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ABSTRACT Complex systems can be characterized by their level of order or disorder. An ordered system
is related to the presence of system properties that are correlated with each other. For example, it has
been found in crisis periods that the financial systems tend to be synchronized, and symmetry appears
in financial assets’ behavior. In retail, the collective purchasing behavior tends to be highly disorderly,
with a diversity of correlation patterns appearing between the available market supply. In those cases,
it is essential to understand the hierarchical structures underlying these systems. For the latter, community
detection techniques have been developed to find similar behavior clusters according to some similarity
measure. However, these techniques do not consider the inherent interactions between the multitude of
system elements. This paper proposes and tests an approach that incorporates a hierarchical grouping process
capable of dealing with complete weighted networks. Experiments show that the proposal is superior in terms
of the ability to find minimal energy clusters. These minimum energy clusters are equivalent to system states
(market baskets) with a higher probability of occurrence; therefore, they are interesting for marketing and
promotion activities in retail environments.

INDEX TERMS Boltzmann machine, clustering, disordered systems, greedy, hierarchical, market basket.

I. INTRODUCTION
The modeling of complex systems using networks has
allowed large progress in understanding the interrelationship
between a system’s components and the complex interactions
between them. From a network approach, the network’s nodes
or vertices represent the system’s elements, and the edges are
the connections between the nodes. These edges may also
contain information regarding the intensity and direction of
the interaction between two nodes. For example, the correla-
tion between two financial assets or the coupling energy level
needed to activate two neurons.

When the weights of these networks’ edges are assumed
to be i.i.d. random variables with a continuous distribution,
we face disordered systems [1]. These systems are challeng-
ing to analyze due to the complexity and multiplicity of
interactions resulting in multiple optimal energy states. Con-
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sequently, finding a global optimal or optimal configuration is
an arduous task. These optimization problems are prominent
in spin glasses [2], folding proteins [3], and the well-known
traveling salesman problem [4].

The theory of disordered systems is interdisciplinary since
problems in biology, finance, neurosciences, and recently in
retail could be viewed as disordered systems solved with
similar methods. The resolution of these problems is related
to combinatorial optimization, where it is necessary to min-
imize a cost function (energy or distance) on a broad set
of variables [5], [6]. In general, these cost functions have
many local optima, which makes finding a global solution
non-trivial. Despite this issue’s difficulty, one tries to study
these optimization problems on average, that is, by describing
typical system configurations [7].

A classic example of a disordered statistical physics system
is the spin glasses, which have random ferromagnetic and
antiferromagnetic couplings that lead to frustration and a
rugged energy landscape [8]. These characteristics seem to
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be found in various phenomena and give rise to hierarchi-
cal structures characterized by ultrametrics. In this sense,
the minimum spanning tree (MST) as a combinatorial opti-
mization problem has found applications in this kind of ran-
dom systems because the ground state can bemapped directly
on the MST problem [9]. The MST can be seen as a property
in the sense that its geometry is unaltered to the distribution
of the system disorder, and its energy can be found for a
given graph topology [10]. The disordered systems can be
represented as complete networks (networks with N nodes
and N (N − 1)/2 edges), where nodes or spins can adopt only
two states (si = −1 or si = +1). Each node is connected to all
the other network nodes through couplings that determine the
nature of each node’s interaction. In those cases, the proba-
bility of a system state P(s) can be considered proportional to
the energy of the system, i.e., P(s) ∼ exp(−H (s)/Z ), where
Z is the partition function and H (s) = −

∑
ik siskJik is the

energy function of the system depending of the interaction
between nodes. This value describes the macroscopic energy
of the system for a particular state s. Note that with Jik > 0,
the energy decreases, and therefore, the probability increases.
Thus, the Jik couplings are directly related to the probability
of a system state occurrence. Consequently, for a particular
state, all possible pairs of couplings involved must be taken
into account. The couplings of the network could be repre-
sented as the coupling matrix J, which is equivalent to the
weighted adjacency matrix, and it is the fingerprint of the
system. An appropriate transformation to the values of J in an
equivalent of the distance between nodes allows us to apply
clustering methods to discover the hierarchical structure.

As an example of these complex systems, we have financial
markets where the time series of stock returns are not pre-
dictable and can be described by random processes. In these
cases, it is necessary to understand groups of stocks traded
in the market that appear to have similar behavior and dis-
tinguish them from others with different behaviors [11]. The
synchronous correlation coefficient of the daily difference of
logarithm of closure prices of stocks is computed among pairs
of stocks to obtain portfolio stocks’ taxonomy [11], [12].
The correlation coefficient matrix is used to detect the hier-
archical organization present inside the portfolio of stocks
traded. A distance function is used on the correlation to obtain
a metric that meets the axioms of distance metrics [13], [14].
The distance matrix is then used to determine the MST that
connects the N stocks of the portfolio with N − 1 edges.
Thus, from a complete network connecting every pair of
stocks through an edge with distance weights, one obtains
a tree that describes a taxonomy of great interest from the
economic point of view. This procedure has been repeated
in numerous studies that establish the relationships between
microscopic market interactions and macroscopic economic
states [15], [16], and retail-related studies [17]. Note that
the original network’s weights are the pairwise correlations,
which only measure the linear connection between pairs of
system elements. The correlations assume that all the obser-
vations are independent of each other. The latter may not be

FIGURE 1. As an example, we have a simple coupling network G. It is a
complete network with four nodes. The numbers on the edges indicate a
distance between the node pair. The smaller the distance, the lower the
bond energy between the two nodes. Thus, there is a higher probability of
that state occurring. The minimum spanning tree of G is shown to the
right with a minimal distance of 2.6. So, a hierarchical clustering using
single linkage will be the following: the first cluster is {A,B} at a distance
of 0.5. Next, {A,B,C} at a distance of 1, and finally, {A,B,C,D} at a
distance of 1.1. However, when we form the cluster {A,B,C} the total
distance-coupling involved is 3 (0.5+ 1.5+ 1.0). If we want to minimize
the coupling energy, a better solution would be the cluster: {A,B,D} at a
distance of 2.8 (0.5+ 1.1+ 1.2), and finally {A,B,D,C} at a distance
of 7.4. Of course, the first and final clusters are the same in this example;
however, the cluster {A,B,D} has lower energy than the cluster {A,B,D},
so the first one represents a better representation of a cluster because it
has a higher chance of occurrence.

correct due to the multitude of interactions between different
system components. Instead, we try precisely to consider
these relationships using couplings inferred from Boltzmann
machines. Unlike a correlation, these couplings indicate the
chance that a pair of elements are in a particular state.

The clustering structure has been studied using inferred
couplings with Boltzmann Machines [18], [19]. Similar to
the above, the related industry structures are based on MSTs,
revealing industry sector clustering as a connected subset of
the tree. In these cases, the MST has successfully revealed
industrial groups of homogeneous behavior, but this does not
necessarily reveal groups of system states that have a greater
chance of behaving similarly. By definition, the resulting
MST is derived from the Prim algorithm, which connects
nodes with minimal energy (or minimal distance). In this
process, the effect of other involved edges or couplings is
discarded. Figure 1 shows the problem.

