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ABSTRACT Formal verification can mathematically prove whether a software satisfies the requirements
described in its design. In traditional software development, even if the software systems, especially the
operating system for Internet of Things in smart cities, passes the verification test, it is difficult to explain
its correctness. The implementation of formal verification after the design and development process proves
that the software system meets the expected requirements. This will become a trend for future software
development. In this paper, we model the system state of the X86 architecture on the assembly layer, and
use a micro operating system prototype for Internet of Things in smart cities as an example to explain the
proposed method that can verify operating systems for Internet of Things in smart cities on the assembly
layer. The verification result shows that this method is feasible.

INDEX TERMS Assembly layer, formal verification, Internet of Things, smart cities, Isabelle/HOL,
operating system.

I. INTRODUCTION
In an ideal system environment, all systems are strictly
designed, developed, and verified with strict formal tools,
to ensure that all systems are sound and complete. However,
due to the complexity, formal methods are really hard to be
used in traditional software development.

For the implementation of a software system, its vulnera-
bilities are first determined through numerous software tests.
Even if no vulnerabilities are found, it cannot be proved that
the implementation of the software achieves the expected
results.

Owing to the complexity of huge systems, such as an
operating system (OS) for Internet of Things (IoT) in smart
cities, it is difficult to elaborate their correctness and com-
pleteness. Formal verification is a method used to mathemat-
ically and strictly verify whether a software system has been
implemented as per its design. Even if a software system is
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not designed and developed by formal methods, we can verify
it via modeling and description in logic systems.

This paper illustrates our method of modeling an OS for
IoT in smart cities with the X86 architecture on the assembly
layer. We considered a self-implemented micro OS prototype
called MOS as an example to demonstrate the feasibility of
our method.

II. RELATED WORK
A. FORMAL METHODS IN IoT
There are several security issues and challenges in IoT.
For example, vehicular network security proves to be a hot
topic [1]. What’s more, various researchers have presented
systems to help vehicle to make safe decisions [2] and
provided trust systems for managing vehicle-to-everything
communications [3].

As amethod to verify the security of a software system, for-
mal methods [4] were first proposed in the 1950s. However,
the formal verification of OSs began in the 1970s and formal
methods was widely used to verify the safety requirements of
communication-based train control (CBTC) systems [5].
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In 1990s, researchers started to model railway interlock-
ing systems through model checking techniques [6]. With
the development of technology, distributed railway control
systems have been developed and verified [7]. During the
past few years, researchers have dedicated to simplifying the
verification of CBTC systems [8].

B. THE YALE FLINT GROUP
The Yale FLINT Group aimed to develop a novel and prac-
tical programming architecture to build large-scale verified
system software. The members of the group have made
substantial contributions in the field of formal verification,
such as presenting a new framework for certified binaries
[9], verifying the concurrent OS kernel [10], abstracting pre-
emptive schedulers [11], presenting a language for certified
software [12], and verifying distributed systems [13].

C. THE TRUSTWORTHY SYSTEMS GROUP
The Trustworthy Systems Group belongs to the Data61
department of the Commonwealth Scientific and Industrial
Research Organisation; it uses a rigorous formal approach
to develop trusted software systems. The group has made
significant contributions in OSs, formal methods, and pro-
gramming languages.

The L4.Verified project [14] and the seL4 project [15] were
initiated by the original National ICTAustralia. Among them,
seL4 is the world’s most advanced and reliable OS microker-
nel. Its correctness is verified by the L4.Verified project, and
its relevant verification was completed in 2009 [16].

For convenience and reliability while verifying software,
a verified compiler named CakeML was presented for a
high-level functional language. Additionally, CakeML has
verified generational garbage collector [17]. It was used to
verify efficient function calls in 2017 [18] and certificate
checker in 2018 [19].

A functional language called Cogent [20] was presented
to reduce the cost of code for verifying systems. It was
used to verify code for file system implementations [21] and
property-based testing [22].

To help build microkernel-based embedded systems soft-
ware [23], CAmkES [24] was presented, which is a platform
abstracting low-level mechanisms.

With the development of concurrency and distributed sys-
tems, formal models need to be extended. For example,
we need to ensure liveness properties [25], and security prop-
erties of a compiler [26].

Nowadays, the group is still committed to verified soft-
ware, such as designing and implementing time protection
[27], [28], abstracting thememorymanagement unit [29], and
examining the evolution of the L4 kernels [30].

III. MODEL OF SYSTEM STATE
A. DATA LENGTH
In the X86 architecture, the data lengths of the operands are
mainly 32, 16, and 8 bits. The aliases for these data lengths
are defined as follows.

type_synonym u32 = ‘‘32 word’’
type_synonym u16 = ‘‘16 word’’
type_synonym u8 = ‘‘8 word’’

We use the keyword ‘‘type_synonym’’ to define aliases.
For example, ‘‘u32’’ is an alias for ‘‘32 word.’’ Here, ‘‘word’’
denotes the data type provided in the Isabelle/HOL library;
‘‘1 word’’ represents 1-byte data and ‘‘32 word’’ represents
32-byte data.

