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ABSTRACT Speech emotion recognition is a challenging task in natural language processing. It relies
heavily on the effectiveness of speech features and acoustic models. However, existing acoustic models
may not handle speech emotion recognition efficiently for their built-in limitations. In this work, a novel
deep-learning acoustic model called attention-based skip convolution bi-directional long short-termmemory,
abbreviated as SCBAMM, is proposed to recognize speech emotion. It has eight hidden layers, namely,
two dense layers, convolutional layer, skip layer, mask layer, Bi-LSTM layer, attention layer, and pooling
layer. SCBAMMmakes better use of spatiotemporal information and captures emotion-related features more
effectively. In addition, it solves the problems of gradient exploding and gradient vanishing in deep learning
to some extent. On the databases EMO-DB and CASIA, the proposedmodel SCBAMMachieves an accuracy
rate of 94.58% and 72.50%, respectively. As far as we know, compared with peer models, this is the best
accuracy rate.

INDEX TERMS Emotion recognition, attention mechanism, weighted pooling, skip connection.

I. INTRODUCTION
The emotional state is an important element in the interac-
tions of human beings. It influences many aspects of com-
munication such as facial expressions, voice characteristics,
and semantic contents [1]. As we all know, emotion is an
inseparable component of speech, and it plays an important
role in recognizing, interpreting, and responding to the emo-
tions expressed in speech for a human-machine interface [2].
Therefore, speech emotion recognition (SER) is an essen-
tial component in natural language processing (NLP). SER
consists of the following main steps: corpus construction,
signal preprocessing, feature extraction, and acoustic mod-
eling, etc. [3]. Among which, the acoustic model is the core
component of an SER system. It deciphers the relationship
between an audio input signal and linguistic elements through
knowledge discovery models.

Traditionally, emotional features are input into the model,
and the recognition results are obtained through various

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

acoustic models such as hidden Markov models (HMM) [4],
Gaussian mixture models (GMM) [5], support vector
machines (SVM) [6], and so on. HMM is a parametric
representation of time-varying features that simulate human
language processing and needs a large number of samples for
time-consuming training [7]–[9]. GMM is a probability den-
sity estimation model that can fit all probability distribution
functions, but it depends heavily on data and it is sensitive
to data noise [10]–[12]. SVM maps the feature vectors from
input space to a high-dimensional Hilbert space by using
kernel tricks at first and then seeks an optimal hyperplane in
the high-dimensional space to classify samples. But it cannot
solve the problems of large-scale training samples that lead
to a large or prohibitively huge kernel matrix [13]–[16].

With the rise of deep learning, a variety of artificial neural
networks (ANNs) [17] are introduced for acoustic modeling.
Compared with traditional methods, these neural networks
based on deep learning have better performance for their
capabilities in learning when handling large scale data. How-
ever, different deep learning acoustic models have their own
pros and cons. For example, recurrent neural networks (RNN)
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are good at dealing with time series information [18]–[20],
convolution neural networks (CNN) do well in capturing
spatial information [21]–[23], and the deep residual network
(DRN) can tackle the problems of gradient exploding or
gradient vanishing which become popular with the deepening
of the network layers [24]–[26]. Some representative deep
learning acoustic models are summarized in detail as follows.

RNN is normally used as a dynamic model for sequential
input, whose output is related not only to the current input
but also to the output of the previously hidden layer. RNN
can successfully predict the subsequent information when the
context length is small. However, it may not predict well due
to the problem of gradients vanishing or exploding caused
by its training algorithm BPTT (Back Propagation through
Time) [27]–[30].

To solve the problems of gradient exploding or gradient
vanishing, long short-term memory (LSTM) is used as the
basic recurrent unit of RNN and it uses memory cells and
gates to control whether the input information is to be mem-
orized, output, or forgotten [31]–[34].

LSTM only makes good use of information of the previous
time step, in contrast, Bi-LSTM (Bidirectional LSTM) pre-
sumes that the state of the current time step relies not only on
the information of the previous time step, but also on that of
the future time step. It enables the network to make full use of
context information and make more accurate judgments. This
presumption, however, makes the network focus mainly on
memorizing a large amount of input information and weak-
ens its modeling capability [35], [36]. To make up for this
deficiency, skip connections [37]–[39], the core technique
of DRN [40], is introduced especially for deeper Bi-LSTM
networks, because each neuron node in the skip connections
makes use of the information of the previous hidden layer and
enhances the modeling ability of the network.

