed in the non-contrast image. In the process of
segmentation, the boundary of the lesion is missed because
the contrast between the boundary of the lesion and the
surrounding organs is low, and the complete segmentation
is more complicated. The second line represents the type of
lesion that is barely visible in the original image. There is a
big gap between the results of segmentation. Compared with
other methods, our method has a significant improvement.
It can extract the features of the lesion better and complete
the segmentation. Besides, as shown in Fig. 5 (a), our seg-
mentation result has the highest overlap with ground truth,
representing the most accurate segmentation. In non-contrast
images(T2FS), visible lesions in non-contrast images are
marked with red lines. In DEC-MRI images, the radiologist
marked the lesion as a ground truth with a red line andmarked
the lesion area with green. (a) shows the segmentation results
of different models. Green is ground truth and red is the result
of segmentation. The larger the overlap area between red and
green, the better the segmentation result.

2) VISUALIZATION OF MULTI-PHASE RADIOMICS-FEATURE
Fig. 6 shows the visualization results of Radiomics-feature
corresponding to the multi-phase DCE-MRI of three different
subjects extracted by RFEM. It was evident that the char-
acteristics of different subjects are quite different, and the
characteristics of different phases of the same subject are
also very different. As shown in the blue box, for subject 1,
the GLSZM feature is more obvious in the PV phase, and
the shape feature is more obvious in Art. The characteris-
tics of the three different phases can play a complementary
role. After RgCL fusion, it can contain more features that
can characterize the lesion and improve the discriminatory
ability. At the same time, multi-phase radiomics feature is
more helpful for segmentor to extract M- and H- features in
non-contrast images, that is, ICR features. It can also improve
the guidance of the segmentor.

3) QUALITATIVE VISUALIZATION OF FEATURE MAPS
In order to clearly see the specific contribution of multi-phase
Radiomics feature, Fig. 7 shows the feature maps of
Radiomics-guided DUN-GAN without Radiomics feature,
Radiomics-guided DUN-GAN with Radiomics feature of

2872 VOLUME 9, 2021



X. Xiao et al.: Segmentation of Liver Lesions Without CAs

FIGURE 5. Qualitative visualization shows that Radiomics-guide DUN-GAN outperforms other networks, which can
accurately segment different types of lesions in non-contrast MRI images. (a) Four columns show the segmentation
results of FCN, UNet, H-DenseNet and our method respectively. Green represents ground truth, and red represents the
result of segmentation. The bigger the overlapping area, the more accurate the segmentation result is. Although some
lesions can hardly be seen in non-contrast images, our network achieves accurate segmentation.

FIGURE 6. Radiomics-feature visualization results of different phases corresponding to the three subjects. The
abscissa is the feature of Radiomics-feature. H-features include gray level co-occurrence matrix (GLCM), gray
level dependence matrix (GLDM), gray level run length matrix (GLRLM) and gray level size zone matrix (GLSZM)
class feature, and M features include firstorder and shape class feature. Each block represents the result of the
corresponding feature, and the color represents the corresponding different values.

T1-Delay (MICCAI 2019), and our Radiomics-guided
DUN-GAN with multi-phase Radiomics-feature, respec-
tively. We can see the Radiomics feature enhances the M
feature extraction (especially for the shape feature extraction)
by comparing the yellow arrow in the feature maps. And,
we can see the Radiomics feature enhances the H feature
extraction (especially for the texture feature extraction) by
comparing the red arrow in the feature maps.

