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ABSTRACT In image classification, traditional kernels or feature mapping functions of Support Vector
Machine(SVM) use discriminative features without considering the true nature of the data. Our work in this
paper is motivated by the need to consider intrinsic distribution of L1 normalized histograms and develop
a flexible feature mapping technique by combining histogram based features and distribution based density
features. The proposedmapping technique contains prior knowledge about the the data which provides a flex-
ible representation and thus increases the discriminative power of the classifier. Such flexibility is achieved
due to the explanatory capabilities of Dirichlet, generalized Dirichlet and Beta-Liouville distributions to
model proportional data. In addition to that, we present a general framework to estimate the parameters
of these distributions by taking maximum likelihood (MLE) approach. Experimental results show that the
proposed technique increases the effectiveness of SVM kernels for different computer vision tasks such as
natural scene recognition, satellite image classification and human action recognition in videos.

INDEX TERMS Proportional data, support vector machines, Dirichlet distribution, generalized Dirichlet
distribution, Beta-Liouville distribution, human action recognition, image classification.

I. INTRODUCTION
Appropriate and accurate representation of the data for clas-
sification models is one of the existing problems in machine
learning. Several classification and hybrid models have been
developed. However, a little attention has been given to a get
a proper representation of the data through distribution based
feature mapping in discriminative approaches [1]. In this
paper, we address this issue in supervised learning prob-
lems for proportional data. A popular image representation
is the Bag of Visual Words (BoVW) which is essentially
quantizing similar patches of an image to the corresponding
cluster center which is known as codebook [2], [3].Modelling
such data after normalization in a probabilistic manner needs
to satisfy the constraints of non-negativity and unit sum.
Examples of such data includes L1 normalized histogram
for images and normalized bag of words representation of
texts (or images) data. In particular, we are motivated by
the problem of modelling features in images and videos
where each feature represents a portion of the total features
considered. For example, an image can be represented by a
normalized histogram of bag of vectors where each vector
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element represents a sub-region of the image. Knowledge
about statistical characteristics of such representations has
to be used effectively in order to get better accuracy for
the classification tasks. Dirichlet, Generalized Dirichlet and
Beta-Liouville distributions can model this type of data to
get the prior information which can be used as a feature.
The advantage of such distributions are that they can capture
the nature of the data and provide flexibility. For SVM,
traditional kernels do not take into account the nature of the
data. Incorporating our proposed feature mapping technique
increases the classification accuracy of these kernels.

Performance of machine learning algorithms depend on
the representation of the input data. Incorporating invariance
in the representation using prior knowledge is a common
technique to make the learning task more efficient and in
general, prior information makes it possible to generalize
training examples to novel test examples [1]. In supervised
learning, hyperparameters of the classifiers work as prior
information. Another approach is to select features that con-
vey most relevant information regarding the data or the task.
Such features are automatically incorporated in some kernels
such polynomial kernel for SVM [4]. On a different note,
distribution based flexible feature mapping can be efficient
in different classification tasks [5]. Our contribution falls into
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the second category. For SVM, input data are represented as
points in high dimensional space. This representation needs
to be linearly separable to make the model work properly.
Therefore, for non-linear data, performance of SVM model
lacks accuracy. However, kernel trick or feature mapping
technique has made it possible to model non-linear data
which is essentially taking the data space to higher dimension
where the data become linearly separable. It is a common
idea to extract new features from the input variables through
a feature mapping function which increases the separability
between the data classes. On the contrary, feature mapping
without statistical measure about the data does not guar-
antee the improvement in model’s performance. Selecting
the most informative attributes from the set of redundant
attributes is sub-optimal for a classifier and on the con-
trary, it may keep out some relevant features as well [6].
Therefore, extracting or creating new features from the data
with prior information using a parameterized featuremapping
function can be incorporated in classification model with
certain degree of confidence. Histogram representation of
the extracted data can be modelled in a probabilistic way by
performing L1-normalization and Dirichlet or Liouville type
distributions is the choice to estimate the density of such data.
Therefore, a parametric distribution based mapping function
can be developed to increase the flexibility of the datapoints
in the feature space.

Rest of the paper is organized as follows, section II
highlights some related works, section III introduces the
Dirichlet, generalized Dirichlet and Beta-Liouville distribu-
tions along with the parameter estimation method for these
distributions. Support vector machine and kernel tricks are
discussed in section IV. Our proposed feature mapping tech-
nique is discussed in section V. In section VI, we show
the experimental results of the proposed methodology for
image and video classification tasks. Concluding remarks are
discussed in section VII.