Furthermore, Bi-LSTM cannot deal with spatial informa-
tion in emotion recognition and its computation is more
complicated. These problems are handled well by intro-
ducing convolution and pooling, the core operations of
CNN [41]–[45].

Some other techniques are proposed to handle the chal-
lenges that may affect the recognition accuracies of acoustic
models based on deep learning. For example, the masking
operation is introduced to reduce the amount of calcula-
tion [46]–[49]. Similarly, weighted pooling based on atten-
tion over time is proposed to tackle the problems caused by a
long silence, pause, or non-speech filler of the input voice,
because it focuses mainly on specific regions of a speech
signal that are more emotionally salient [50]–[52].

Given all that, a novel acoustic model SCBAMM is pro-
posed to handle the challenges in speech emotion recognition.
It has eight hidden layers, namely, two dense layers, convolu-
tional layer, skip layer, mask layer, Bi-LSTM layer, attention
layer, and pooling layer. This novel model makes good use
of spatiotemporal information and captures emotion-related
features effectively. In addition, it, to some extent, solves
the problems of gradient exploding and gradient vanishing

in deep learning. It demonstrates its superiority to the peer
models on the EMO-DB [53] and CASIA [54] corpus.

The remaining of the paper is organized as follows.
Section 2 describes the details of the proposed model.
Section 3 describes the experimental results. Section 4 dis-
cusses future research directions and concludes this study.

II. METHODS
The development path of the proposed models will be
unveiled in this section in the sequence of CBAM, SCBAM,
and SCBAMM.

A. CBAM: ATTENTION-BASED CONV-BiLSTM
The visual attention mechanism is a special brain signal pro-
cessing mechanism of human vision. Human vision scans the
global image quickly and then obtains a target area. To obtain
more detailed information, more attention would be invested
in the target area. In the meantime, it suppresses other useless
or irrelevant information [55]–[60].

The attention mechanism of deep learning, first proposed
by DeepMind for image classification, is similar to that of
human vision [61]. It enables the neural network to focus
more on the relevant parts of the input and less on the irrele-
vant parts. Since then, the attentionmechanism is widely used
inmanyNLPfields, especially, in speech emotion recognition
to extract features [62].

To extract the temporal information of speech more effec-
tively, Bi-LSTM is first introduced because it can simultane-
ously use the information of previous time and future time.
CNN is then used to extract the spatial information of speech
signals. Furthermore, the attention mechanism is employed
to select the features that can best represent emotions.

Based on the above analysis, a model called attention-
based Conv-BiLSTM, abbreviated as CBAM, is developed.
Figure 1 depicts the flow chart of the proposed CBAM. There
are six hidden layers, namely, two dense layers, a convo-
lutional layer, a Bi-LSTM layer, an attention layer, and a
weighted pooling layer. The convolutional layer is used to
extract spatial information, the Bi-LSTM layer is used to
extract contextual information, the attention mechanism is
employed to learn the weights of each time sequence, and
then the weighted pooling is computed as the representation
of the whole utterance. In this way, the proposed model
CBAM can learn to assign weights to different time steps
from data and it is especially efficient in emotion recogni-
tion. A Softmax(·) function is finally employed to classify
emotions based on the fused features of the output of the
CBAM. The model parameters are optimized by minimiz-
ing the cross-entropy loss objective function. The following
subsections present the details of the proposed CBAMmodel
layer by layer.

The input layer receives features of speech frames. In this
study, they are 36 dimensional acoustic features including
34-dimensional spectral features, 1-dimensional pitch, and 1-
dimensional harmonic to noise ratio (HNR).
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FIGURE 1. The CBAM network topology that consists of six hidden layers,
namely, two dense layer, a convolutional layer, a Bi-LSTM layer,
an attention layer, and a weighted pooling layer.