Market basket analysis aims to discover, among hun-
dreds of thousands or millions of records, customer pur-
chase patterns that can be useful for establishing promotional
actions and bidding campaigns to maximize sales. In this
area, the workhorse for discovering groups of products that
occur together in a transaction set are the association rules
(ARs) [20]. ARs are local-type models; that is, they look
at parts of a data set (for example, a subset of variables or
observations) to find rule-based patterns for a restricted set of
binary variables. They are simply rules for joint occurrence
between two item sets. In other words, the rules do not
consider how a dependency between two items changes if
the relationship between one of those items and another that
is not in that relationship changes. However, other alterna-
tives have been developed recently that look for global mod-
els. Thousand of customers’ aggregate purchasing behavior
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has been studied, understood as a complex system of the
market offer elements. For example, the hierarchical tree
structure of the MST’s subdominant ultrametric distances
reveals the strongest dependencies between products of the
same category, facilitating the retail manager, the proposal
of different offers and promotions [17], [21], [22]. Again,
there is a complete network of correlations computed from
transactional data that indicate the presence and no-presence
of various items or products in the market baskets of hundreds
of thousands of customers. Then, the MST is found to reveal
taxonomic structures. The problem with this approach is that
it does not consider the possible effects of other interactions
between active nodes, resulting in groups of items or products
that do not reflect homogeneous groups of items with an acti-
vation behavior (simultaneous presence in themarket basket).
Our proposal is of a global nature; that is, we evaluate the
joint distribution of the items, considering them as elements
of a multi-state collective purchasing system, and offers par-
siomonic groups of items that are more likely to occur.

The paper is organized as follows. A proposal of a
coupling-based measure that considers all possible interac-
tions for a potential cluster is presented. This measurement
is the coupling energy for a particular system configuration.
This is presented in the methods section. Based on the mini-
mization of coupling energy, we study hierarchical structures
of synthetic disordered systems and compare our algorithm’s
performance with two other well-known alternatives. This is
presented in the results section and evaluated in the discussion
section.

II. BACKGROUND
In this section, we define the problem by starting by describ-
ing a disordered Ising system. Although our proposal can be
applied to any network with weights, with the only condi-
tion that the weights must be positive and greater than zero,
we focus the development on networks that represent disor-
dered systems, in which interactions must be inferred from
observed states of the system. These allow us to establish a
coherent method from the inference of network weights or
couplings to discover the system’s underlying hierarchy.

A. DESCRIBING THE PROBABILITY DISTRIBUTION OF
STATES OF THE SYSTEM
The observation of a system reveals information about the
states that manifest over some time. After gathering enough
information, we can eventually find an empirical distribution
of the realization of these states. Our interest is in finding a
statistical model of this distribution. In these cases, the pair-
wise models are attractive because they can fit well with
reasonable amounts of data [23].

Let be a vector s = (s1, s2, . . . .., sN ), which denotes a state
of the system, which in our case, represents a market basket
with N items as part of the market offer. The component si
can take +1 o −1 values depending on whether the i item
is present in the basket. Let be p(s) the probability of state
s occurring. The probability p(s) that the system is in such a

micro-state, can be found by maximizing the Shannon infor-
mation entropy S = −

∑
s plog2 p subject to the restriction

that p(s) is normalized, and that the first moments 〈si〉 and
the second moments 〈sisk 〉 are equal to those observed from
the sample [19]. The solution to this optimization problem
results in the Boltzmann distribution:

p(s) ∼
e−H (s)

Z
(1)

where Z =
∑

i hisi−
∑

s e
−H (s) is the partition function, and

H (s) = −
∑

ik sihi−0.5
∑

ik Jiksisk is the energy function of
the interaction between two particles i and k of the system.
This value describes the energy of the system for a particular
s state. The Jik couplings represent the interaction between
both particles (for example, the market offer elements, SKUs,
or aggregated levels of categories). When Jik > 0, there is a
ferromagnetic interaction, which promotes that the spin i and
j are aligned in the same direction. In other words, an item i
and k tend to be present or absent simultaneously in a market
basket. When Jik < 0, the relationship is antiferromagnetic,
where spin i and k tend to be aligned in opposite directions.
That is, while one item is present or active in a market basket,
the other is not. Thus, the magnitude and sign of each element
Jik in the matrix J, defines a measure of the strength of the
interaction between all pairs of items.

B. THE NETWORK OF COUPLINGS
The coupling matrix J is equivalent to the weighted adja-
cency matrix. This matrix defines the network of couplings.
Since each system element eventually interacts with each
of the other system elements, the network is complete. The
hi parameters, or fields, can be considered external agents’
effect on the system, which influences only the spin i [19].
Without loss of generality, the coupling matrix could be

correlations or some other measure of interaction. However,
it makesmore sense to talk about couplings because they have
information about the energy needed to excite a pair of spins
(nodes). Consequently, it is related to the probability of find-
ing a particular state between a pair of nodes. In the following,
we will continue talking about a matrix of couplings.

The network of couplings G is a collection of nodes
V = {v1, v2, . . . , vN } and a collection of edges E that con-
nects the vertices, so G = (V ,E) with E =| V | × | V |, is a
complete network. An edge e ∈ E connect a pair of vertices
(vi, vk ) with a coupling Jik ∈ J.

The graphG could have connections with positive and neg-
ative weights, denoting the variety of relationships between
the nodes of the system giving rise to reinforcement and
frustrations, similar to what happens in a spin-glass, where
the couplings can be considered as a random variables that
do not change in time, i.e., a quenched disorder. Couplings
can adopt any positive or negative value, so to simplify the
analysis, to the coupling matrix J is applied a nonlinear
monotonic transformation, so that dik = (max(J) − Jik )1/2.
Thus, a positive interaction suggests a short distance between
nodes. A negative one suggests a long distance. The result
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is an array D that plays the role of proxy for the energy
couplings. This transformation is monotonic and does not
alter the original order of the couplings.

C. MINIMUM BARRIER ENERGY
The minimum spanning tree (MST) can be considered a
unique signature for each graph in random graphs. The MST
energy for disordered systems is related to a scaling distri-
bution, universal for all random graphs, and is not altered by
the existing level of disorder [10]. Since the MST represents
a network’s skeleton in which all nodes can be traversed at
minimum cost (minimum energy), it has been an essential
part of hierarchical clustering models.

The MST T (G,E∗) is a subgraph of G that has the same
nodes as G, and it has a subset of edges E∗ ⊆ E(G) such
that all the nodes are joined with the minimum distance,
that is,

∑
i,k∈T (V ,E∗) dik is minimum, without loops which

configures a tree withN nodes andN−1 edges. In disordered
systems, this tree is equivalent to the path of minimum energy
and, consequently, the one that offers the least energy barrier
to move through the entireG network. These distances are the
ones that have been used to find the hierarchical structures in
previous studies.