II. RELATED WORKS
Many researchers have focused on improving traditional
SVM by implementing new kernels or new feature mapping
functions. To teach the machine to differentiate between dif-
ferent images, frequencies of local features of an image or
video frame are quantized into a histogram [7]–[9]. Feature
mapping function proposed by [5] based on Dirichlet dis-
tribution has proved to be efficient in different classifica-
tion and regression tasks for proportional data. In addition,
the authors indicated data normalization technique for pro-
portional data to be used in the feature mapping function.
Histogram based feature transformation with probabilistic
modelling is addressed in [10]. Kernel based methods have
been applied in different learning tasks such as Gaussian
kernels with different distance measures which proved to
be efficient in image classification task [11]. In addition,
a combination of generative and probabilistic learning is
shown to be effective in image recognition and segmen-
tation tasks [12], [13]. In such approaches the kernel is

generated by learning the generative process of the data using
probabilistic models such as Gaussian mixture model [14]
or Dirichlet and related distributions based mixture models
[12], [15]–[17]. In contrast to this, we consider a feature map-
ping function which considers both discriminative features
and density features. In supervised learning, measuring the
similarity of L1 normalized histograms using Euclidean dis-
tance is not effective [11]. In such cases, histogram distances
such as χ2 distance has proved to be effective [18]–[21]. Sev-
eral histogram based distances and their derivatives have been
proposed by many researchers such as [22], [23], [24]–[26].
Apart from this, [27] proposed a non-linear mapping tech-
nique based on polar coordinate system.Modification of RBF
kernel using first order Taylor series approximation proposed
by [28] has achieved better accuracy for semanteme data.
However, in contrast to these approaches, we are interested
in increasing the discriminative power of SVM using more
flexible feature mapping technique for proportional data.

III. DISTRIBUTIONS FOR PROPORTIONAL DATA
A. DIRICHLET DISTRIBUTION
Dirichlet distribution is the generalization of Beta distribution
and most appropriate candidate in probability and statistics
when modelling proportional data [29]. It is a distribution
over the multinomials in a simplex with supports [0, 1]. If a
vector p = (p1, p2, . . . , pD) of length D resides in a D
dimensional closed simplex of RD then it is defined as,

C(1) = {p ∈ RD
: p1 + p2 + . . .+ pD = 1;

pd ≥ 0, 1 ≤ d ≤ D} (1)

If the proportional vector p ∈ C(1),1 then the joint proba-
bility density function of p = (p1, p2, . . . , pD) is defined as,

P(p|α) =
0
(∑

d αd
)∏D

d=1 0(αd )

D∏
d=1

pαd−1d

D∑
d=1

pd = 1, pd ≥ 0 (2)

where 0 denotes the gamma function and α =

(α1, α2, . . . , αD) is a positive parameter vector which defines
the shape of the distribution in D dimensional space. Total
mass, α0 =

∑
d αd is the concentration or scale parameter

and the base measure (α′1, α
′

2, . . . , α
′
D) =

αd
α0
. In case of sym-

metric distribution, the mean of the distribution is determined
by the base measure. In addition, altering the measurements
in α affects the variance of the distribution.

E(pd ) =
αd

α0
= α′d

Var(pd ) =
αd (α0 − α)

α20(α0 + 1)
=
α′d (1− α

′
d )

α0 + 1

Cov(pd , pf ) =
−αdαf

α20(α0 + 1)
(3)

1C(n) = C(1); n = sum of the multinomials
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FIGURE 1. Peak of the Dirichlet and generalized Dirichlet distribution at different locations for four different sets of
parameter values. First row shows the Dirichlet distribution in the simplex for different values α and second row is the
Generalized Dirichlet distribution for different values of α and β.

It should be noted that, small values of the concentration
parameterα0 favors the extreme values of the density function
and as a result, data are distributed all over the simplex data
and it is more compact at the corner of the simplex. The shape
parameter α makes it possible to model data in linear, convex
and concave hulls [5]. Figure 1 shows the flexibility of the
distribution by changing the parameters. α0 controls the peak
of the distribution and αd determines the location of the peak.
If the expected values of the parameters are equal then data
are distributed uniformly over the simplex. The higher the
parameter value, more confident we are about that parameter
and hence density values are more peaked on that side.

B. GENERALIZED DIRICHLET DISTRIBUTION
From (3), we see that any two random variables following
Dirichlet distribution are negatively correlated. If the vari-
ables are positively correlated, then Dirichlet prior is not a
proper choice. A modification in such cases is the general-
ized Dirichlet (GD) distribution which entertains both neg-
atively and positively correlated random variables [30]. In a
D dimensional closed simplex, generalized Dirichlet distribu-
tion with parameter vector θ = (α1, β1, α2, β2, . . . , αD, βD)
is defined as,

P(p|θ ) =
D∏
d=1

0(αd + βd )
0αd0βd

pαd−1d

(
1−

d∑
l=1

pl
)γd

(4)

Here,
∑D

d=1 pd < 1, and 0 < pd < 1 for d =
1, 2, . . . ,D where αd > 0, βd > 0 and γd = βd − αd+1 −