The first hidden layer of the CBAMmodel is a dense layer,
its output is recorded as h1 and it is calculated as:

h1 = f

(
d∑
i=1

w1 x + b

)
, (1)

where b = [b1, b2, ... , b36] is the bias, x is the 36-
dimensional feature vector (d = 36).

x = [x1, x2, . . . , x36]T , (2)

w1
ij is the element of the weight matrix w1 and it represents

the weight of i-th node of input layer connected to j-th node
of the first dense layer (512 nodes), where i = 1, 2, ... , 36
and j = 1, 2, ... , 512. The matrix w1 is defined as:

w1
=

[
w1
ij

]T
i×j

(3)

f (·) is a LeakyReLU activation function and it is defined as:

f (x) =

{
x, x ≥ 0
αx, x < 0,

(4)

where α is a hyperparameter. When α = 0, it is the ReLU
function. For negative input, both the output of ReLU and its
first derivative is always 0, which makes the neuron unable
to update the parameters. When α > 0, it is the LeakyReLU.
For negative input, both the output of LeakyReLU and its first
derivative is non-zero, which solves the gradient problems
in deep learning to some extent and solves the problem that
neurons do not learn when the ReLU function enters the
negative interval. The value of α in this paper is 0.01.
In this case, the obtained h1 is used as the input of the next

dense layer. The calculation of h2 is similar to that of h1, see
formula (1). Similarly, the calculated h2 is used as the input
of the convolution layer. Valid convolution only considers the
case that the length of a one-dimensional tensor can com-
pletely cover the convolution kernel, that is, the convolution
kernel moves inside the one-dimensional tensor. The output

FIGURE 2. The LSTM cell.

conv3 of the valid convolution is input to the Bi-LSTM layer,
and it is defined as:

conv3 = f
(
h2 ∗ F
S

× N
)
, (5)

where F = [k1, k2, . . . , k512] represents the convolution
kernel, N is the number of filters and it is set 512, and S
represents the stride and it is set 1.

To the Bi-LSTM layer, it has three inputs: the first one is
conv3, which comes from lower layer at the current time t;
the second one is ht−1, which is the output of the same hidden
state at time t−1; and the third one is ht+1, which is the output
of the same hidden state at time t + 1.
The gating mechanism of memory cell is used to control

information flow. Figure 2 shows the LSTM cell. There is a
cell state Ct to memorize information and it is updated as:

Ct = Ct−1 � ft + C̃t � it , (6)

where � represents Hadamard product, Ct−1 represents the
cell state of previous time series. ft is the output of forgetting
gate at time t and calculated as:

ft = σ
(
Wf ht−1 + Uf o3conv + bf

)
. (7)

It represents the forgetting probability of the hidden state of
the previous time sequence.

The output of ft is a three-dimensional array, where the first
element, which is set to 32, represents the dimension of the
batch size vector; the second element, which is set to 144,
represents the dimension of the time step vector; and the third
element, which is set to 128, represents the number of hidden
states. In the following formula, the dimensions of it , C̃t , ot
are equal to that of ft .

The U =
(
rij
)
m×n represents the weight matrix between

the convolution layer and Bi-LSTM cell states, where m =
1, 2, . . . , 512, n = 1, 2, . . . , 128. The dimensions of matri-
ces Uf , Ui, Uc′′ , and Uo are the same as those of U , where
Uf is the forgetting weight matrix, Ui and Uc′′ are the input
weight matrices, and Uo is the output weight matrix.
The symbol Wn×n represents the weight matrix between

the hidden states at adjacent time steps. The dimensions of
matrices Wf , Wi, Wc, and Wo all are equal to that of Wn×n,
where Wf is the connection weight matrix between the for-
mer hidden state and current time forgetting gate, Wi is the
connection weight between the former hidden state and the
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current time input gate,Wc is the connection weight between
the former hidden state and the current time cell state, andWo
is the connection weight between the former hidden state and
the current time output gate.