B. REGISTER
The model of the register is shown below.

record x 8 6 _ r e g i s t e r = eax : : u32
edx : : u32
ecx : : u32
ebx : : u32
ebp : : u32
e s i : : u32
e d i : : u32
esp : : u32
cs : : u16
s s : : u16
ds : : u16
es : : u16
f s : : u16
gs : : u16
e f l a g s : : u32
e i p : : u32
e i z : : u32

The keyword ‘‘record’’ is used to define the structure type.
The register structure contains variables such as eax, edx, and
ecx. The type of each variable is the data type after the symbol
‘‘::’’. For example, eax is a 32-byte variable that represents the
EAX register. Especially, the eiz variable represents the EIZ
pseudo register, whose value is always zero.

C. MEMORY
We consider memory as a mapping from the addresses to the
8-byte data. In particular, to simulate the execution of instruc-
tions, it is necessary to know the length of each instruction.
The memory for storing instructions is modeled separately.
The memory model can be represented as follows.

type_synonym x86_memory = ‘‘ n a t ⇒ u8’’
type_synonym x86_ins t rmem = ‘‘ n a t ⇒
( n a t × x 8 6 _ i n s t r u c t i o n ) ’’

Here, ‘‘nat’’ denotes an integer variable, ‘‘nat ⇒ u8’’
represents the mapping of an integer to 8-byte data, and
‘‘(nat× instruction)’’ represents the ‘‘(position, instruction)’’
tuple. The model of ‘‘instruction’’ will be introduced below.

D. OPERAND
The X86 architecture consists of 11 operand formats (seven
addressing modes), and the possibility of all operands can be
divided into three types: immediate data, registers, and mem-
ory references. To cover all nine memory reference types, eiz
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can be used when no registers are required, and 0 is used
when no offset is needed. Considering the 32-bit operand as
an example, the model can be represented as follows.

data type operand32 =
Imm32 i n t

| Reg32 r32
| O f f s e t 3 2 i n t r32 r32 i n t

The keyword ‘‘datetype’’ is used to define the ‘‘operand32’’
type, which represents the 32-bit operand. This type is
addressed by the immediate data (‘‘Imm32’’), registers
(‘‘Reg32’’), or memory references (‘‘Offset32’’). With
respect to the memory reference type, ‘‘int r32 r32 int’’ is a
set of variables to represent the value of the memory address
‘‘(integer 1 + register 1 + register 2 × integer 2).’’ We can
use eiz when no registers are required, and 0 when no offset
is needed.

E. INSTRUCTION
Depending on the data length of the operands, each type
of instruction basically contains the 8-bit version (ending
with ‘‘B’’), the 16-bit version (ending with ‘‘W’’), and
the 32-bit version (to ‘‘L’’ end). Several instructions are
involved and we have only listed a few here, as demonstrated
below.

data type x 8 6 _ i n s t r u c t i o n =
(∗ nop ∗ )
NOP
(∗ add ∗ )

| ADDB operand8 operand8
| ADDW operand16 operand16
| ADDL operand32 operand32
. . .

We divide instructions into blocks according to the type of
assembly instructions, such as ‘‘add’’ instruction and ‘‘call’’
instruction. Most types of instructions contain an 8-bit ver-
sion (ending with ‘‘B’’), a 16-bit version (ending with ‘‘W’’),
and a 32-bit version (ending with ‘‘L’’).

F. CODE
The assembly code segment represents the collection of
instructions, shown as follows.

type_synonym x86_code = ‘‘ ( n a t × ( n a t ×
x 8 6 _ i n s t r u c t i o n ) ) l i s t ’’

Here, ‘‘code’’ is of type ‘‘list,’’ which is similar to the array
type in most programming languages.

G. SYSTEM STATE
Finally, the system state is composed of three parts, i.e., reg-
isters, memory for storing data, and memory for storing
instructions. The code of the model is given below.

record x 8 6 _ s t a t e = R : : x 8 6 _ r e g i s t e r
M : : x86_memory
I : : x86_ins t rmem

IV. SIMULATION OF EXECUTION
A. READING AND WRITING REGISTERS
First, we implement the 32-bit version of the auxiliary func-
tion to read and write registers as follows.

d e f i n i t i o n gr32 : : ‘‘ x 8 6 _ s t a t e ⇒ r32 ⇒ u32’’
where
‘‘g r32 s r ≡ ( c a s e r o f