D. COUPLING ENERGY
Each v ∈ V has a state s that takes values −1 or +1, so that
for any node i, it can adopt si = −1 (the item i not present
on the market basket) or si = 1 (the item i is present on
the market basket). The state of the G network system can
be represented by a vector S = {s1, s2, . . . , sN }. We are
interested in finding communities of nodes that have a high
probability of simultaneous occurrence, which is equivalent
to having a set of nodes or a community C , defined as
C = v′ ⊆ V |s({v′}) = 1.
From the function H (s), we are interested in coupling

energy. Given the G(V ,E) network, with its corresponding
coupling matrix J, the coupling energy of the system for a
given state S is:

U (S) = −
∑

{i,k}∈G(V ,E)

Jiksisk , Jik ∈ J (2)

More negative values of this energy indicate a stable state
of S or a greater probability of occurrence. Therefore, it is
of interest to look for combinations of S that produce the
minimum coupling energy. We can adapt the Equation 2 to
indicate the coupling energy of a community C :

U (G,C) = −
∑
{i,k}∈C

Jik , Jik ∈ J (3)

The states si and sk are not necessary to be included. They
are already in the condition of +1. The same equation 3, can
be expressed in terms of distance:

U∗(G,C) =
∑
{i,k}∈C

dik , dik ∈ D (4)

E. LEARNING THE COUPLINGS
The problem of inferring J (containing N (N − 1)/2
couplings) is not trivial because, for a system with N
spins, there are 2N possible system phase states. This
amount is usually much greater than the number of
observed states, so an inference method is needed to
solve the optimization problem with fewer observations
than the number of possible system states. An alterna-
tive for this is the use of Boltzmann machines [21], [24]
without hidden units. Unlike a restricted Boltzmann machine
used as a feature extractor to learn features from data [25]
or to predict links in dynamic networks [26], an unrestricted
Boltzmann machine has no hidden neurons. All neurons are
connected between them [24]. The learning process consists
of finding the weights or couplings that define the Boltzmann
distribution in Equation 1 using a set of system state vectors.

The algorithm starts with an initial guess of the cou-
plings, which are used to carry out a Metropolis-Hasting
simulation phase using a distribution with those parameters.
Then, in the negative learning phase, the first and second
moments are calculated from that simulation. The couplings
are updated according to the process of contrastive diver-
gence [24] following:

J tik = J t−1ik + ν
(
〈sisk 〉data − 〈sisk 〉model

)
hti = ht−1i + ν

(
〈si〉data − 〈si〉model

)
(5)

where t indicates the epoch of iteration and ν is the learning
rate.

The process is repeated as many times as necessary until
the difference between the old and updated parameters is less
than or equal to a predetermined value. The process gradually
results in the distribution of the equation 1 in which the first
moments of the spins (one-body averages) and the second
moments (the pairwise connections) between those of the
Boltzmann machine and the empiric ones tend to equality:

〈si〉model = 〈s∗i 〉data
〈sisk 〉model = 〈s∗i s

∗
k 〉data (6)

As a result of the inference process, the coupling matrix J
is obtained.

III. PROPOSED METHOD
As previously indicated, market basket analysis consists of
looking for buying patterns that arise after many customer
purchases. Association rules, for example, have played a
vital role in this activity to find relationships between groups
of items. The process of generating these association rules
between products is local, which means that a rule does not
consider other items’ effects. In other words, it does not
consider how a dependency between two items changes, if the
relationship between one of those items and another that is not
in that relationship changes. Instead, our proposal is global;
that is, we evaluate the items’ joint distribution, considering
them as elements of a multi-state collective purchasing sys-
tem. To better understand the process and analysis that we
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FIGURE 2. Global representation of the analysis process of hierarchical
grouping, using the Agglomerative Clustering by the Couplings algorithm.
The related section is indicated at each step.

raised in this work, Figure 2 shows a flowchart that includes
each step. The process considers two essential tasks: The first,
relating to the problem of inference or learning of couplings
J (Section II-E), and the second relating to agglomerative
clustering. This section focuses precisely on this last step and
on the analysis needed to validate the algorithm’s solution and
find a solution.

A. AGGLOMERATIVE CLUSTERING BY COUPLINGS (ACC)
ALGORITHM
This section defines a greedy approach to find iteratively
groups of nodes that minimize coupling energy U∗. The pro-
cedure for finding clusters and their hierarchies is based on
a greedy approach. This approach provides a quick solution
that can be easily implemented [27].

The hierarchical clustering is bottom-up. Communities of
nodes are formed at each step C = {C1, . . . ,Cn}. In the
beginning each node v ∈ V is a single community. Next,
a pair of clusters are merged to form a cluster Ci, and the
process is repeated until all nodes in V belongs to some
cluster. Each cluster is made up of nodes in V of the graph
G such that Cj ∩ Ci = ∅, (j 6= i),

⋃̃n
Ci∈C Ci = V . Each step

of the algorithm is an optimization problem in that a decision
must be taken: which pair of clusters to merge, such that the
coupling energy U∗(G,Ci,Cj) be minimum, i.e., form a new
cluster Ck = Ci ∪ Cj, such that:

Ck = argmin
Ci,Cj∈C

U∗(G,Ci ∪ Cj) (7)

Thus, the algorithm selects the pair of clusters that provide
the minimum coupling energy to form the Ck cluster.
Similar to the classic hierarchical clustering analysis, our

algorithm reveals the hierarchical structure. The merge dis-
tances between clusters indicate the chance that nodes in
those clusters are all together activated (or in the same market

Algorithm 1 Agglomerative Clustering by Couplings: ACC
1: Input
2: C = {v ∈ V (G,E)}
3: D Distances of {E}
4: w =| V |
5: procedure ComputeEnergy(Ci,Cj)
6: Compute U∗(G,Ci ∪ Cj)
7: return U∗

8: end procedure
9: procedureMakeJoin(Ci,Cj)

10: w := w− 1
11: return C − Ci − Cj + (Ci ∪ Cj)
12: end procedure
13: Main procedure:
14: while w 6= 0 do
15: ∀(Ci,Cj), ComputeEnergy(Ci,Cj)
16: Find the minimum U∗(G,C∗i ∪ C

∗
j )

17: Ck := MakeJoin(C∗i ,C
∗
j )

18: end while

basket). The merging process can be visualized in a dendro-
gram representing the order in which the nodes are grouped
into communities, capturing the entire hierarchical clustering
process. An advantageous aspect of this methodology is that
it does not violate the monotonic assumption, which indicates
that the energy of successive merges is always increasing.
This way, we are sure that we chose the best merge in each
step of the algorithm.

An important issue to consider is that as the size of the clus-
ters increases (more products in the state si = 1), the energy
U∗(G,C) needed for this to occur also increases. In this way,
independently of the merge path of clusters that the algorithm
finds, it will always end up with a cluster that merges all the
system elements with single final coupling energy. Therefore,
for a given problem, the algorithmmay initially find very low
energy clusters, but it will invariably end up with high energy
clusters. Consequently, what we can modify is the trajectory
of product aggregation. The ACC Algorithm always provides
a single path that minimizes the coupling energy at each step
(see Algorithm 1).

B. CLUSTERING STRUCTURE
To compare the structures that are formed with each algo-
rithm, we use the Agglomerative clustering coefficient.
This coefficient measures the amount of clustering structure
found. Values closer to 1 indicate a balanced clustering struc-
ture, and values closer to 0 indicate no clustering structure.
The coefficient achieved for network G, CG was computed
as:

CG =
1

N − 1

N−1∑
i=1

(
1−

U∗i
max(U∗i )

)
(8)

where the coupling distances U∗ are taken for each iteration
and N is the number of nodes of the coupling network.
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C. INTERNAL CONSISTENCY
Each algorithm’s result is a record of cluster merges that
define in itself the structure achieved by the iterative clus-
tering process. It is then necessary to look for a solution
that indicates how many clusters there are or, in other words,
to find the cutoff distance that defines the number of existing
clusters. This requires some measurement that assesses the
consistency of the clusters given this cutting distance.