βd+1, γD = βD − 1 for d = 1, 2, . . . ,D. GD becomes
Dirichlet distribution when βd = αd+1 + βd+1. If a vector
p ∼ GD(α1, β1, . . . , αD, βD), then it can be transformed
to follow independent Beta distributions for each dimension
using the following transformation proposed by [31].

z1 = p1 (5)

zd =
pd

1−
∑d−1

j=1 pj
(6)

pd = zd (1− p1 − p2−, . . . ,−pd−1) = zd
d−1∏
j=1

(1− zj) (7)

It is evident that generalized Dirichlet distribution has 2D
parameters. Unlike Dirichlet distribution where the expec-
tation is fixed, in GD distribution, the expectation of each
dimension d continues to evolve over the dimension d − 1.

E[pd ] =
αd

αd + βd

d−1∏
j=1

βj

αj + βj
(8)

Cov(pd , pf ) = E(pf )
( αd

αd + βd + 1

d−1∏
j=1

βj + 1
αj + βj + 1

)
(9)

where, d, f = 1, 2, . . . ,D. Flexible covariance structure of
GD distribution enables it to have different degrees of belief
on random variables while keeping the same expectation
[30]. From Fig. 1, it is evident that for Dirichlet distribution,
symmetrically distributed random variables are less concen-
trated at the center (for example, α = [2, 2, 2]) than the
random variables following generalized Dirichlet distribution
which are more concentrated at the center asymmetrically
(α = [2, 4];β = [4, 4]). It can be shown that generalized
Dirichlet distribution reduces to Dirichlet distribution when
βd = αd+1+βd+1 (see [12] for details). If the expectation is
varied and for example when α = [2, 6];β = [6, 8] in Fig. 1,
generalized Dirichlet distribution captures the variation of the
data more flexibly.

C. BETA-LIOUVILLE DISTRIBUTION
While generalized Dirichlet distribution is more flexible than
Dirichlet distribution, it requires twice the number of param-
eters. An efficient replacement for Dirichlet and general-
ized Dirichlet distribution is the Beta-Liouville distribution
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which overcomes the limitations of Dirichlet distribution
and requires lesser parameters to estimate than general-
ized Dirichlet distribution [32]. This distribution is a a
special case of Liouville family of distributions. Vector,
p = {p1, p2, . . . , pD} will follow a Liouville distribution
if and only if p d

= uq where q = {q1, q2, . . . , qD} =
{
p1∑
p ,

p2∑
p , . . . ,

pD∑
p } ∼ Dir(α1, α2, . . . , αD) where

∑
p is

the normalizing constant of vector sum and u =
∑D

d=1 pd is
an independent random variable. The joint probability density
function of this distribution is given by [32],

P(p|α1, . . . , αD;α, β) =
0α0

B(α, β)

D∏
d=1

pαd−1d

0αd
(
D∑
d=1

pd )αd−α0

× (1−
D∑
d=1

pd )β−1 (10)

It is evident that the Beta-Liouville distribution has 2 addi-
tional parameters than Dirichlet distribution. The mean, vari-
ance and covariance of the Beta-Liouville distribution are
expressed as follows [32].

E[pd ] =
α

α + β

αd

α0
(11)

Var(pd ) =
α(α + 1)

(α + β)(α + β + 1)
αd (αd + 1)
α0(α0 + 1)

−
α2

(α + β)2
α2d

α20

(12)

Cov(pd , pf ) =
αdαf

α0

[ α(α + 1)
(α + β)(α + β + 1)(α0 + 1)

−
α2

(α + β)2α0

]
; d 6= f (13)

From (13), we see that Beta-Liouville distribution has
more generalized covariance structure compared to negative
covariance of Dirichlet distribution. In addition, two random
variables with same expectation can have different variances.
Such properties of Beta-Liouville distribution makes it more
flexible to estimate density of proportional data.

D. PARAMETER ESTIMATION
The concentration parameter α can be determined from the
observed proportional data Dobs which consists of N obser-
vation and each observation is a D dimensional proportional
vector. The the joint probability function of the whole dataset
can be computed as follows,

p(Dobs|α) =
N∏
i=1

p(Pi|α)

=

N∏
i=1

0(
∑

d αd )∏
d 0αd

∏
d

pαd−1i,d (14)

In order to maximize (14), we need to take the gradient
and set it to zero. It is cumbersome to apply chain rule
with the product terms in (14). Therefore, we take maximum

likelihood estimation (MLE) approach. Since the distribu-
tions discussed above are from exponential family, taking the
logarithmwill turn it into a convex optimization problem [33]
and thus a line search algorithm such as Newton-Raphson
method or fixed point iteration method can be applied
[34]–[36].

log(p(Dobs|α)) = N log 0
∑
d

αd − N
∑
d

log 0αd

+N
∑
d

(αd − 1)log p̄d (15)

The derivative for one αd is,

gd = N ψ(
∑
d

αd )−N ψ(αd )+ N log p̄d (16)

whereψ(x) = d log 0x
dx is the digamma function. The gradient,

g for the dataset is D× 1 and can be written as follows,

∇log(p(Dobs|α)) = N


ψ(
∑

d
αd )− ψ(α1)+ log p̄1

ψ(
∑

d
αd )− ψ(α2)+ log p̄2

...