In the first line (without radiomics-guided) of Fig. 7, most
of the edge features may be lost because of the low contrast
between the lesion and the organ in the non-contrast MRI.
In the second line (with radiomics-guided of T1-Delay), ICR
features extracted by the segmentor are also partially miss,
because the single-phase T1-Delay contains much fewer
shape features than the fusion features of multi-phase DCE-
MRI. At the same time, the last two columns of Fig. 7
show the segmentation results and zoomed local patches
of the tumor area. The red line is ground-truth, the green
line is the tumor area displayed on the non-contrast image,
and the yellow line is the result of the Radiomics-guided
DUN-GAN segmentation. DCE-MRI images contain richer

and more obvious Radiomics-feature, which means more
distinct shapes and texture. It demonstrates that multi-phase
radiomics-feature is input to the discriminator as a priori
knowledge, which helps segmentor to extract key implicit
contrast radiomics (ICR) in non-contrast images via adver-
sarial learning. So that under radiomics-guided mechanism,
the Radiomics-guided DUN-GAN improves the accuracy of
liver lesions segmentation on non-contrast MRI.

B. QUANTITATIVE PERFORMANCE EVALUATION
We compare the segmented lesion results with the ground
truth noted by expert radiologists, which show that our
method can provide lesion segmentation automatically and
accurately. Our method achieved best results with overall
DSC is 93.47± 0.83, with an accuracy of 96.23 and a
recall rate of 91.79. As shown in Fig. 8 (a) (b), the ROC
curve is close to the upper left corner, and AUC is close
to 1, which represents the accuracy of the test is very high.
The PR curve is near the upper right corner, which repre-
sents the better performance of the network. At the same
time, In Fig. 8, the combined-feature (Radiomics-guided
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FIGURE 7. Examples of Non-contrast MRI segmentation. The yellow arrow in the feature maps
represents the difference of M-feature between Radiomics-guided DUN-GAN without Radiomics,
Radiomics-guided DUN-GAN with T1-Delay radiomics and our Radiomics-guided DUN-GAN. The red
arrow in the feature maps represents the difference of H-feature between Radiomics-guided DUN-GAN
without Radiomics, Radiomics-guided DUN-GAN with T1-Delay radiomics and our Radiomics-guided
DUN-GAN. The last two columns show the segmentation results and zoomed local patches of the tumor
area. It demonstrates that Radiomics-guided DUN-GAN can improve the accuracy of segmentation on
non-contrast MRI.

FIGURE 8. The ROC and PR values of our method are superior to other modules. (a) and (b) show the
ROC and PR of the segmentation results of the different modules, respectively. ROC and PR are
consistent, indicating that Radiomics feature and global attention features can improve the accuracy of
our approach.

DUN-GAN) network yields higher ROC and PR val-
ues than using Radiomics-feature or Global-feature alone,
Section 5.3.2 will analyze in detail.

C. ABLATION EXPERIMENTS
1) COMPARISON OF DIFFERENT MODEL OF
RADIOMICS-GUIDED DUC-GAN
In this section, we compare and evaluate the methods pre-
sented (In Section 3.2) through several experiments. Accord-
ing to Section 3, it is proposed to add the Radiomics feature as
a guide to the discriminator, using the adversarial mechanism
to guide the learning of the segmentor. At the same time,
global attention features are proposed to embed more seman-
tic information into the fusion features based on MICCAI.

We proposed DDB based on UNet to improve the stability of
the network. To prove the validity of our method, we tested
their performance separately(as shown in Tab. 3).

The result of UNet segmentation is taken as a baseline
during the experiment, and the segmentation result directly
for the non-contrast image was 73.21 ±0.62. (1) On this
basis, DDB was added (the second row in Tab. 3 ), and DSC
increased from 73.21 ±0.62 to 75.69 ± 0.34. Although the
value of improvement is small, the experiment shows that the
network can converge quickly. The results show that DDB can
extract more detailed features and thus help to improve the
segmentation. Dense connection changes the way of network
connection and improves the convergence of the network.
(2) On this basis, the GAN network was added (the third
row in the Tab. 3 ), and the DSC value increased from
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TABLE 3. Liver lesion without CA segmentation Dice scores of our
method achieved the best result. Comparing the results of ablation
experiments with those of Baseline, the results can intuitively show that
each module proposed in our method is effective.