The parameter ht−1 in equation (7) is a 128-dimensional
vector of the hidden state, bf =

[
b1f , b

2
f , . . . , b

128
f

]
is the

bias, and σ (·) is a Sigmoid function defined as:

σ (x) =
1

1+ exp (−x)
∈ [0, 1] (8)

The inputting gate, responsible for processing the input
information of the current sequence position, consists of two
parts: it and C̃t , and they aremultiplied to update the cell state.
The parameter represents the output of the activation function
Sigmoid:

it = σ
(
Wi ht−1 + Ui o3conv + bi

)
, (9)

Correspondingly, the parameter C ′′ represents the output of
the activation function tanh:

C̃t = Tanh
(
Wc ht−1 + Uc o3conv + bc

)
, (10)

where

Tanh (x) =
ex − e−x

ex + e−x
∈ [−1, 1] , (11)

The update of the hidden state ht is the Hadamard product
of ot and ht−1, that is:

ht = ot � tanh (Ct) , (12)

where the dimensions of ht equal to that of ht−1 and ot is
computed as:

ot = σ (Wo ht−1 + Uo xt + bo ) , (13)

Finally, the output yto of the current sequence is calculated
as:

yto = σ (Vht + bt ) , (14)

where bt =
[
b1t , b

2
t , . . . , b

128
t
]
is the bias vector, and V is

the connection weight matrix between the cell hidden state
and output that has the same dimensions as Wn×n. Similarly,
the dimensionality of yto is the same as that of ft .
Because Bi-LSTM processes a sequence of information

from both forward and backward directions at the same time,
the final output yB of Bi-LSTM, which is also the input of the
attention layer, is a three-dimensional array, where the first
element, which is set to 32, represents the dimension of the
batch size vector; the second element, which is set to 1024,
represents the dimension of the time step vector; and the third
element, which is set to 256, represents the number of hidden
states.

In the attention layer, Softmax(·) is used to learn the atten-
tion parameters of an input frame feature. It computes the
final weights for the frames which sum to unity. u represents
a 256-dimensional vector calculated as:

u = Softmax (WA iA + bA) , (15)

where iA, as the input of attention layer, is a two-dimensional
array: the first element, which is set to 32, represents the
dimension of the batch size, and the second element, which
is set to 256, represents the dimension of the time step.
In addition, WA =

[
wij
]
2m×2n is the weight matrix and

bA = [b1, b2, . . . , b2n ] is the bias vector. Softmax(·) is
an activation function which maps the original output to the
interval (0,1) and the sum of the values is 1. It could be
understood as the probability and the node with the highest
probability should be selected as the focus of attention. α is
the probability of the sequence features passing through the
attention layer, which is calculated as:

α = Softmax (u · yB) , (16)

where · represents the dot product operation. It is noted to take
the last dimension of u and yB for the dot product operation
to calculate the probability through the Softmax(·) function.
The vector corresponding to the maximum probability is the
target of attention mechanism that has the same dimension as
that of iA.
In the weighted pooling layer, in order to get the

utterance-level representation zp, the weighted pooling oper-
ation is performed on the sentence and take the value on the
horizontal axis of α and yB for the dot product operation, that
is

zp = α · yB. (17)

On the top of the CBAM model, there is an output layer
and it calculates the probability through Softmax(·) function
to perform classification:

ynk = Softmax
(
zp
)
. (18)

To find the optimal weight and bias, the cross-entropy
loss function is employed to train the CBAM network. The
cross-entropy LCE is calculated as:

LCE = −
1
N

∑
n

∑
k

tnk log ynk , (19)

where N denotes the total number of samples, n denotes the
n-th sample, k denotes the k-th class, tnk denotes the label
of sample. It is worthwhile to point out that tnk denotes the
ground probability of the n-th sample belongs to the class
k(k=0,1,2,. . . ). In addition, ynk is the output of the neural
network and represents the predicted probability of the n-th
sample belonging to the class k .

B. SCBAM: CBAM WITH SKIP CONNECTIONS
The CBAM network focuses on memorizing a large amount
of input information. By adding a skip connection [37]
between the first hidden layer and the convolution layer,
a new model called SCBAM is developed to enhance the
modeling capability of deep learning networks in this study.
Figure 3 illustrates its topology. The skip connection intro-
duced in this model makes the network focus not only on
memorizing a large amount of input information but also
target to improve the modeling ability.
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FIGURE 3. The SCBAM network topology. Compared with CBAM model,
SCBAM model has a skip layer.