In our case, we are not dealing with classical distance
metrics calculated from a set of several variables (for exam-
ple, the Euclidean or Manhattan distance), but with energy
proxies. It is worth remembering that a high coupling distance
means an anti-ferromagnetic relationship exists between the
system elements. In contrast, a low coupling distance means
that the system’s pair of elements has a ferromagnetic rela-
tionship. Thus, we do not necessarily look for the element
i to have a high distance with other items outside its cluster.
This is equivalent to saying that we want the element i to have
an anti-ferromagnetic relationship with all the other system
components outside the cluster. It is not a meaningful task
in frustrated systems where there are as many ferromagnetic
as anti-ferromagnetic relationships. In this sense, it is not
convenient to directly apply classical internal validity mea-
sures of clustering like the Davies-Bouldin index [28] and the
Silhouette Width [29].

Thus, it is preferable to build an ad-hoc consistency mea-
sure for this application. Following Equation 4, and simpli-
fying the notation, we will say that U∗(C) is the coupling
distance of the cluster C . It represents the level of internal
coupling energy of the cluster.

On the other hand, we define the b(i,Ck ) as the coupling
distance of the cluster Ck , i /∈ Ck , that would be obtained if
to this cluster is added the element i. That is to say:

b(i,Ck ) = U∗(Ck )+
∑

dij ∀ j ∈ Ck (9)

This value represents the (energetic) convenience of keeping
the i element in the cluster to which it belongs. We compute
the coefficient s1(i,Ck ) =

b(i,Ck )
U∗(Ck )

. As b(i,Ck ) > U∗(Ck ),
then s1(i,Ck ) > 1. We are interested that by incorporating
node i in the Ck cluster, the coupling distance of the cluster
increases significantly, which means that it is not convenient
that node i is in Ck . Consequently we are interested that s1 be
as large as possible.

If we calculate the average of all the s1(i,Ck ) for all the
existing clusters k (except the one where the i node lives) for
all nodes in the system, S1, we obtain a cohesiveness indicator
of the clusters when the i element is incorporated as a solution
in other clusters. The idea is that S1 be as large as possible.
Now, we define q(i) as the coupling energy of the cluster

C when node i leaves the cluster, that is to say,

q(i,C) = U∗(C)−
∑

dij ∀ i, j ∈ C (10)

It represents how much coupling energy of the cluster C
elements is affected when i is not present. We computed
the coefficient s2(i,C) =

q(i)
U∗(C) . If the i node is very well

coupled to the cluster, then its removal from the cluster will
not affect much the coupling energy of the cluster, that is,
q(i,C) ≈ U∗(C). Therefore, we are interested that s2 ≈ 1,
which would indicate that the node i is correctly belonging to
the cluster C . In other words, we are interested in S1 being as
large as possible. We compute the average of all s2 values for
each cluster and node in the system: S2.
Note that for small cutoff distances, we will have many

clusters with few nodes in each, so the values of s1 will
be higher compared to larger distances. Adding a node to
a cluster with few members will have more relative impor-
tance than a cluster with many nodes. Thus, as the cutoff
distance increases, the S1 indicator decreases. On the other
hand, with many clusters and few nodes, s2 will be close
to zero. Removing a node from a cluster with few nodes
will have a greater impact than doing it in a cluster with
many. Thus, as the cutting distance increases, the S2 indicator
increases.

We look for a solution that maximizes at the same time,
S1 and S2. To get a global indicator of the consistency, it is
possible to use a weighted function:

S(h) = α (S1(h)−max(s1))2

+(1− α) (S2(h)−max(s2))2 (11)

where S1 and S2 depends on cutting distance h. We try to
minimize S(h). The α-value is the importance we give to the
S1 coefficient.

D. SPACE AND TIME COMPLEXITY
The ACC algorithm structure is not, in essence, very different
from a bottom-up or hierarchical agglomerative algorithm.
All distances between every pair of nodes must be computed
in at least O(n2) because each distance must be examined
at least once. Similar as in single-link clustering, each node
starts being its own cluster, and then, a couple of clusters form
another higher hierarchy cluster. The process requires to find
smallest distance for each data point and keep this informa-
tion in the next array. The process continues in N − 1 steps
of merging, and the distance matrix is updated in O(n) [30].
The difference lies basically in the concept used as a measure
of distance between nodes, which, in our case, is of coupling
energy between nodes, and not only the distance between two
nodes. The space complexity isO(n) because we need to store
the distance matrix.

The Figure 3 shows how the ACC algorithm scales in time
and memory. In the case of time, the simulations show that
the behavior can approach well to a quadratic relationship.
Thememory usage, as expected, is linearly proportional to the
network size, however, for sizes over 500 nodes, the demand
for increased storage of the distance matrix and the sequence
of merges, requires an increase in the rate of memory usage
for each additional node of the network. There are other
faster variants for Hierarchical clustering [31], which could
be implemented in the future for the ACC algorithm in order
to improve time and memory usage.
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FIGURE 3. (a): Log-Log plane of execution time of the ACC algorithm
versis the size of the network. The line is an approximation of a linear fit
to the data. The estimated coefficient was β = 1.95, significant at 0.1%.
(b): Plot of memory usage of the ACC algorithm versus the size of the
network. The simulations were performed on a PC-Desktop with MS
Windows 10, processor Intel i7-6800K 6-core, 3.4Hz CPU, RAM: 16 GBytes.

IV. EXPERIMENTS
A. SIMULATIONS
To compare the proposed algorithm’s results, we started by
simulating different coupling matrices J of different size and
distribution. The results aremeasured in terms of the coupling
distance U∗(G,C) of the clusters that are being merged in
each step. It should not be considered U∗(G,C) as a per-
formance measure between agglomerative algorithms, but a
comparison measure that allows us to verify that our proposal
produces clusters of elements with lower coupling energy
about other algorithms. We consider two other agglomerative
algorithms that allow finding structural hierarchies:

1) A hierarchical clustering using single linkage. It is
the equivalent to the MST [32], which has been the
standard for determining the hierarchical structure of
financial systems.

2) A hierarchical clustering using modularity [33], [34]
(MOD). The algorithm is also a greedy approach
to find in successive iterations, the best combina-
tion of nodes that maximize modularity. The algo-
rithm is agglomerative because, at each step, two
clusters merge. The merge is decided by optimizing the
weighted modularity. This method is possibly one of
the most widespread and successful in many network
applications [11]–[13], [15], [16].

We carried out several simulations with a different number
of nodes. Figure 4 shows the energy paths achieved by every
algorithm over 100 coupling matrix simulations each one.
The couplings matrices J were simulated from a normal
distribution with mean 0 and variance 1. Each matrix is then
transformed into a distance matrix, which is the input for each
of the algorithms under test. The error bars and the points
show the variations and averages of each iteration’s coupling
energy, respectively.