75.69 ± 0.34 to 83.65 ± 0.51. This shows that the adver-
sarial mechanism can effectively extract the key features of
the image without CA, which helps correct segmentation.
Therefore, the combination of DUN segmentor network and
adversarial module makes the Radiomics-guided DUN-GAN
network a more effective solution to segment lesions in
non-contrast images.

Tab. 3 shows that the four innovations (adversarial mech-
anism of multi-phase Radiomics-guided, nested structure of
DDB, direction strategy of multi-integrate-feature, and adap-
tive hybrid loss function) have an excellent performance
in improving segmentation. It makes Radiomics-guided
DUN-GAN model achieve the best DSC of 93.47± 0.83.

2) COMPARISON OF DIFFERENT FEATURE OF
RADIOMICS-GUIDED DUN-GAN
Tab. 3 also demonstrates the effectiveness of the guided
fusion features of Radiomics-feature and Global-feature. The
segmentation result of Radiomics-guided DUN-GAN with
93.47± 0.83 as the baseline (sixth row in Tab. 3 ). (1) If
the Radiomics-feature is removed, the segmentation result
decreases from 93.47± 0.83 to 87.81±0.72, which indicates
that Radiomics-feature can characterize the key features in
the non-contrast image, which is the key to improve the seg-
mentation. (2) If theGlobal-feature is removed, the segmenta-
tion result is reduced from 93.47± 0.83 to 92.17±0.79, which
indicates that Global-feature can reveal advanced information
that can compensate for pixel-level local features of the target
in low-contrast images without CA.

In the comparative experiment with 250 data sets,
the Radiomics-feature guidance network, the Global-feature
guidance network, and the Combined-feature-directed net-
work were trained separately using ten-fold cross-validation.
Fig.8(a) (b) shows ROC and PR with different characteris-
tics. The ROC curve of combined-feature is closest to the
upper left corner and the PR curve is closest to the upper
right corner. Fig.8 visually shows the results of network
segmentation guided by different features through the values
of DSC, Precision, Sensitivity and Specificity. TheDSC value
is consistent with Tab. 3.
Besides, Fig. 9 demonstrates that our proposed new

feature-to-relationship learning strategy can effectively inte-
grate multiple features. The results of Precision, Sensitivity
and Specificity are arranged in the order of Combined-feature
Radiomics-feature, Global attention feature (Global feature).
Combined-feature and Radiomics-feature have significantly

TABLE 4. Results were summarizing different effects of our proposed
method with different loss. Based on GAN, ablation study was conducted
separately. It is verified that our loss function improves the accuracy of
segmentation.

improved results than Global-feature, which demonstrates
that the inclusion of Radiomics-feature can well characterize
lesions and guide segmentation. Besides, although the result
of combined-feature is only 0.84 better than the Radiomics-
feature, this is of great significance in the segmentation
without CA. Therefore, under the guidance of Radiomics-
feature, the ability of the network to extract the features after
fusion of global features with low-level and high-level fea-
tures is improved. Through confrontation, fusion and mutual
guidance, the features that can characterize the lesions in
non-contrast images are finally learned. The results show that
under a reasonable model, effective features can guide the
model to extract more critical features, which is an effective
scheme to improve the segmentation results.

3) COMPARISON OF DIFFERENT LOSS FUNCTION OF
RADIOMICS-GUIDED DUN-GAN
Tab. 4 proves that our proposed pixel classification
cross-entropy loss function is more conducive to the segmen-
tation of non-contrast images. Eqn. (1) is the loss function
of the segmentor. Based on GAN’s adversarial training, DSC
increased by 2.76 under Jacquard’s training. Because the Jac-
card coefficient is differentiable, it facilitates the calculation
of the back propagation of the loss function and reduces the
overfitting of the network. Pixel classification cross-entropy
loss function training improved DSC by 3.28. Because pixel
cross loss can effectively solve the problem of class imbal-
ance. The innovative pixel-level-guided hybrid loss function
is innovatively proposed to be 0.65 higher than the ordinary
combination. The weighting parameters and the weights that
balance the three losses can increase the convergence speed of
the network and help improve the segmentation performance.