ψ(
∑

d
αd )− ψ(αD)+ log p̄D


(17)

In exponential family of distribution, when the gradient
is set to zero, the observed and sufficient statistics becomes
equal and as since Dirichlet distribution is from the expo-
nential family, it is possible to formulate an equation and
solve it as a fixed point iteration problem to determine the
concentration parameters α (see [34] for details). For a vector,
this can be expressed as follows-

E[log pd ] = ψ(αd )− ψ(
∑
d

αk ) (18)

ψ(αnewd ) = ψ(
∑
d

αoldd )+ log p̄k (19)

Fixed point iteration method converges only when |g| < 1
and is linearly convergent meaning that decreasing error in
each step is roughly proportional to previous step. In contrast,
Newton-Raphson method solves has quadratic convergence
rate and guarantees to converge given that the initial guess
is close to final estimate. The Hessian of the log-likelihood
function is,

H = ∇2log(p(Dobs|α)) =



∂l2

∂α12

∂l2

∂α1α2
. . .

∂l2

∂α1αd

∂l2

∂α2α1

∂l2

∂α22
. . .

∂l2

∂α2αd
...
. . .

∂l2

∂αdα1

∂l2

∂αdα2
. . .

∂l2

∂αd 2


= B+ 1d1Tdb (20)

where B=̂diag:RD
→ RDxD

: −N diag(ψ ′(α1), . . . , ψ ′(αD))
and b = Nψ ′(

∑
d αd ); ψ

′(x) = dψ(x)
dx is the trigamma
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function. For Newtons algorithm, the Hessian needs to be
inverted and [37] provided the following inversion technique
using Sherman-Liberman formula-

H−1 = B−1 −
B−11D1TDB

−1

b−1 + 1TDB
−11D

(21)

Therefore, update for the Newton’s algorithm becomes,

αnew = αold − H−1g (22)

As discussed, it is important to estimate the initial values
of the parameters more accurately rather than taking random
initial guess so that (22) converges to global optima. There are
some propositions for the initial estimation of these parame-
ters. Method of moments technique provides good estimate
of the initial guess of the parameters. The first and second
moment of the data can be calculated from the moment gen-
erating function. The moment generating function of a vector
X of random variable x is given by E(etX ) and is defined by
MX (t).With the utilization of Taylor series expansion solving
the general moment equation for Dirichlet distribution results
in the first and second moments of the Dirichlet distribution
presented as follows-

E(X ) =
αd∑
d αd

(23)

E(X2) =
αd (αd + 1)∑

d αd (
∑

d αd + 1)
(24)

Solving the above equations, we get the values of the
parameters α which can be used as an initial guess for the
Newton’s algorithm.

αd = E[pd ]
E[pd ]− E[p2d ]
E[p2d ]− E[pd ]2

(25)

Other techniques such as Expectation Maximization and
Expectation Maximization gradient algorithm can also be
employed to deter the parameters of the Dirichlet distribution
[38].

IV. CLASSIFIER-SUPPORT VECTOR MACHINE
SVM is a well known and common choice for the the
supervised machine learning problem. Empirically it has
shown good generalization performance in different fields of
research and applications [39]–[41]. The aim of using this
classifier is to find the support vectors that maximizes the
margin between class labels where number of support vectors
is proportional to generalization error [42]. Considering the
primal representation of the optimization problem, we have

min
w,b,ξ

1
2
||w||2 + C

N∑
i

ξi

subject to, y(i)(wTφ(pi)+ b) ≥ 1− ξi, i = 1, . . . ,N

ξi ≥ 0, i = 1, . . . ,N (26)

Assume the dataset Dobs = {(pi, yi)}Ni where N is the
number of images and each image is represented by a
L1-normalized histogram (pi) and the corresponding label yi.

The objective is to determine the infinite number of linear
classifiers that maximizes the geometric margin between
the classes with the lowest generalization error. In case of
non-separable data, we look into higher dimensional space to
find the appropriate hyperplane that maximizes the geometric
margin and minimizes the misclassification error through
some feature mapping technique. To control the trade off
between the large margin and error rate, the hyperparameter
C is incorporated.
The above is a convex quadratic optimization problemwith

linear constraints. Solving this problem will result in the
maximum geometric margin between classes. Here, φ(pi) is
the embedding or feature mapping function from the input
space, χ to the feature space, H. If no extra features are
extracted from the data then this function represents the
original input data known as the attributes and the kernel, K
which is the inner product between each datapoint become
〈pi, pj〉 instead of 〈φ(pi), φ(pj)〉. For non-linearly separated
data, slack variable ξi are introduced in the objective function
and the constraints are modified accordingly. C is a hyperpa-
rameter that regularizes our objective function for misclassi-
fication.