First, we see that the greedy ACC Algorithm (red curve)
is superior to single-linkage (MST) (green curve) and

modularity maximization algorithm (blue curve). In general,
the ACC approach that explicitly seeks to minimize the cou-
pling distance manages to create clusters of nodes that have
a smaller coupling distance than the MST and the modular-
ity maximization approach in almost all the steps. This is
expected since both algorithms do not work minimizing the
coupling energy. Second, the approximation using MST has
drastic increases of coupling distances indicating that some
clusters merge at high distances. This occurs because the
merging criterion is strictly local-based only on the edges
of the MST. Instead, the ACC Algorithm seems to find
well-defined groups of nodes that, for our purposes, rep-
resent market baskets of products that tend to be present
simultaneously. Observing the energy paths for the MST
algorithm, it is observed that the mergers are made at a
high coupling distance, and the chaining effect is present,
i.e., individual nodes are joined to larger clusters, one by
one. Thirdly, the maximum coupling energy corresponds to
the energy required to activate all the network nodes simul-
taneously. All the algorithms must finish on that coupling
distance.

To get an idea of the solutions found for each algorithm,
Figure 4(b) shows the resulting dendrograms of a simulation
with N = 25. The ACC approach not only succeeds in merg-
ing nodes at a lower distance compared to their competitors.
It also seems that ACC Algorithm achieves a more balanced
node grouping structure. The agglomerative clustering coef-
ficient for the ACC algorithm, MST, and modularity were
0.925, 0.803, and 0.902, respectively. Simulations were also
carried out using uniform distributions of couplings between
−3 and +3. The results are similar to those shown in Fig-
ure 4(a).

Figure 5 shows the results of the simulations using normal
distributions for J. The greedy ACC Algorithm outperforms
the other two algorithms in terms of coupling distances and
clustering structure, being the clustering by MST the worst
in terms of structure. Interestingly, the ACC Algorithm offers
very little variability in results, which indicates that the clus-
tering structures achieved are similar for a given size of the
network.

It can be seen that in all the algorithms, there seems to be
a very slight improvement (increase) of the coefficient as the
size of the network increases. This is due to the effect of the
maximum coupling energy max(U∗), which becomes larger
and larger as the size of the system increases.

B. REAL EXAMPLE
To show our proposal’s usefulness, we used a sample of
real transactional data (also in [35]). The sample comprises
42077 purchase transactions between January and Decem-
ber 2007 of a national grocery chain in Chile. The data comes
from a brach of the grocery located in the Capital of Chile,
Santiago. Each record indicates the customer’s ID, the iden-
tification and quantity of each item purchased, and the cate-
gory and subcategory to which each item belongs. We have
concentrated on carrying out the analysis in the 25 most
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FIGURE 4. (a): Simulations of coupling matrices J with a size of 25, 50, and 100 nodes, as inputs to the MST, MOD, and ACC algorithms. There are
100 different random generations of J to calculate mean and standard deviations of every iteration for every size. The Figure shows the energy
log(U∗) at which the algorithm merges the clusters. The use of the logarithm is only to improve the graphical representation of the merge
energies. (b): Dendrograms for a simulation with N = 25. The CG values at the bottom indicate the clustering coefficients for the clustering
results of each algorithm.

FIGURE 5. Agglomerative clustering coefficients (CG) for different
network sizes (N). For each size, 30 differents coupling matrices were
simulated from a normal distribution with five differents means of
couplings and standard deviation 1: 〈J〉 = −2 (predominantly
anti-ferromagnetic system with negative couplings), −1, 0, +1 and +2
(predominantly ferromagnetic system with positive couplings).

important subcategories of products in the branch. We repre-
sent eachmarket basket as a vector S with lengthN = 25with
values of 1 and−1, indicating whether or not the subcategory
to which the item belongs is present in the basket.

1) INFERENCE
The first step is to infer the N (N − 1)/2 = 300 cou-
plings between the N = 25 product subcategories. For this,
we follow the same procedure used in [36] and described in
the Previous Section. We use 400 steps of the Boltzmann
learning with a decreasing learning rate of ν = 0.8 and a
decay of 0.0001. Themeans orientations and pair correlations
were computed using the Metropolis-Hasting process with
40000 steps. In this way, we empirically assure the machine’s
convergence for the coupling parameters with an RMSE less
than 10−3.

At the end of the process, a test is made to verify that
Equation 6 is met, that is, that the model reproduces the
empirical data. This can be done by comparing the means
and correlations of the actual data with those of the sample
from the last Metropolis-Hasting process using the inferred
couplings. If the empirical values of the spins orientations 〈si〉
and pairwise correlations 〈sisk 〉 and reproduced ones are the
same, a scatterplot between themwill show a perfect line with
correlation ρ = 1 and a root mean square error RMSE = 0.
The results indicate that for spin orientations and pair-
wise correlations, the correlation and RMS were 0.00058
(ρ = 0.996) and 0.00062 (ρ = 0.998) respectively.
The second step consists of transforming each coupling Jik

in equivalent distances dik , being the matrix D the input for
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FIGURE 6. (a): The network of couplings. Orange edges are positive couplings, and green ones are negative couplings. (b): The
corresponding MST of the network of coupling. The edges are the coupling-distance converted. The thicker the edge, the closer
the pair of vertices are. The numbers in each vertex represent subcategories of items. For example, some of them are marigold
seed oil (4), vegetable oil (7), rice grade 1 (10), rice grade 2 (11), family size coke (23), vitaminized noodle (80), flavored noodle
(78), regular washing machine (94), packaged red wine (212), beaten yogurt (214). (c): Cluster merging paths for the real case
dataset, using the ACC Algorithm (red line), the MST (light blue line), and weighted modularity-based clustering (green line).
The y-axis represents the coupling distances U∗ in each iteration of the process. (d), (e) and (f) are the dendrograms as a result
of clustering results using ACC, MST and MOD algorithms.

the ACC Algorithm. These equivalent distances are also used
as the input to the Prim algorithm to find the MST of the
couplings network, which allows us to compare the achieved
clustering with the MST traditional method.

Figure 6(a) shows the resulting network of couplings. The
couplings’ distribution follows a nearly-symmetrical pattern,
with a couplingmean of 0.00613 (sd= 0.366). Themaximum
value is 1.409, and the minimum value is −1.257. 39.3% of
the couplings (118) are positive, while the remaining 60.7%
(182) is negative, which is typical of a frustrated interac-
tion system [37] similar to what happens in the physical
spin-glass [38].

Figure 6(b) it is shown the MST. The MST tree structure
indicates the products’ hierarchical structure, based on the
minimum energy barriers, as we will see on the dendrograms.
Figure 6(c) shows the cluster merge paths achieved for each
algorithm. In the paths, each time there is a sudden drop in
the clusters’ coupling distance, it is because clusters with
individual nodes are being formed. This happens a lot with the
MST because the clusters’ merge criterion is single-linkage
using the MST adjacency matrix’s coupling distances. The
MST solution is a particular and restricted solution of the
greedy algorithm because there are not many edges in

the MST’s coupling network’s adjacency matrix. Thus,
merges are limited only to the edges kept by the Prim algo-
rithm to find the shortest distance (or coupling distance)
among every node. When the path indicates a gradual and
smooth increase in coupling distances, it indicates a chain
effect, as in the case of modularity. In each iteration, a node is
joined to a general cluster that increases in size. In the ACC
algorithm, we see minimal increases in the distance, followed
by sudden and significant increases in coupling distances.
This indicates that the algorithm succeeds first in finding a
variety of clusters with nodes at a very low merging distance
and then merging groups of clusters, which inevitably must
occur at more considerable distances. As seen before in the
simulations, the ACC Algorithm is superior to MST and
modularity in coupling distance. In most of the iterations,
the greedy algorithm join clusters at a lower distance than
other competitors. We see that the main difference between
the clustering based on the MST and the ACC Algorithm is
that the first one manages to find in the initial stages of
the merge process, pairs of elements with very low coupling
energy. At the same time, the MST tends to add elements to
an already existing cluster from low coupling distance links.
This is because the ACC Algorithm only merges elements

1634 VOLUME 9, 2021



M. A. Valle, G. A. Ruz: Finding Hierarchical Structures of Disordered Systems: An Application for Market Basket Analysis

FIGURE 7. In (a) and (c) it is shown the different values of S1 and S2 as we increase the
coupling distance cutoff h using the ACC algorithm and MST approach. In (b) and (d) it is shown
the empirical S(h).

into a new cluster when the coupling energy U∗ of the new
potential cluster is lower than other alternatives. In contrast,
the MST only merges clusters searching at the lowest cou-
pling distances dij available in the tree. For this example,
in iteration 6, 13, 14, and 15, the MST manages to merge
clusters at a very low distance, but the rest of the merges are
made at a distance far above.