D. COMPARISON WITH STATE-OF-ART MODEL
Existing state-of-art methods rely on enhanced public data
sets, such as an open platform of Digital human liver database
by the affiliated hospital of Qingdao University, Liber Lesion
Segmentation Challenge (LiTS) by 2017 MICCAI Pub-
lic Challenge. LiTS dataset contains 201 contrast-enhanced
abdominal CT scans. Using the LiTS dataset, Li et al. [41]
designed a DenseUnet to effectively detect intra-slice fea-
tures of liver and lesion segmentation and proposed an
H-DenseUnet framework to explore the hybrid features of
liver and lesion segmentation. This method obtains the lesion
segmentation result with 82.4. Chlebus et al. [52] used
UNet with random forest to get the DSC with 65 and
Han [37] used Res-UNet to get the DSC with 67. Three
popular networks (FCN, UNet, ResNets) and two cut-
ting edge representative segmentation methods using GANs
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FIGURE 9. Using the Combined feature to have better results than other features. (a)-(d) show
the DSC, Precision, Sensitivity, and Specificity of the model segmentation under the guidance
of different features, which show that the combined feature has the best results.

TABLE 5. The results of the different methods for the segmentation of
the data set (non-contrast + contrast) verify the validity of our method.

(SynSeg-Net [42], and PSCGANs [45]) are tested using our
data sets (non-contrast image, T2FS and contrast-enhanced
image, delay-DE images) verify the validity of the models.
The results are shown in Tab. 5.

Tab. 5 demonstrates that our method has completed the
accurate segmentation lesion of non-contrastMRI images and
can be an effective tool for clinical diagnosis in the future.
Tab. 5 shows that for the same network, the results of using
MRI images are higher than those of using CT images in the
paper, which proves that contrast-enhanced MRI is the best
imaging method for cancer detection and differential diag-
nosis [53], [54]. Simultaneously, the segmentation result of
the MRI contrast-enhanced image is higher than non-contrast
image because the CA makes the boundary of the lesion
clear. Compared to an enhanced CT or MRI, a non-contrast
MRI is easy to perform, requires less acquisition time, has no
need for contrast media (i.e., lower costs and no side effects
compared to enhanced MRI), has no associated radiation
hazard, and is relatively inexpensive. Han [55] has proved that
Non-contrast MRI may have the potential for the surveillance
of HCC. The 12th row of Tab. 5 shows that PSCGAN has

better results in MRI image segmentation than other existing
methods. Although our method is to segment the image with-
out CA, the result is 1.28 higher than that of other best results
92.19 using CA image.

VI. CONCLUSION
In this paper, we developed Radiomics-guided DUN-GAN
that segments liver lesions in non-contrast MRI images
for the first time. Radiomics-guided DUN-GAN includes
a DUN segmentor and a Radiomics-guided discriminator.
In the DUN segmentor, DDB nested structure to improve
information flow, DUN extracts the more accurate feature
under direction strategy of multi-integration feature. Thus,
the DUN segmentor completes the segmentation of liver
lesions in non-contrast MRI images through extracting key
implicit contrast radiomics (ICR) features in non-contrast
images. In the Radiomics-guided discriminator, multi-phase
Radiomics feature input discriminator to improve the ability
of discriminators as prior guidance features.Moreover, it uses
the adversarial mechanism to guide the extraction of multiple
features of the segmentor. Through the images of 250 clinical
subjects, Radiomics-guided DUN-GAN obtained the Dice
Similarity Coefficient (DSC) results of 93.47± 0.83 for the
segmentation of lesions in non-contrast images. The results
verify that the Radiomics-guided DUN-GAN is accurate and
robust, and it has the possibility of becoming a safe, inex-
pensive and time-saving medical assistant tool in clinical
diagnosis.
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