∑N
i ξi is the upper bound of the generalization error.

For hard margin classifier C is set to high value to lower the
misclassification error and for soft margin classifierC is set to
low values to provide flexibility at boundary region for some
data to be miss-classified.

Solving the dual problem is computationally convenient
for large datasets. Relaxing the constraints with the help of
Lagrange multipliers, dual solution becomes,

max
γ

N∑
i

γi −
1
2

N∑
i

N∑
j

γiγjy(i)y(j)〈φ(pi), φ(pj)〉

subject to: 0 ≤ γi ≤ C,
∑
i

γiy(i) = 0

where i = 1, . . .N ∀αi, y(i) (27)

Only the support vectors have γ values elsewhere it is
zero. Getting the support vectors, the decision function clas-
sifies the data by comparing the kernel with the support
vectors. The decision function of the support vector machine
becomes,

f (p) =
n∑
i

γiy(i)〈φ(pi), φ(p)〉 (28)

V. FEATURE MAPPING: DIRICHLET SVM, GENERALIZED
DIRICHLET SVM, BETA-LIOUVILLE SVM
In this section we focus on the primal and dual form of the
optimization problem in (26) and (27) to modify the feature
mapping function φ(p). As discussed, optimum performance
of SVM depends on the choice of the kernel function and
there is no structured procedure to select the kernel function
or feature mapping [43]. One of the advantages of embed-
ding input vectors into the feature space is providing flexi-
bility in choosing the mapping function φ(p) depending on
the structure of the data. Taking the advantage of Dirich-
let, generalized Dirichlet and Beta-Liouville distributions
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for proportional data modelling, a new feature map can be
constructed as follows,

φj(pi)=



pij j = 1, . . . ,D
0
(∑

d αd
)∏D

d=1 0(αd )

∏D

d=1
pαd−1id j = D+ 1

∏D

d=1

0(αd + βd )
0αd0βd

pαd−1id

×

(
1−

∑d

l=1
pil
)γd

j = D+ 1

0α0

B(α,β)

∏D

d=1

pαd−1id

0αd
(
D∑
d=1

pid )αd−α0

×(1−
∑D

d=1
pid )β−1 j = D+ 1

(29)

To estimate the parameters in (29), a similar technique is
followed as described by [5]. Using the kernel trick, the pro-
posed feature mapping technique can be used with the tra-
ditional non-linear kernels to map input space into feature
space implicitly without knowing about the feature space.
The dimension of the input space is increased by 1 by doing
the feature mapping mentioned in (29). We can formulate the
Dirichlet SVM (DSVM) as follows,

min
w,b,ξ

1
2

D+1∑
d=1

w2
d + C

D+1∑
d=1

ξi

y(i)
( D∑
d=1

wdpid+wD+1
0
(∑

d αd
)∏D

d=1 0(αd )

D∏
d=1

pidαd−1+b
)

≥ 1− ξi, i = 1, . . . , n

piD = 1−
D−1∑
d=1

pd

ξi ≥ 0, i = 1, . . . , n (30)

In a similar fashion, generalized Dirichlet SVM (GDSVM)
and Beta-Liouville SVM (BLSVM) can be formulated. For a
new data p′, the trained Dirichlet parameter α is used to deter-
mine the feature mapping according to (29). The decision
function for this new data becomes,

f (p′) =
N∑
i

(
γi

D+1∑
d=1

pidp′d
)

(31)

Applying the flexible mapping function φ(p) in (29)
changes the similarity measure and thus enables us to modify
the base kernel. Apart from the regular kernels such as RBF,
polynomial, sigmoid, χ2 which are discussed vastly in the lit-
erature, we combine our proposed feature mapping technique
with the following kernels as well,
• Bhattacharya Measure
Bhattacharya coefficient is a divergence type measure
between distributions and defined as [44],

B =
N∑
i=1

√
piqi (32)

Considering a D + 1 dimensional vector, it can be geo-
metrically interpreted that the Bhattacharya coefficient
measures the cosine of the angle between the vector
elements. Since, pi and qi represent probability distri-
butions and if they have the similar density function
then the coefficient is 1. However, this coefficient can
not be used as a metric distance since it violates the
axioms of being a distance metric [45]. Tomake a proper
representation of the distance metric, [44] modified the
coefficient as Dpi,qi =

√
1− B. The kernel for this

distance with hyperparameter γ ,

K (p, q) = e−γ
√
1−B (33)

• Generalized Histogram Intersection
Histogram intersection kernel is a positive definite ker-
nel and satisfies Mercer’s condition to be used in SVM
[2], [46]. Global or low-level features are commonly
used for this, however, use of local features works well
with this kernel as well. Given two vectors namely pi and
pj containing the elements of two normalized histogram,
histogram intersection measures the similarity between
the them by using (34) [47].