In terms of the clustering coefficient, the ACCAlgorithm is
superior to the rest. The coefficients are 0.922, 0.819, and
0.648 for the ACC Algorithm, MST, and modularity algo-
rithms, respectively. In the case of modularity, the chain
effect that occurs is clearly seen. In this case, each node is
successively joined to the same cluster that grows in size,
making it difficult to produce a clear clustering structure.

Figure 6(d), (e), and (f) shows the respective dendrograms.
First, note that the tree achieved with the MST is the solution
to the dendrogram of this algorithm. For example, items 80
(vitaminized noodle) and 78 (flavored noodle) form a cluster,
then items 11 (rice grade 2), 7 (vegetable oil), 10 (rice grade
1), 4 (marigold seed oil), and 89 (canned mackerel) are added
iteratively way. This group of subcategories forms the central
cluster of the tree in Figure 6(b), being item 80, the root node
of this bouquet of items.

Second, some clusters found the greedy algorithm with
items that seem to match some MST clusters. For example,
the terminal branch of the MST formed by the items 212

(packaged red wine), 23 (family size coke), and 28 (family
size flavored sodas) is a cluster. These items are also present
in the ACC Algorithm solution, including item 204 (full
chicken nugget). This last item would never be part of this
cluster in the MST because it does not allow a connection
of item 204 to any of the other previous items. This edge
is not part of the tree. However, in the ACC algorithm, item
204 is part of the cluster formed by these products because in
terms of coupling distance U∗, they are very close to each
other. This particular cluster of four items is merged at a
coupling distance of U∗({204, 28, 212.23}) = 9.66 in the
ACC approach. In contrast, in the MST solution, these four
items have managed to be part of the same cluster in the last
iteration at the maximum coupling distance of 518.0.

The root node of the MST is subcategory 80 (vitaminized
noodle). According to the MST, there is a cluster formed by
at least 7 nodes (78, 80, 11, 7, 10, 4 and 89) (see dendrogram
at Figure 6(e)). For example, let us suppose that the retail
manager is interested in the pair of items 78 (flavored noodle),
80 (vitaminized noodle) and 11 (rice grade 2), 7 (vegetable
oil), both of them at a very low coupling distance of 1.262 and
1.268 respectively. In the MST, these four items are merged
at a distance of 8.14. However, this does not mean that this
cluster of 4 subcategories is a frequent system state (or a set of
products purchased simultaneously by customers). Accord-
ing to the ACC Algorithm, pairs 78,80 and 11,7 belong to
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FIGURE 8. In (a), (b), and (c) it is shown the resulting cophenetic distances [ρc ], the coupling
distances U∗ and coupling matrix J for the solutions found at α = 0.5, α = 0.9, α = 0.1, using
ACC algorithm. The (d) row shows the same but the solution found using the MST approach
with α = 0.5. The order of items position for each case has been changed in order to group
items belonging to the same cluster according to the specific solution. Red colors indicate low
energies (low distances), and yellow-white colors indicate higher energies (higher distances).

very different clusters and are only merged at the maximum
coupling distance of 518! According to the greedy algorithm,
the recommendation to the retail manager is to consider the
cluster formed by items 78 (flavored noodle), 80 (vitaminized
noodle), and 213 (fruit-bearing yogurt), which form a cluster
at a coupling distance of 4.82.

Given the structure found by the ACC-Algorithm, it is
interesting to retrieve a spanning tree (ACC-Tree) from the
coupling network, which connects each node in the network
so that the connections between nodes are of minimum cou-
pling distance between clusters. The length of the MST for
this real case was 36.1, while that of the ACC-Tree was 37.2,
as expected, longer than that of the MST. When looking

at the degree of the nodes in each tree, we see substantial
differences. For example, the two nodes with the highest
degree in the MST are 80-Vitaminized noodle (d = 7) and
214-beaten yogurt (d= 6), while in the ACC-Tree, the nodes
with the highest degree were 7-vegetable oil (d = 5), 214-
beaten yogurt (d = 4), and 23-Coke Familiar Size (d = 4).
In the first case, the 80 and 214 nodes manage to connect
the most amount of just another at a minimum coupling
distance, that is, minimum Jik . On the other hand, nodes 7,
214, and 23 are characterized by connecting a greater number
of other clusters at the shortest coupling distanceU∗. In other
words, for example, node 80 is well connected with 215, 89,
10, 4, and 78. In this sense, node 80 is a good candidate
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FIGURE 9. Comparison of the solution found using ACC algorithm with a
solution using MSTcor. In (a), the MST is found using MSTcor
methodology. The color of the edges represents the distance between
nodes. A red colored edge indicates a short distance (distances are below
the 10th percentile, which represents the influence zone), gray color are
distances between the 10th and 90th percentile, and in black color larger
distances (above the 90th percentile). Red nodes have importance equal
to or above the 95th percentile (these are the most important nodes).
Pink color nodes represents equal to or above the 90th percentile but
below the 95th. Grey color nodes have importance are below the 90th
percentile. (b): Dendrogram of the MSTcor methodology using average
linkage, (c): The equivalent spanning ACC Tree for the dataset under
analysis. The mean equivalent of the coupling Jik for each cluster are
shown, the same as shown in Table 1.

for marketing promotions. In contrast, node 7 has a greater
number of connections to other clusters through nodes 214,
11, 55, and 10. In other words, an intervention in node seven
could have a much more significant effect than intervening in
node 80.

FIGURE 10. The probability distribution on a log-log plane of the tree
lengths for simulation with 〈J〉 equal to −2, 0 and 2 in (a), (b) and (c)
respectively. The black color is for the MST, and the red one is for the
ACC-Tree. The tree-lengths of the MST is always lower than the ACC-Tree.
The log-means of the tree lengths L were 4.40, 3.8 and 2.5 for the MST
with J-means of −2, 0 and 2 respectively. The log-means of the tree
lengths L were 4.45, 3.9 and 2.8 for the ACC-Tree with J-means of −2,
0 and 2 respectively.

2) FINDING A SOLUTION
Using the previous results, it is necessary to get a solution,
i.e., to determine which is the best cutoff coupling distance
h∗, which gives the best internal consistency S(h∗). We used
Equation 11 in with weight α = 0.5. Figure 7 shows some
interesting results.