EAX ⇒ eax (R s )
| EDX ⇒ edx (R s )
| ECX ⇒ ecx (R s )
| EBX ⇒ ebx (R s )
| EBP ⇒ ebp (R s )
| ESI ⇒ e s i (R s )
| EDI ⇒ e d i (R s )
| ESP ⇒ esp (R s )
| EFLAGS ⇒ e f l a g s (R s )
| EIP ⇒ e i p (R s )
| EIZ ⇒ 0
) ’’

d e f i n i t i o n s r 32 : : ‘‘ x 8 6 _ s t a t e ⇒ r32 ⇒
u32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘ s r 32 s r v ≡ ( c a s e r o f

EAX ⇒ s (| R := (R s ) (| eax := v |) |)
| EDX ⇒ s (| R := (R s ) (| edx := v |) |)
| ECX ⇒ s (| R := (R s ) (| ecx := v |) |)
| EBX ⇒ s (| R := (R s ) (| ebx := v |) |)
| EBP ⇒ s (| R := (R s ) (| ebp := v |) |)
| ESI ⇒ s (| R := (R s ) (| e s i := v |) |)
| EDI ⇒ s (| R := (R s ) (| e d i := v |) |)
| ESP ⇒ s (| R := (R s ) (| esp := v |) |)
| EFLAGS ⇒ s (| R := (R s )

(| e f l a g s := v |) |)
| EIP ⇒ s (| R := (R s ) (| e i p := v |) |)
) ’’

We use the keyword ‘‘definition’’ to define functions that
have no recursion, such as ‘‘gr32’’ and ‘‘sr32.’’ For the
‘‘gr32’’ function, ‘‘state⇒ r32⇒ u32’’ implies that ‘‘gr32’’
takes the data from the ‘‘state’’ and ‘‘r32’’ types as input, and
outputs the data of ‘‘u32’’ type. Here, ‘‘gr32 s r’’ indicates
that ‘‘s’’ and ‘‘r’’ are the function parameters, and ‘‘case r
of’’ implies discussing the situation of ‘‘r.’’ ‘‘EAX⇒ eax (R
s)’’ means that if ‘‘r’’ is ‘‘EAX,’’ return the value of eax in the
system status. For the ‘‘sr32’’ function, ‘‘(| R := (R s) (|eax
:= v|) |)’’ stands for setting ‘‘eax’’ in the system state to the
variable ‘‘v.’’
Then, we implement the 16-bit version based on the 32-bit

version, shown as follows.

d e f i n i t i o n gr16 : : ‘‘ x 8 6 _ s t a t e ⇒ r16 ⇒ u16’’
where
‘‘g r16 s r ≡ ( c a s e r o f

AX⇒ u c a s t ( eax (R s ) )
| DX⇒ u c a s t ( edx (R s ) )
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| CX ⇒ u c a s t ( ecx (R s ) )
| BX ⇒ u c a s t ( ebx (R s ) )
| BP ⇒ u c a s t ( ebp (R s ) )
| SI ⇒ u c a s t ( e s i (R s ) )
| DI ⇒ u c a s t ( e d i (R s ) )
| SP ⇒ u c a s t ( esp (R s ) )
| IP ⇒ u c a s t ( e i p (R s ) )
) ’’

d e f i n i t i o n s r 16 : : ‘‘ x 8 6 _ s t a t e ⇒ r16 ⇒ u16 ⇒
x 8 6 _ s t a t e ’’
where
‘‘ s r 16 s r v ≡ ( c a s e r o f

AX⇒ s r 32 s EAX
( ( gr32 s EAX AND 0 x f f f f 0 0 0 0 )
OR u c a s t v )

| DX⇒ s r 32 s EDX
( ( gr32 s EDX AND 0 x f f f f 0 0 0 0 )
OR u c a s t v )

| CX ⇒ s r 32 s ECX
( ( gr32 s ECX AND 0 x f f f f 0 0 0 0 )
OR u c a s t v )

| BX ⇒ s r 32 s EBX
( ( gr32 s EBX AND 0 x f f f f 0 0 0 0 )
OR u c a s t v )

| BP ⇒ s r 32 s EBP
( ( gr32 s EBP AND 0 x f f f f 0 0 0 0 )
OR u c a s t v )

| SI ⇒ s r 32 s ESI
( ( gr32 s ESI AND 0 x f f f f 0 0 0 0 )
OR u c a s t v )

| DI ⇒ s r 32 s EDI
( ( gr32 s EDI AND 0 x f f f f 0 0 0 0 )
OR u c a s t v )

| SP ⇒ s r 32 s ESP
( ( gr32 s ESP AND 0 x f f f f 0 0 0 0 )
OR u c a s t v )

| IP ⇒ s r 32 s EIP
( ( gr32 s EIP AND 0 x f f f f 0 0 0 0 )
OR u c a s t v )

) ’’

Similarly, we implement the 8-bit version based on the
16-bit version; this implementation has not been included in
the paper.