K (p, q) =
N∑
i=1

min[(pi)α, (qi)α] (34)

Setting α = 1 results in histogram intersection kernel.
• Jeffrey Divergence
KL-divergence is non-symmetric and sensitive to his-
togram binning [48]. In addition, it is not robust and
does not qualify to be used as a metric of the spread
since it violates the triangle inequality. In response to
this, Jeffrey divergence is empirically derived and it is
mostly invariant to noise and histogram binning [49].

K (p, q) =
N∑
i=1

(pi log
pi
µi
+ qi log

qi
µi

);

µi =
pi + qi

2
(35)

• Rational Quadratic
From the probabilistic graphical point of view, several
squared error kernels are derived and rational quadratic
is one of them. This kernel is a scale mixture of different
characteristic length scales [50]. This kernel is useful for
modelling data which varies in multiple scales.

K (p, q) =
(
1+

∑N
i ||pi − qi||

2

2αl2

)−α
(36)

Here, α is scale mixture parameter and l is the scale
length.

• Inverse Multiquadratic
Inverse multiquadratic function is a member of gen-
eralized multiquadratic (GMQ) family of radial basis
functions defined by K (p, q) = (c2 + (εr)2)β [51]
where ε is the shape parameter and parameter β deter-
mines the positive definiteness of the function [52].
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Unlike multiquadratic kernel, inverse multiquadratic is
a positive definite [53]. Setting β = 1

2 , we get the
following expression for this kernel-

K (p, q) =
1√∑N

i |pi − qi|
2 + c2

(37)

• ANOVA
ANOVA kernel is one of the examples of convolution
kernels [54]. This kernel uses factor d to get higher order
interactions of the features that we are interested in and
then sum over the terms to get the similarity score.

K (p, q) =
N∑
i

e−(σ (pi−qi)
2)d (38)

• Generalized T-student Kernel
This is a positive semi definite kernel and satisfies the
condition of Mercer’s theorem [55]. It has similar form
to Inverse Multiquadratic kernel.

K (p, q) =
N∑
i

1
1+ (pi − qi)d

(39)

• MinMax
MinMax is a graph kernel proposed by [56] which
is similar to Tanimoto kernel when applied to binary
dataset. MinMax kernel models count data and thus
takes into account the values between 0 and 1. Therefore,
this kernel is suitable for proportional data modelling.

K (p, q) =

N∑
i

min(pi, qi)

N∑
i

max(pi, qi)

(40)

• Cauchy
Derived from the long tail Cauchy distribution, Cauchy
kernel puts more weight on interaction of distant
non-zero values [57]. [58] applied the Cauchy kernel for
sparse coding of natural scenes data.

K (p, q) =
N∑
i

1

1+ (pi−qi)2

s2

(41)

Unlike Gaussian kernel, in this kernel moving from the
center gives more weight to the features. A combination
of these two kernels showed good classification perfor-
mance on some dataset [57].

• Cosine Similarity
In an inner product space, cosine similarity measures
the similarity between the two vectors by calculating
the direction of each vector [59]. This is a non-metric
measure since it does not satisfy all the conditions to be
a metric.

K (p, q) =
〈pi, qi〉
||pi||||qi||

(42)

Algorithm 1 Algorithm for DSVM, GDSVM and
BLSVM
1. Input: Training data,
Dobs = {(p1, y1), (p2, y2), . . . , (pN , yN )}.
2. Estimate: Initial parameters using Method of
Moments (MoM) [5].
3. Update: Apply Newton Raphson’s method until
convergence [5].
4. Compute kernel:
• Base kernel: Compute K(p, q) from (33) to (45) for
φj(pi) in (29) only when j = 1, 2, . . . ,D.

• DSVM: Use first and second form of (29) for φj(pi)
and apply (33) to (45) to compute DSVM kernel,
K(p, q).

• GDSVM: Use first and third form of (29) for φj(pi)
and apply (33) to (45) to compute GDSVM kernel,
K(p, q).

• BLSVM: Use first and fourth form of (29) for φj(pi)
and apply (33) to (45) to compute BLSVM kernel,
K(p, q).

5. Optimization: Solve the primal problem in (26) or
dual problem in (27) to get the support vectors.

• Tanimoto or Extended Jaccard Similarity
A modification in the cosine similarity function results
in Tanimoto similarity index [56]. It represents the
number of attributes shared by the vectors.