For the ACC Algorithm, the best solution is found at h∗ =
10with S(h∗) = 0.21. On this location, S1 = 2.41, S2 = 0.28,
nine clusters: 3 with four items, 1 with 3 items and 5 with two
items. For comparison, the best solution in theMST approach
is found at h∗ = [15, 22] with S(h∗) = [0.33, 0.42]. On this
location, S1 = 2.35, S2 = 2.07, 19 clusters: 1 with 5 items,
2 with two items, and 12 clusters with just one item.

We see that the ACC algorithm has better internal consis-
tency as the overall S-indicator is lower for the first case.
Also, the ACC algorithm achieves a better balance on the
number of elements in each cluster. Most of the clusters have
size one on theMST approach and another cluster with size 5.
This last one comprises items 7, 80, 11, 78, and 10, grouped
in three different clusters on the ACC algorithm.

To appreciate the correspondence between the clustering
solutions achieved by the algorithm and the original cou-
pling energies, Figure 8 shows heatmaps representation of the
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coupling distances U∗ and the original coupling energies J,
with a heatmap of the cophenetic distances, as a result of
applying the ACC Algorithm with different α-values. In the
first case, putting equal importance to S1 and S2 indexes,
puttingmore importance to S1 index, and puttingmore impor-
tance to S2 index.

In our case, the cophenetic distance between two elements
that have beenmerged is the coupling energy between groups,
at which the two elements of the system have been com-
bined in a cluster. By comparing the coupling distance and
the cophenetic distance, it is possible to see the extent to
which the clustering solution preserves the pairwise coupling
distances.

As we have seen, with the ACC Algorithm, we obtain
clusters with a good clustering coefficient, that is, we gain in
obtaining structure, but apparently, it is not entirely a winner
in preserving the original coupling distances. This is the cost
to find a compelling structure in disordered systems. Compar-
ing heatmaps of cophenetic distances and coupling distances,
it can be carefully observed that the heatmap of the cophenetic
distances, in general, coincide with the original distances, but
not always. In fact, cophenetic correlation coefficient1 was
0.22 for α = 0.5, α = 0.9 and α = 0.1, which means that
in there is a proportional relationship between the coupling
distances and the cluster merge energies.

We see that theMST based clustering preserves the original
distances (see heatmaps right column) better. The cophe-
netic correlation was 0.63, indicating a better correspon-
dence between the pairwise coupling energy and the cluster
merges energy than the ACC Algorithm. However, it should
be remembered that the MST has the disadvantage of not
taking into account energy interrelationships with other sys-
tem elements. So, there is a trade-off between taking into
account interrelationships between the system elements and
preserving the original distances.

3) PROTOTYPICAL MARKET BASKETS
To get a practical idea of the results, we identified low
coupling energy clusters called prototypical market baskets.
They are groups of products that tend to be present simulta-
neously. To observe the results, we used a cut-off distance of
h∗ = 15 for the ACC Algorithm with α = 0.5, which is the
best solution found previously. The prototypical baskets are
shown in Table 1. Some interesting insights can be obtained
from these results that reveal the supermarket branch cus-
tomers’ purchase patterns. For example, soft drinks, wine,
and chicken seem to be a typical market basket among super-
market branch customers, whichmay be the subject of special
promotions or bundling. For example, the C9 cluster consists
of four products: vegetable oil and rice grade 2, making
much sense. The other two products are traditional chlorine
bleach and regular dishwasher, which seems to make sense.

1The cophenetic correlation coefficient is the linear correlation between
the coupling energies between every pair of spins and their corresponding
cophenetic distances. In our case, the cophenetic distances are the coupling
energies at which every element is merged in the same cluster.

However, these four products form a single cluster, indicating
that these four products tend to be present simultaneously in
the same basket. Again, this can be interesting as information
for the marketing department might specialize in specific
offers based on this kind of information.

4) RESULTS COMPARISON WITH OTHER
GRAPH-ORIENTED METHOD
Our proposal for market basket analysis using graph meth-
ods is not the only one. Recently, minimum spanning
trees (MSTs) have been used to reduce the huge amount of
interactions that arise from aggregate purchasing behavior
(see [21]). In this section, we carry out a brief comparison
of the results with those that could be obtained following
the proposal of [21] (hereafter, the MSTcor method). This
graph-based methodology takes advantage of the MST’s
hierarchical tree structure to find groups of products that
have strong interdependencies between them. In a similar
way, the process starts the transactional data as indicated
in our proposal, using market baskets represented by binary
vectors that indicate the presence or absence of product
categories. However, in [21] they directly compute the linear
correlation between pairs of items and then transform those
correlations into a distance metric. This information serves
as input to compute the MST with the Prim Algorithm. They
then perform a series of tests to detect edges of the MST
that are independent and discard them, and also define a
node importance metric (items). Finally, they establish the
‘‘zones of influence.’’ These zones are important nodes and
significant edges of interdependence that are susceptible
and interesting for establishing promotional and marketing
actions. The direct use of MSTs to find these influence zones
makes sense considering that, as commented in section II-C,
MSTs represent an inherent property of disordered systems
and are equivalent to the optimal path that can be achieved at
a minimum energy level.

It should be noted that this methodology does not provide
a connection with the probability distribution of the purchase
basket vectors, while the ACC algorithm in our work has a
more solid foundation because it is based on the joint distri-
bution of system states that reproduce the aggregate purchase
behavior. This is the main difference between our approach
and that of the MSTcor.

We take the 42077 purchase transaction database with
25 product subcategories to build the MST based on correla-
tions, as described in [21]. There are no edges of theMST that
were not significant. The result is shown in Figure 9(a). Node
80 (Vitaminized noodle) and 214 (beaten yogurt) are the most
important items due to the proximity and connectivity with
other products. The zone of influence is characterized by node
80 with other items with good connectivity and given by its
proximity to other items (red edges).

The circles indicate clusters of items for a given solu-
tion with k = 9. This solution has been chosen only for
comparison purposes with the 9 cluster solution with the
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TABLE 1. The cluster solution found at α = 0.5 with the ACC Algorithm gives a total of 9 groups. The subcategories of products are indicated for each
cluster, the total coupling distance of each cluster U∗(Cm), and the mean equivalent of the coupling Jik calculated as the total coupling distance divided
by the number of edges. Low coupling distance indicates a more likely to find that market basket.

ACC algorithm. For each cluster larger than two nodes,
the total coupling distance of each cluster U∗(Cm), and the
mean equivalent of the coupling Jik are shown. This infor-
mation allows us to compare these values with those of the
clusters of Table 1. It can be seen that in general, the means of
coupling Jik in the solution with ACC tends to be lower than
in MSTcor, which indicates that the clusters with ACC have
a higher probability of occurring simultaneously than those
in MSTcor. Figure 9(b) shows the respective dendrogram
using average linkage. The sequence of cluster agglomeration
in MSTcor is completely different from that of the ACC
algorithm. This is evident when comparing the ACC resultant
dendrogram (Figure 6(d)) with that of MSTcor. In the latter
methodology, pairs of nodes connected at a low distance are
identified, that is, pairs of product items whose probability
of being present in a shopping basket is high. In contrast,
the solution indicated in Table 1 considers the influence of
other products on a particular item.