Furthermore, the SCBAM network can avoid the gradient
exploding or gradient vanishing problems as the network is
deepened. The reason behind this is that SCBAM fuses the
feature vectors conv3 and h1, where conv3 represents the
feature vector extracted from the convolution layer and h1

represents the feature vector extracted from the dense layer.
The fused feature Fc is calculated as:

Fc = concatenate
(
conv3, h1

)
, (20)

where the concatenate (·) function concatenates the two fea-
tures. The dimension of Fc is the sum of the dimensions of
conv3 and h1 because of the concatenation. That is, there are
1024 neuron nodes in the skip layer. The calculation proce-
dures of other layers in the SCBAM network are exactly as
same as those in the CBAM network. Furthermore, in imple-
mentation, both CBAM and SCBAM networks employ the
LeakyReLU [63] activation function and RMSprop [64]
optimizer.

C. SCBAMM: SCBAM WITH MASKING OPERATIONS
The SCBAM network focuses on the specific region of a
speech signal that is emotionally salient. To extract the fea-
tures of the target region more effectively, a mask layer [49] is
added between the convolution layer and the Bi-LSTM layer
of SCBAM to build a new model named SCBAMM.

Figure 4 illustrates the system diagram of SCBAMM. The
function of masking operation is to extract the features of the
interest region. These features are obtained bymultiplying the
feature mask of interest with the features to be processed. The
inner image value of the interest region remains unchanged
while the outer value is 0.

When inputting the sample features, 0s are padded to align
the dimensions of all the sample features. To the Bi-LSTM
network model, all 0s in Fc need to be masked, that is, all 0s
in Fc do not participate in the calculation. Themask operation
ym can be represented as:

ym = Mask (Fc , 0) (21)

FIGURE 4. The SCBAMM network topology. Compared with SCBAM
model, SCBAMM model has a mask layer.

where (Fc , 0) means all 0s in Fc and do not need to be cal-
culated. Similarly, the calculation procedures of other layers
in the SCBAMM network are exactly as same as those in the
SCBAM network.

To prevent possible data over-fitting [65], during the train-
ing stage of CBAM, SCBAM, and SCBAMM, dropout [66]
is implemented in all layers but the attention layer and
weighted pooling layer. The dropout rate is set to be 0.1 gen-
erally unless specified. At the same time, the batch size is
assigned 32, the number of cross-validation is assigned 10,
and the epoch is set as 100. In addition, the optimizer and
the activation functions are the RMSprop and LeakyReLU,
respectively.

III. EXPERIMENTAL RESULTS
The performances of the proposed CBAM, SCBAM, and
SCBAMM are validated on the EMO-DB corpus [54] and
CASIA corpus [55].

EMO-DB is a German emotion database made up
of 10 actors (5 males and 5 females) to simulate 7 classes
of emotions, namely, anger (W), boredom (L), disgust (E),
fear (A), joy (F), sadness (T), and neutral (N). The sam-
ple numbers of these classes are 127, 81, 46, 69, 71, 62,
and 79, respectively. Totally, the corpus contains 535 emo-
tional speech sentences with a sampling rate of 48-kHz and
16-bit quantification. Randomly, one male and one female
are selected as testing subjects. The data from other subjects
is used as validation data to check if the system needs to
be stopped as soon as possible. The 36-dimensional feature
vector consists of 34D magnitude FFT vectors, harmonic to
noise ratio (HNR), and pitch (F0). The feature extraction
is performed within a 25ms window with a shifting step
size of 10ms. The acoustic feature sequence is Z-normalized
within each utterance [54].

The CASIA speech emotion database was recorded by the
Institute of Automation, Chinese Academy of Sciences. It is
recorded by actors (2 men and 2 women) in six different
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TABLE 1. The parameters of the proposed models.

emotions, namely, anger (A), fear (F), happy (H), neutral (N),
sad (Sa), surprise (Su). The signal-to-noise ratio (SNR) is
about 35 dB, and data acquisition is complemented in a pure
recording environment with 16bit quantization and 16KHz
sampling rate. The publicly available CASIA dataset contains
1200 utterances; each actor speaks 300 words in the same
text, and each person recites six emotions. The average length
of an audio file is about 1.9s [55]. The 20-dimensionalMFCC
features are extracted, and the high-level statistical functions,
namely mean, variance, andmaximum, of theMFCC features
are calculated. The feature extraction is performed within a
25ms window with a shifting step size of 10ms. The acoustic
feature sequence is Z-normalized within each utterance [54].