B. READING AND WRITING MEMORIES
The functions of reading and writing memories are imple-
mented in an opposite manner than those of the registers.
We first implement the 8-bit version. The 16-bit and 32-bit
versions are based on the 8-bit version, which is shown as
follows.

d e f i n i t i o n gm16 : : ‘‘ x 8 6 _ s t a t e ⇒ n a t ⇒ u16’’
where
‘‘gm16 s n ≡ u c a s t ( gm8 s n )
+ ( u c a s t ( gm8 s ( n + 1 ) ) << 8) ’’

d e f i n i t i o n gm32 : : ‘‘ x 8 6 _ s t a t e ⇒ n a t ⇒ u32’’
where
‘‘gm32 s n ≡ u c a s t ( gm16 s n )
+ ( u c a s t ( gm16 s ( n + 2 ) ) << 16) ’’

d e f i n i t i o n sm8 : : ‘‘ x 8 6 _ s t a t e ⇒ n a t ⇒ u8 ⇒
x 8 6 _ s t a t e ’’
where
‘‘sm8 s n v ≡ s (| M := (M s ) ( n := v ) |)’’

d e f i n i t i o n sm16 : : ‘‘ x 8 6 _ s t a t e ⇒ n a t ⇒
u16 ⇒ x 8 6 _ s t a t e ’’
where
‘‘sm16 s n v ≡ sm8 ( sm8 s n ( u c a s t v ) )
( n + 1) ( u c a s t ( v >> 8 ) ) ’’

d e f i n i t i o n sm32 : : ‘‘ x 8 6 _ s t a t e ⇒ n a t ⇒
u32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘sm32 s n v ≡ sm16 ( sm16 s n ( u c a s t v ) )
( n + 2) ( u c a s t ( v >> 16 ) ) ’’

Here, ‘‘(M s) n’’ denotes the value stored in the memory
address ‘‘n’’ in the system state. We use the function ‘‘ucast’’
provided by the ‘‘word’’ library for the converse type. This
function can expand 8-byte data to 16-byte data, or truncate
16-byte data to 8-byte data.

C. GETTING AND SETTING INSTRUCTIONS
We must set instructions before the execution. We also need
to get the current and next instructions during the execution.
The related functions are shown as follows.

d e f i n i t i o n g e t i : : ‘‘ x 8 6 _ s t a t e ⇒
x 8 6 _ i n s t r u c t i o n ’’
where
‘‘ g e t i s ≡
snd ( ( I s ) ( u32_na t ( gr32 s EIP ) ) ) ’’

d e f i n i t i o n n e x t i : : ‘‘ x 8 6 _ s t a t e ⇒ n a t ’’
where
‘‘ n e x t i s ≡ ( u32_na t ( gr32 s EIP ) ) +
f s t ( ( I s ) ( u32_na t ( gr32 s EIP ) ) ) ’’

primrec s e t i : : ‘‘ x 8 6 _ s t a t e ⇒
x86_code ⇒ x 8 6 _ s t a t e ’’
where
‘‘ s e t i s [ ] = s’’ |
‘‘ s e t i s ( i # i s ) = s e t i ( s (| I := ( I s )
( ( f s t i ) := ( snd i ) ) |) ) i s ’’

D. READING AND WRITING OPERANDS
To read the source operand, the three cases of immedi-
ate data, registers, and memory references must be con-
sidered. There are no instructions that take the immediate
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data as the destination operand; therefore, to write the des-
tination operand, only two cases are required to be consid-
ered. For example, the 32-bit version has been elaborated
below.

d e f i n i t i o n go32 : : ‘‘ x 8 6 _ s t a t e ⇒ operand32 ⇒
u32’’
where
‘‘go32 s op ≡ ( c a s e op of

( Imm32 i ) ⇒ i n t _ u32 i
| ( Reg32 r ) ⇒ gr32 s r
| ( O f f s e t 3 2 i 1 r1 r2 i 2 ) ⇒
gm32 s ( u32_na t ( i n t _ u32 i 1 + gr32 s r1
+ gr32 s r2 ∗ i n t _ u32 i 2 ) )
) ’’

d e f i n i t i o n so32 : : ‘‘ x 8 6 _ s t a t e ⇒ operand32 ⇒
u32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘so32 s op v ≡ ( c a s e op of

Reg32 r ⇒ s r 32 s r v
| O f f s e t 3 2 i 1 r1 r2 i 2 ⇒
sm32 s ( u32_na t ( i n t _ u32 i 1 + gr32 s r1
+ gr32 s r2 ∗ i n t _ u32 i 2 ) ) v
) ’’

E. UPDATING INSTRUCTION REGISTER
It is easy to update the instruction register through the func-
tions defined below.

d e f i n i t i o n ue i p : : ‘‘ x 8 6 _ s t a t e ⇒ x 8 6 _ s t a t e ’’
where
‘‘ u e i p s ≡ s r 32 s EIP ( na t_u32 ( n e x t i s ) ) ’’

F. UPDATING PROGRAM STATUS WORD
On observing the instructions related to updating the program
status word, it is evident that most of the cases can be sum-
marized in three cases. For some instructions such as ‘‘add,’’
the OF, CF, SF, and ZF registers must be updated; for ‘‘sub,’’
the CF register must be reversed; and for ‘‘or,’’ the OF and
CF registers must be cleared.