K (p, q) =
〈pi, qi〉

〈pi, pi〉 + 〈qi, qi〉 − 〈pi, qi〉
(43)

Here, 〈pi, qi〉 =
∑D

d=1 pid × qid and the term 〈pi, pi〉 =
||pi||2 and 〈qi, qi〉 = ||qi||2 is the Euclidean norm or the
length of the vector. [60] derived the modified Tanimoto
coefficient in relation with Cosine similarity as,

K (p, q) =
cossim(pi, qj)

||pi||2+||qi||2
||pi||||qi||

− cossim(pi, qi)
(44)

Here, cossim(xi, yj) is calculated from (42).
• Sorensen Similarity
Similar to cosine similarity Sorensen similarity index is
a non-metric measure as it does not satisfy all the axioms
of being a metric. This measure is more appropriate
in retaining the sensitivity of the heterogeneous data
than Euclidean distance and in image segmentation and
lexical association [61], [62].

K (p, q) =
N∑
i

2piqi
p2i + q

2
i

(45)

Algorithm 1 shows the steps for the Dirichlet SVM, gener-
alized Dirichlet SVM and Beta Liouville SVM using (29).

VI. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed feature mapping
technique for natural scene classification, satellite image
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TABLE 1. Scene recognition performance results for baseline kernels and our proposed kernels.

TABLE 2. Satellite image classification performance results for baseline kernels and our proposed kernels.

classification and human action recognition in videos. The
dual form of the SVM optimization problem is solved using
[63]. For multi-class classification, one-vs-all technique is
applied and the tolerance value 10−3 is used as stopping
criterion and a hard limit on the solver is imposed by setting
maximum iterations to 5000. All the models are evaluated
using 10 fold cross validation. 9 folds are used for training
and the remaining fold for testing the model. Similar to
[5], for image classification best score is reported for each
kernel and for action recognition, average score with standard
deviation are reported for all kernels. For misclassification,
the hyperparameter C in the objective function is varied from
1 to 15 in 10 base logarithm scale and best models are found

by doing a simple grid search and are reported thereby. For
polynomial kernel, degree 3 is considered and for RBF kernel
the similarity measurements are scaled down by dividing
the length of vocabulary size. In general, BLSVM performs
better than DSVM and GDSVM approaches. As mentioned,
generalized Dirichlet distribution has twice the number of
parameters than Dirichlet distribution and density values are
more concentrated around the mean compared to Dirichlet
distribution (in Fig.1). Since our approach is to perform
feature mapping after combining discriminative features with
distribution based features, we assume that the feature pair
similarity values in similarity matrix for generalized Dirichlet
distribution are hard to separate after solving the dual form
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FIGURE 2. Violin plots of experimental results for 15 scenes dataset.

SVM in (27). Therefore, Beta-Liouville distribution is proved
to be a better generalization of Dirichlet distribution in our
proposed approach.

A. 15 SCENES DATASET CLASSIFICATION
Scene recognition is very essential for reasoning in navi-
gation and recognition tasks. Specially in terms of robotics
and automation it is significant to enhance machine’s visual
understandings [64]. 15 scene dataset consists of 15 different
scene categories. First 13 categories were collected com-
binedly by [65] and [66]. For our experiment, from each
category 100 images were selected totalling to 1500 images.
Local features are extracted using Scale Invariant Feature
Transform (SIFT) [67] algorithm as it is invariant to scale
and rotation. In our experiment, we calculate dense SIFT
[65] for speed using [68]. Descriptors are computed for
densely sampled keypoints with similar size and orientation.
Each images is converted to gray-scale and for each pixel
descriptors are computed over a patch of 16× 16 pixels. The
extracted features are quantized into a vocabulary size of 200.
Table 2 shows the best results for the baseline SVM, DSVM,
GDSVM and BLSVM.

We can see that, with our proposed feature mapping
technique accuracy score for the classification task has
significantly improved. The reason is because of increased
separability among the support vectors from each image
category. In the case of linear feature map, BLSVM shows
a 2% improvement in accuracy score. Non-linear kernels
with BLSVM performs better than DSVM and GDSVM.
We conduct statistical hypothesis testing (t-text) to investi-
gate the scores of each approaches. Results of DSVM and
BLSVMare statistically significant (p-value < 5%). However,
performance difference of baseline score and GDSVM is
not statistically significant for this dataset (p-value of 0.40).
Mean average accuracy of BLSVM is 74.67% compared to
DSVM’s 74.27%. Thus, BLSVM is the preferred method
for this dataset which requires only 2 more parameters to
learn than DSVM. Such improvement is perhaps because of
Beta-Liouville distribution’s better generalization capabili-
ties shown in (11)-(13) to capture data distribution with less
number of parameters. Fig.2 shows the probability distribu-
tion of the experimental results presented in Table 2. It is

FIGURE 3. Sample image from 15 different categories: 1. bedroom, 2. sea
coast, 3. field, 4. forest, 5. highways, 6. house, 7. industrial, 8. kitchen, 9.
living room, 10. mountain, 11. stadium, 12. store, 13. street, 14. sky
scrappers, 15. ocean underwater.