The experiments are conducted on a powerful PCwith 64G
RAM running underWindows 10, the benchmark speed of the
CPU is 2.10 GHz, the core is 40, the logic processor is 80, and
two RTX 2080 Ti GPUs are also employed for calculation
speedup.

The CBAM, SCBAM and SCBAMM architectures are
implemented with TensorFlow toolkit. The parameters of the
proposed models are shown in Table 1. The optimizer is
Rmsprop and the initial learning rate is set to 0.001. When
training the neural network, if the learning rate is very large,
it is likely that more neurons in the network are ‘dead’, and
LeakyReLU retains some values of the negative axis so that
all information of the negative axis will not be lost. Thus,
the network can be better trained. Rmsprop with bias cor-
rection accelerates convergence and decreases possible oscil-
lations in training [64]. It is more robust when the gradient
becomes sparser.

The confusion matrix and five evaluation measures are
employed to evaluate the performances of each model. In a
confusion matrix, each row represents the prediction cate-
gories of each emotion, each column represents the actual
categories of each emotion, and each number on the diagonal
indicates the correct number of identified samples. The five
evaluation measures include accuracy, precision, weighted
average recall, unweighted average recall (UAR), and F1-
score, respectively. The accuracy refers to the probability of
correct predictions among predictions, i.e., the proportion of
correct predictions. The precision represents the number of
positive samples predicted to be positive; the recall evaluates
how many positive samples in the total samples are predicted
correctly. F1-score is the weighted average of recall rate and

FIGURE 5. Confusion matrix of CBAM on EMO-DB dataset.

FIGURE 6. Confusion matrix of CBAM on CASIA dataset.

precision rate. In the case of imbalanced data, the recall
rate can be biased, therefore, to evaluate the experimental
performance comprehensively, both weighted average recall
(WAR) and unweighted average recall (UAR) are used.

A. PERFORMANCE OF CBAM
Confusion matrix and 10-fold cross-validation are employed
to verify the performance of CBAM. Figure 5 and Figure 6
are the best confusion matrices of CBAM on the databases
EMO-DB and CASIA, respectively. It can be seen that:
Firstly, the average accuracy rates are 80.75% on the
EMO-DB and 63.33% on the CASIA, respectively. Secondly,
95.28% of anger (W) samples are predicted correctly on the
EMO-DB dataset, which is a very considerable recognition
result. Thirdly, there is a situation where one class is easily
predicted to be another. Take joy (F) emotion as an exam-
ple, only 56.34% of its samples are identified correctly, and
35.21% of its samples are predicted to anger (W), and 4.23%
of its samples are predicted to fear (A), etc. Finally, W and
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FIGURE 7. The emotion spectrograms. (a) The spectrogram of joy (F);
(b) The spectrogram of anger (W); (c) The spectrogram of F-W; and
(d) The spectrogram of W-F.

F, L and N, are easily confusing emotion class pairs. Here,
the spectral subtraction of two samples is used to demon-
strate their similarity more intuitively. Figure 7 shows the
spectrograms of W, F, F-W, W-F. It can be found that the
spectrograms of joy (F) and anger (W) are similar. F-W and
W-F reflect the difference between F and W. The darker the
spectrogram of F-W or W-F, the more similar are classes F
and W.

B. PERFORMANCE OF SCBAM
Figures 8 and 9 show us the best confusion matrices of
SCBAM on the databases EMO-DB and CASIA. It can be
seen that: Firstly, the average accuracy rates are 92.71% on
the EMO-DB and 70.00% on the CASIA under the same
computing environment of CBAM. Secondly, the accuracy
of SCBAM is 11.96% higher than that of CBAM on the
EMO-DB dataset. The reasons behind that are as follows. The
skip connections in SCBAMmake the network focus not only
on memorizing a large amount of input information, but also
on the promotion of the modeling ability; in addition, it can
deal with the problems of the gradient exploding or gradient
vanishing. Thirdly, except the classes of joy (F) and disgust
(E), the samples of the other five types of emotions can be
well recognized. 5.63% of joy (F) samples are predicted to
be another. Once again, it is proved that the samples of class
F are easily predicted as class W.