In the first case, we still take the 32-bit version as an
example as follows:

d e f i n i t i o n uof32 : : ‘‘ x 8 6 _ s t a t e ⇒ u32
⇒ u32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘uof32 s s1 s2 ≡ s f s OF
( u 3 2 _ s i n t ( s1 + s2 ) 6=
u 32 _ s i n t s1 + u 3 2 _ s i n t s2 ) ’’

d e f i n i t i o n us f32 : : ‘‘ x 8 6 _ s t a t e ⇒ u32
⇒ x 8 6 _ s t a t e ’’
where
‘‘ u s f32 s d ≡ s f s SF ( u 3 2 _ s i n t d < 0) ’’

d e f i n i t i o n uz f32 : : ‘‘ x 8 6 _ s t a t e ⇒ u32
⇒ x 8 6 _ s t a t e ’’
where
‘‘uz f32 s d ≡ s f s ZF ( d = 0) ’’

d e f i n i t i o n uc f32 : : ‘‘ x 8 6 _ s t a t e ⇒ u32
⇒ u32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘ uc f32 s s1 s2 ≡
s f s CF ( u32_u i n t ( s2 + s1 ) 6=
u32_u i n t s2 + u32_u i n t s1 ) ’’

d e f i n i t i o n uf32 : : ‘‘ x 8 6 _ s t a t e ⇒ u32
⇒ u32 ⇒ u32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘u f32 s s1 s2 d ≡ ucf32 ( uz f32
( u s f32 ( uof32 s s1 s2 ) d ) d ) s1 s2’’

The result of the corresponding register can be simulated
with the built-in operation of Isabelle/HOL, such as updating
the OF register here. If the result of adding two numbers as
32-bit signed numbers is different from that of adding the two
numbers as integers, it implies that an overflow has occurred.

In the second case, we only need to modify the update of
the CF register.

d e f i n i t i o n ucf32 ’ : : ‘‘ x 8 6 _ s t a t e ⇒ u32
⇒ u32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘ucf32 ’ s s1 s2 ≡ s f s CF
( u32_u i n t ( s2 + s1 ) =
u32_u i n t s2 + u32_u i n t s1 ) ’’

d e f i n i t i o n uf32 ’ : : ‘‘ x 8 6 _ s t a t e ⇒ u32
⇒ u32 ⇒ u32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘uf32 ’ s s1 s2 d ≡ ucf32 ’
( uz f32 ( u s f32 ( uof32
s (− s1 ) s2 ) d ) d ) (− s1 ) s2’’

In the third case, we only need to modify the update of the
OF and CF registers.

d e f i n i t i o n co f : : ‘‘ x 8 6 _ s t a t e ⇒ x 8 6 _ s t a t e ’’
where
‘‘ co f s ≡ s f s OF Fa l s e ’’

d e f i n i t i o n c c f : : ‘‘ x 8 6 _ s t a t e ⇒ x 8 6 _ s t a t e ’’
where
‘‘ c c f s ≡ s f s CF Fa l s e ’’

d e f i n i t i o n uf32’’ : : ‘‘ x 8 6 _ s t a t e ⇒ u32
⇒ u32 ⇒ u32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘u f32’’ s s1 s2 d ≡ c c f
( uz f32 ( u s f32 ( co f s ) d ) d ) ’’
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G. SIMULATING ARITHMETIC LOGIC OPERATIONS
We use the built-in operations to simulate binary operations
in Isabelle/HOL. Here, we consider the 32-bit version as an
example, as follows.

d e f i n i t i o n a8 : : ‘‘ x 8 6 _ s t a t e ⇒ operand8 ⇒
operand8 ⇒ o p e r a t o r ⇒ u8’’
where
‘‘a8 s o1 o2 op ≡ ( c a s e op of

ADD⇒ go8 s o2 + go8 s o1
| SUB ⇒ go8 s o2 − go8 s o1
| OR’ ⇒ go8 s o2 OR go8 s o2
. . .
) ’’

H. SIMULATING BEHAVIORS OF INSTRUCTIONS
According to the content of the second volume of Intel’s
official documentation, we canmodel the behavior of instruc-
tions. Here, we use ‘‘push’’ as an example. The process of
modeling the remaining instructions is similar and is not
shown here.

First, we check the semantics of the instruction, shown as
follows.