FIGURE 4. Sample satellite image from 19 different categories: 1. airport,
2. sea beach, 3. bridge, 4. commercial area, 5. desert, 6. farmland, 7.
stadium, 8. forest, 9. industrial area, 10. meadow, 11. mountain, 12. park,
13. parking, 14. pond, 15. port, 16. railway station, 17. residential area, 18.
river, 19. viaduct.

evident that Beta-Liouville distribution based feature map-
ping can be used more confidently with traditional kernels
functions. The wider region around themean in the violin plot
represents a higher probability of getting consistent average
result.

B. SATELLITE IMAGE CLASSIFICATION
This dataset has 19 categories of google satellite images
collected from http://www.escience.cn/people/yangwen/
WHU-RS19.html. Each category has 50 images and the
resolution of each image is 600 × 600. The challenges in
classifying high resolution satellite image data is that the
dominance of structures and objects in the image leads to
misclassification [69]. For feature extraction, we use the same
configuration as described in previous section.
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FIGURE 5. Sample frame from each categories performed by one person. Each frame is resized to 160 × 120.

TABLE 3. 10 fold cross validation results of action recognition from videos.

For all the kernel, BLSVM outperforms baseline SVM,
DSVM and GDSVM except for the exponential kernel
where generalized Dirichlet SVM achieves higher accu-
racy of 88.991%(Table 2). Considering the core form SVM,
BLSVM gives highest accuracy of 90.196% whereas linear
SVM achieves 86.364% accuracy. Smaller p-value (less than
0.005) from Student’s t-test confirms that performance results
obtained from BLSVM are statistically significant and thus
we reject the null hypothesis of being equal averages with
other approaches. Fig.6 shows the distribution of accuracy
score for BLSVM has less variance than other approaches
which guarantees that it can be used confidently with selected
kernels for this dataset.

C. HUMAN ACTION RECOGNITION
Recognizing human action in videos is an interesting learning
task for surveillance and navigation tasks. For the purpose of
evaluation of our model for videos, we choose KTH-human
action recognition data introduced by [7]. This dataset con-
tains 6 categories each having 100 videos with 4 different
scenarios and each action is performed by 25 different per-
sons with different variations e.g. different color of clothing,
different motion of the person, camera angle, zooming, zit-
tering etc. In total, there are 2391 sequences in this dataset.

FIGURE 6. Violin plots of experimental results for Satellite image
classification dataset.

We are interested in dense features as it is more accurate than
sparse features. Thus, we use dense optical flow algorithm
proposed by [70]. Open source computer vision library such
as [71] is used with default values to extract features with the
codebook size of 500. Each frame is resized to 160×120 and
further downsampled to 16× 12 by taking the pixel values of
the positions which are divisible by 10. L2 normalization is
used for feature invariance. To create Dirichlet, generalized
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FIGURE 7. Confusion matrix for human action recognition in videos.

FIGURE 8. Violin plots of experimental results for human action
recognition dataset.

Dirichlet and Beta-Liouville SVM, the whole dataset is nor-
malized as proposed in [5]. For 10 fold cross validation, mean
accuracywith standard deviation are reported in Table 3. Total
384 videos are used training and 216 videos are used for
testing. In the test data, each class has 36 videos.

FromTable 3, highest average accuracy of baseline SVM is
92.034% for MinMax kernel which is increased to 94.104%
when we combine MinMax kernel with Dirichlet feature
mapping function. Fig. 7 shows the confusion matrix for
DSVM MinMax kernel which achieves 87.50% accuracy
for the test data compared to base MinMax kernel’s score
of 86.11%. Significance testing using Student’s t-distribution
shows that DSVM and BLSVM is statistically significant
(p-values between 0.0009 to 0.007). GDSVM score is not
significantly different than baseline SVM (p-value of 0.7).
Heavy right tail of BLSVM’s performance distribution
in Fig.8 signifies that there is a greater probability of getting
a higher accuracy score than DSVM.

VII. CONCLUSION
This paper shows a novel feature mapping technique for pro-
portional data based on Dirichlet, generalized Dirichlet and
Beta-Liouville distributions which shows good accuracy in

classifying images and videos. Such data are prevalent in data
mining, image processing and pattern recognition problems
which motivated us to exploit the statistical representation of
the data in order to enhance the discriminative power of the
traditional SVM kernels. In particular, we have introduced
three feature mapping functions for proportional data to be
used in SVM learning algorithm. Our experiments show good
performance of the proposed technique in classifying natural
and satellite images and also in classifying human action
recognition in videos. The results also show that either of
the proposed distribution based feature mapping functions
increases the accuracy of the corresponding SVM kernel.
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