It is included in Figure 9(c), an equivalent graphical rep-
resentation of the solution with the ACC algorithm. This tree
has a direct relationship with the dendrogram. It is another
alternative to compare the clustering of items with other
methods such as MSTcor. For details of the construction of
the ACC spanning tree, see the Appendix. As it has been seen
in simulations with other sizes of networks (see Figure 5),
the ACC item agglomeration process achieves more balanced
clusters compared to other methods, and in particular, more
balanced than the MSTcor. This is a practical advantage
since clusters of only one item are avoided. For promotional
activities such as product bundling, it makes more sense to
encourage the purchase of more than one product, such as
clusters of 2 or 3 products.

V. CONCLUSION
The proposed algorithm’s main advantage is that it man-
ages to find a good structure level compared to clustering
based on MST or modularity. However, this is achieved in
exchange for sacrificing some consistency of the clusters.
However, in practical terms, the structure achieved allows
a decision-maker to have a clearer idea of potential groups
of promotional or marketing activities. On the other hand,
the MST-based approach produces long and unwieldy clus-
ters due to the typical chain effect that manifests itself in

complex systems with many interactions between the sys-
tem’s parts.

In practical terms, these results suggest that a product or
item clustering should consider a solution based on the ACC
algorithm as a necessary reference. The retail manager needs
to know or identify all the small groups of products that
usually are purchased together and represent clusters with
a high probability of occurrence. From there, one wishes to
discover groups of larger or more complex clusters. Although
they have a lower chance of occurring as part of a market
basket, follow a natural order as a cluster’s size increases.

Unlike other classical methodologies in market basket
analysis that seek to find relationships between product items,
the proposal based on coupling energies considers the inter-
dependence between multiple elements. This means that the
approach is richer in providing information on how groups of
items with similar behavior are formed. For example, asso-
ciation rules [20] offer partial and isolated relations between
sets of items, making it more difficult for the analyst to have
a global idea of the influence that a product may have on the
set of other products. On the other hand, this methodology has
the possibility of determining the force (couplings) to which
the products are related, and not only the direction of the
relationship. In this sense, we believe that the graph-theoretic
approach of the purchase-market behavior, in which the sys-
tem is more than the sum of its parts, offers a viable model to
complement, but not to replace the Association Rules (ARs).
Thus, using local models (as ARs) and global pattern-seeking
models (as in the proposed methodology) can help the analyst
achieve a more detailed understanding of customer behavior.

An indispensable input to the methodology is the coupling
matrix J. Although there are methods for finding maximum
entropy distributions consistent with the correlations and
means of the empirical data [39]–[41], this task is usually
not trivial, and it involves high computation time, especially
when dealing with systems with a large number of nodes.
An alternative to deal with the inverse Ising problem or
parameter inference is to use the Mean-Field Theory [23] as
an approximated method to find the couplings, which would
allow a decrease in the computation time required to find
the parameter values. Finally, it is worth that for both the
inference of the couplings and the aggregation algorithm of
products based on coupling energy, it was not necessary to
make assumptions about the structure of the system or the
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distribution of the market baskets, which is an advantage over
other market basket analysis models.

APPENDIX A
THE ACC SPANNING TREE
The network of couplingsG hasNN−2 spanning trees accord-
ing to the Cayley’s formula [42]. One such spanning tree is
MST which, as noted above, represents a unique signature to
the disordered system, and which establishes a hierarchical
structure with the path of minimum energy. But this is not the
only possible structure, and a solution that incorporates the
interaction of all elements of the system simultaneously can
be found using the ACC algorithm. Given this structure, it is
possible to reconstruct a spanning tree of G, but not of mini-
mum distance, that simplifies the complexity of the coupling
network, and that keeps intact the ultrametric properties.

The ACC-Tree TACC (G,EACC ) is a subgraph of G with the
same nodes of G, with edges EACC ⊆ E(G), but unlike the
MST, they do not join all the nodes of G at a minimum dis-
tance, but join according to the minimum coupling distance
between clusters formed by the ACC algorithm. It also has
N − 1 edges, and from it, it is possible to identify nodes
that have a high degree of connectivity with different other
clusters in the system.

Let Ci be the cluster that is formed in the ith iteration. The
Ci cluster can be formed from other clusters and therefore,
it is simply the union of clusters that precedes it, i.e., Ci =
Cq∪Cw where q < i andw < i. The coupling distance, of this
merge in Ci es U∗(Ci), which corresponds to the weights of
the edges EACC . In the starting iterations, Ci is composed
of individual nodes, for example, vq and vw. In these cases,
the nodes form a connection at a given coupling distance
between the two nodes dqw. In cases where the merge that
originates Ci occurs between a node vj and a cluster Ck
with k 6= i y vj * Ck , the connection occurs with some
element of Ck such that it is minimum, that is to say, it looks
for the minimum coupling distance between vj and all the
elements of Ck . This distance will be the weight for this edge.
In cases where two clusters that both have more than two
nodes aremerged, theminimum coupling distance is searched
for among all the combination pairs of nodes. The process
of connecting nodes with the minimum coupling distance is
repeated N − 1 times, from the first merge to the last one.
The result will be N − 1 pairs of selected nodes that form the
edges of the ACC spanning tree.

A. A SIMULATED EXAMPLE OF ACC-TRESS
As an example, to compare the behavior of MSTs and
ACC-Trees with different disordered systems, we have made
several simulations that create synthetic coupling matrices of
size N = 50, and with different coupling means 〈J〉 equal
to −2 (antiferromagnetic), 0 (neutral) and 2 (ferromagnetic).
For each case, 200 realizations were made. In each of them,
the solution of MST and ACC-Tree is obtained.

As expected, the lengths of the MST are always smaller
than the lengths of the ACC-Tree. The interesting thing about

FIGURE 11. The probability distribution of correlations among every pair
of items of the real case dataset. The red lines indicates the mean of
correlations between pair of items for each cluster solution found with
the ACC algorithm using α = 0.5. The inset shows a scatterplot between
couplings and correlations. The red diagonal represent a perfect
correspondence between them.

the ACC-Trees is that they provide different information
regarding the connectivity of the nodes. If we calculate the
degree of each node of the MST and the ACC-Tree, we can
see a small but positive correlation between both. This indi-
cates that the structure derived from the coupling distance
(ACC Algorithm), and not only from the minimum distance
(MST), provides a different centrality characterization of
nodes. Indeed, the correlation obtained between the degree of
the nodes in MST and ACC-Tree were 0.10 (sd= 0.15), 0.12
(sd = 0.16) and 0.10 (sd = 0.15) with coupling means −1,
0 and 2 respectively. A hub node in the MST (high degree)
indicates a high correlation between that node and those with
whom it connects, while a hub node in the ACC-Tree indi-
cates that it has a high degree of ferromagnetic relationship
with other clusters.

Figure 11 shows the correlations between the items in the
clusters found in relation to the distribution of correlations
of the system. It would be expected that the correlations are
positive, which is true for all correlations of the clusters. The
correlations of cluster 9 and 8 are the highest of all of them.
All the correlations are higher than the mean system correla-
tions (equal to 0.0344) except the lowest of cluster 1 equal to
0.0110, which also coincides with the low coupling distance
value equal to 1.096 (See Table 1). It is worth mentioning that
the correlations measure only the linear association between
pairs of items, while the couplings capture information of
the non-linear interdependence between parts of the system.
Thus, the relationship between couplings and correlations
does not have to be perfect, as shown by the inset in Figure 11.
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