IF S tackAddrS i z e = 64
THEN
IF OperandS ize = 64
THEN
RSP ← RSP − 8 ;
Memory [ SS : RSP ] ← SRC ;
(∗ push quadword ∗ )
ELSE IF OperandS ize = 32
THEN
RSP ← RSP − 4 ;
Memory [ SS : RSP ] ← SRC ;
(∗ push dword ∗ )
ELSE (∗ OperandS ize = 16 ∗ )
RSP ← RSP − 2 ;
Memory [ SS : RSP ] ← SRC ;
(∗ push word ∗ )
FI ;
. . .

Second, we look for the 32-bit versions and find the spe-
cific behavior of these versions from the above behaviors,
as follows.

ESP ← ESP − 4 ;
Memory [ SS : ESP ] ← SRC ;
(∗ push dword ∗ )

Then, we check the effect of the instruction on program
status word. The effect was found to be ‘‘None,’’ that is, there
is no need to update the program status word.

Finally, the model of instruction ‘‘pushl’’ is built according
to the behavior shown below.

d e f i n i t i o n pu sh l : : ‘‘ x 8 6 _ s t a t e ⇒

operand32 ⇒ x 8 6 _ s t a t e ’’
where
‘‘ p u sh l s o1 ≡ ue i p ( sm32
( s r 32 s ESP ( gr32 s ESP − 4 ) )
( u32_na t ( gr32 ( s r 32 s ESP
( gr32 s ESP − 4 ) ) ESP ) )
( go32 ( s r 32 s ESP
( gr32 s ESP − 4 ) ) o1 ) ) ’’

I. SIMULATING SINGLE-STEP EXECUTION
Now,we combine the behaviors of all instructions. A function
is designed to simulate single-step execution as follows.

primrec s t e p : : ‘‘ x 8 6 _ s t a t e ⇒
x 8 6 _ i n s t r u c t i o n ⇒ x 8 6 _ s t a t e ’’
where
‘‘ s t e p s (NOP) = nop ’ s’’ |
‘‘ s t e p s (ADDB o1 o2 ) = addb s o1 o2’’ |
‘‘ s t e p s (ADDW o1 o2 ) = addw s o1 o2’’ |
‘‘ s t e p s (ADDL o1 o2 ) = add l s o1 o2’’ |
. . .

The function ‘‘step’’ will simulate the execution of an
instruction with the help of the function defined above.

J. SIMULATING MULTI-STEP EXECUTION
Based on the aforementioned function, a function is designed
to simulate multi-step execution as follows.

primrec exec : : ‘‘ x 8 6 _ s t a t e ⇒ n a t ⇒
x 8 6 _ s t a t e ’’
where
‘‘ exec s 0 = s’’ |
‘‘ exec s ( Suc n ) = exec
( s t e p s ( g e t i s ) ) n’’

The function ‘‘exec’’ will simulate the execution of the
instruction recursively until n becomes 0.

V. INTRODUCTION TO MOS
A. FEATURES OF MOS
The OS MOS is a micro OS for IoT in smart cities, which
has been illustrated in Fig. 1. It boots with GRUB and uses a
two-level page table. It can handle common interrupts and
has basic memory management and process management.
It can interact with users through the console and can run user
programs.

B. INTRODUCTION TO ALLOCATE MEMORY
Here, we aim to verify a part of the code of MOS for mem-
ory allocation. This OS uses the free linked list and first-fit
algorithm to manage the free memory and allocate memory,
respectively.

We consider the example of finding a free memory area of
just size when allocating pages. Because the size of the free
memory area is equal to that of the memory to be allocated,
at this time, it is only necessary to delete the corresponding
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FIGURE 1. System framework of MOS.

FIGURE 2. Delete page->page_link node.

node in the free linked list and modify the size of its free
memory.

For the delete operation of the linked list node, because
the kernel linked list is a double-linked circular list, when
deleting a node, we must modify the ‘‘next’’ pointer of the
previous node and the ‘‘prev’’ pointer of the next node,
as demonstrated in Fig. 2.

VI. CORRECTNESS VERIFICATION
A. RELATED ASSEMBLY CODE
The assembly code for allocating memory is given below.
We have marked the system states before executing this code
via comments.

80101170 < s e t _ f r e e _ l i s t _ n _ p a g e s > :
# eax = num
80101170: 8b 44 24 04
mov 0x4 (%esp ) ,%eax
# f r e e _ l i s t . n_pages = num
80101174: a3 c0 b1 12 80
mov %eax , 0 x8012b1c0
80101179: c3
r e t

80101250 < a l l o c _ p ag e s > :
. . .
# eax = page−>page_ l i nk−>nex t

# ebx = &page−>pag e _ l i n k
# edx = n
# ecx = f r e e _ l i s t . n_pages
# e s i = page−>page_ l i nk−>prev
80101299: 8b 43 04
mov 0x4 (%ebx ) ,%eax
8010129 c : 83 ec 0c
sub $0xc ,%esp
# ecx = f r e e _ l i s t . n_pages − n
8010129 f : 29 d1
sub %edx ,%ecx
# page−>page_ l i nk−>next−>prev
# = page−>page_ l i nk−>prev
801012 a1 : 89 30
mov %es i , (%eax )
# page−>page_ l i nk−>prev−>nex t
= page−>page_ l i nk−>nex t
801012 a3 : 89 46 04
mov %eax , 0 x4 (%e s i )
# num = ecx
801012 a6 : 51
push %ecx
801012 a7 : e8 c4 f e f f f f
c a l l 80101170 < s e t _ f r e e _ l i s t _ n _ p a g e s >
801012 ac : 83 c4 10
add $0x10 ,%esp
. . .

B. MODEL OF RELATED CODE
Because some codes have similar functions, the above codes
are divided into blocks according to the functions, and the
similar verification processes are omitted.

The code segment ‘‘set_n_pages_snippet1’’ is responsible
for setting the number of free pages in the free list.

d e f i n i t i o n s e t _ n _ p a g e s _ s n i p p e t 1 : : ‘‘code’’
where
‘‘ s e t _ n _ p a g e s _ s n i p p e t 1 ≡ [

(0 x80101170 , 4 ,
MOVL ( O f f s e t 3 2 0x4 ESP EIZ 0)

( Reg32 EAX) ) ,
(0 x80101174 , 5 ,
MOVL ( Reg32 EAX)

( O f f s e t 3 2 0x8012b1c0 EIZ EIZ 0 ) )
] ’’

The code snippet ‘‘set_n_pages_snippet2’’ is responsible
for returning the function.

d e f i n i t i o n s e t _ n _ p a g e s _ s n i p p e t 2 : : ‘‘code’’
where
‘‘ s e t _ n _ p a g e s _ s n i p p e t 2 ≡ [
( $0 \ t imes80101179$ , 1 , RET)
] ’’

The code snippet called ‘‘call_snippet1’’ is responsible for
preparing the function call to allocate the space required by
the function and calculate the parameters.
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d e f i n i t i o n c a l l _ s n i p p e t 1 : : ‘‘code’’
where
‘‘ c a l l _ s n i p p e t 1 ≡ [

(0 x8010129c , 3 ,
SUBL ( Imm32 0xc ) ( Reg32 ESP ) ) ,

(0 x8010129f , 2 ,
SUBL ( Reg32 EDX) ( Reg32 ECX) )

] ’’

The code snippet ‘‘list_del_snippet1’’ is responsible for
deleting a linked list node.

d e f i n i t i o n l i s t _ d e l _ s n i p p e t 1 : : ‘‘code’’
where
‘‘ l i s t _ d e l _ s n i p p e t 1 ≡ [

(0 x801012a1 , 2 ,
MOVL ( Reg32 ESI )

( O f f s e t 3 2 0 EAX EIZ 0 ) )
] ’’

The code snippet ‘‘call_snippet2’’ is responsible for pass-
ing the parameters to the function.

d e f i n i t i o n c a l l _ s n i p p e t 2 : : ‘‘code’’
where
‘‘ c a l l _ s n i p p e t 2 ≡ [

(0 x801012a6 , 1 , PUSHL ( Reg32 ECX) )
] ’’

The code snippet ‘‘call_snippet3’’ is responsible for actu-
ally calling the function.

d e f i n i t i o n c a l l _ s n i p p e t 3 : : ‘‘code’’
where
‘‘ c a l l _ s n i p p e t 3 ≡ [

(0 x801012a7 , 2 ,
CALL ( Imm32 0x80101170 ) )

] ’’

C. VERIFICATION OF RELATED CODE
Now, we verify the correctness of the memory allocation
module, that is, whether the assembly code block has satisfied
the corresponding requirements.

For the first code snippet, we must verify that the free
linked list has been correctly set and the address of the second
code snippet is stored in the instruction register.

lemma s e t _ n _ p a g e s _ s n i p p e t 1 _ c o r r e c t n e s s :
‘‘ s e t _ n _ p a g e s _ s n i p p e t 1 _ s t a t e s ’’
apply ( simp add :

s e t _ n _ p a g e s _ s n i p p e t 1 _ s t a t e _ d e f )
apply ( simp add :

a f t e r _ s e t _ n _ p a g e s _ s n i p p e t 1 _ d e f
b e f o r e _ s e t _ n _ p a g e s _ s n i p p e t 1 _ d e f )

apply ( simp add :
g e t _n_page s _d e f ge t_num1_def
s e t _ n _ p a g e s _ s n i p p e t 2 _ a d d r e s s _ d e f )

apply ( simp add : s e t _ n _ p a g e s _ s n i p p e t 1 _ d e f )
apply ( simp add : exec mov s e t _ g e t

c a s t u p d a t e _ e i p )
apply ( simp add : add . commute )
apply ( wo rd_b i tw i s e )
done

In Isabelle/HOL, various strategies can be applied to prove
a theorem through the keyword ‘‘apply.’’ After applying
a strategy, the theorem prover simplifies the theorem into
several sub-goals. Then, we can continue to apply different
strategies to the sub-goals until no more sub-goals are gen-
erated. Next, we use the keyword ‘‘done’’ to indicate the
conclusion of the proof.

For the second code snippet, we must verify that the func-
tion returns correctly and the instruction register stores the
return address saved in the stack.

lemma s e t _ n _ p a g e s _ s n i p p e t 2 _ c o r r e c t n e s s :
‘‘ s e t _ n _ p a g e s _ s n i p p e t 2 _ s t a t e s ’’
apply ( simp add :

s e t _ n _ p a g e s _ s n i p p e t 2 _ s t a t e _ d e f )
apply ( simp add :

a f t e r _ s e t _ n _ p a g e s _ s n i p p e t 2 _ d e f
b e f o r e _ s e t _ n _ p a g e s _ s n i p p e t 2 _ d e f )

apply ( simp add : g e t _ e s p 1_d e f
r e t _ a d d r e s s _ d e f )

apply ( simp add :
s e t _ n _ p a g e s _ s n i p p e t 2 _ d e f )

apply ( simp add : exec r e t s e t _ g e t
c a s t u p d a t e _ e i p )

done

For the third code snippet, we must verify that the space
required by the function is allocated, the function parameters
are calculated correctly, and the instruction register stores
the address of the fourth code snippet. For the fourth code
snippet, we must verify that the node with the linked list
item is set correctly and the instruction register stores the
address of the fifth code snippet. For the fifth code snippet,
we must verify that the function parameters are correctly
pushed onto the stack and the instruction register stores the
sixth code snippet. The verification for all code snippets is
similar; therefore, it has not been included in this paper.

For the sixth code snippet, the correctness of the function
call process must be verified.

lemma c a l l _ s n i p p e t 3 _ c o r r e c t n e s s :
‘‘ c a l l _ s n i p p e t 3 _ s t a t e s ’’
apply ( simp add :

c a l l _ s n i p p e t 3 _ s t a t e _ d e f )
apply ( simp add :

a f t e r _ c a l l _ s n i p p e t 3 _ d e f
b e f o r e _ c a l l _ s n i p p e t 3 _ d e f )

apply ( simp add : ge t_num1_def
g e t _ e s p 4_d e f
s e t _ n _ p a g e s _ s n i p p e t 1 _ a d d r e s s _ d e f )

apply ( simp add : c a l l _ s n i p p e t 3 _ d e f )
apply ( simp add : exec c a l l s e t _ g e t

c a s t u p d a t e _ e i p )
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FIGURE 3. Proof results.

done

The final result is shown in Fig. 3. The correctness of
each code snippet indicates the correctness of the code of the
allocating memory.

theorem a l l o c _ s n i p p e t _ c o r r e c t n e s s :
‘‘ s e t _ n _ p a g e s _ s n i p p e t 1 _ s t a t e s ∧
s e t _ n _ p a g e s _ s n i p p e t 2 _ s t a t e s ∧
c a l l _ s n i p p e t 1 _ s t a t e s ∧
l i s t _ d e l _ s n i p p e t 1 _ s t a t e s ∧
c a l l _ s n i p p e t 2 _ s t a t e s ∧
c a l l _ s n i p p e t 3 _ s t a t e s ’’
apply ( simp add :

s e t _ n _ p a g e s _ s n i p p e t 1 _ c o r r e c t n e s s )
apply ( simp add :

s e t _ n _ p a g e s _ s n i p p e t 2 _ c o r r e c t n e s s )
apply ( simp add :

c a l l _ s n i p p e t 1 _ c o r r e c t n e s s )
apply ( simp add :

l i s t _ d e l _ s n i p p e t 1 _ c o r r e c t n e s s )
apply ( simp add :

c a l l _ s n i p p e t 2 _ c o r r e c t n e s s )
apply ( simp add :

c a l l _ s n i p p e t 3 _ c o r r e c t n e s s )
done

VII. CONCLUSION
In this paper, we proposed a method to verify OSs from the
assembly perspective using Isabelle/HOL. We established a
system model of the X86 architecture that includes registers,
memory, and common assembly instructions. This model
can simulate the execution of assembly instructions. Sub-
sequently, we considered a micro OS, named MOS, as an
example to verify the correctness of the proposed method.
However, the model has limitations; the verification of the
whole OS may require a significant amount of resources.
We expect the proposed method to help in the verification
of OSs.

In the following work, for the completeness of the whole
system, we will use different logics according to the char-
acteristics of different modules, such as separation logic and
temporal logic.
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