C. PERFORMANCE OF SCBAMM
Figure 10 and Figure 11 illustrate the best confusion matri-
ces of SCBAMM on the databases EMO-DB and CASIA.
It is obvious that: Firstly, the classification accuracy of the
proposed model is 94.58% on EMO-DB and 72.90% on
CASIA under the same computing environment of CBAM
and SCBAM. Secondly, the accurate rate of SCBAMM for

FIGURE 8. Confusion matrix of SCBAM on EMO-DB dataset.

FIGURE 9. The confusion matrix of SCBAM on the CASIA dataset.

each kind of emotion reaches 90.00% on the EMO-DB
dataset, which indicates that the SCBAMM model has good
robustness. Finally, the accuracy rate of SCBAMM is 13.83%
and 1.87% higher than that of CBAM and SCBAM, respec-
tively. The reason is that the masking operation in SCBAMM
is good at extracting the effective features of the target
regions, which contributes to detecting different emotion
states.

D. COMPARISON OF CBAM, SCBAM,
AND SCBAMM
Figure 12 shows the improvements in terms of accuracy
of the proposed models CBAM, SCBAM and SCBAMM
in the 10-fold cross-validation on the EMO-DB database.
It is easy to come to the following conclusions. Firstly,
the average accuracy of SCBAMM is optimal (orange
squares in the box) among that of CBAM, SCBAM, and
SCBAMM. Secondly, the results obtained by SCBAMM
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FIGURE 10. The confusion matrix of SCBAMM on the EMO-DB dataset.

FIGURE 11. The confusion matrix of SCBAMM on the CASIA dataset.

in the 10-fold cross-validation are relatively concentrated
(longitudinal height of the box), which indicates that
SCBAMM has better stability and robustness. Finally, red
solid circles indicate outliers.

Table 2 summarizes the improvements in terms of accuracy
of the proposed models CBAM, SCBAM and SCBAMM to
the peer models.

Firstly, SCBAMM is superior to SCBAM and CBAM on
both datasets EMO-DB and CASIA in evaluation measures
such as accuracy, UAR, precision, and F1-score.

Secondly, SCBAMM is superior to previous research
results other than reference [75] on the EMO-DB dataset,
no matter which evaluation index is measured. The accuracy
rate of reference [75] is as high as 98.00%. The reason behind
that is reference [75] just selects a subset of the EMO-DB
database, which contains only four types of emotions, each
containing 30 emotional sentences.

Thirdly, SCBAMM demonstrates a strong prediction capa-
bility in emotion recognition. Mathematically, the weight

FIGURE 12. The boxplots of the classification accuracies of the CBAM,
SCBAM, and SCBAMM models on the EMO-DB dataset under the 10-fold
cross-validation.

TABLE 2. Performance comparisons (%) of the proposed models to those
of other peer models on the EMO-DB corpus.

matrix of SCBAMM can be more representative and faster
than those of the peer models for its customized optimizations

Firstly, SCBAMM is superior to SCBAM and CBAM on
both datasets EMO-DB and CASIA in evaluation measures
such as accuracy, UAR, precision, and F1-score.

Secondly, SCBAMM is superior to previous research
results other than reference [75] on the EMO-DB dataset,
no matter which evaluation index is measured. The accuracy
rate of reference [75] is as high as 98.00%. The reason behind
that is reference [75] just selects a subset of the EMO-DB
database, which contains only four types of emotions, each
containing 30 emotional sentences.

Thirdly, SCBAMM demonstrates a strong prediction capa-
bility in emotion recognition. Mathematically, the weight
matrix of SCBAMM can be more representative and
faster than those of the peer models for its customized
optimizations
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IV. CONCLUSION AND FUTURE WORKS
SCBAMM, a novel acoustic model based on deep learning,
is proposed for speech emotion recognition. To achieve better
performance, several techniques, namely, attention mecha-
nism, skip connection, mask operation, and integration of
spatial and time series information all are proposed. It demon-
strates obvious advantages over the peermodels on the bench-
mark datasets EMO-DB and CASIA. Experimental results
suggest that SCBAMM seems to be much fitter for emo-
tion recognition than its peers. The reason behind that is,
SCBAMM makes good use of spatiotemporal information
and captures emotion-related features effectively.

It can be interesting for us to further prove the superiority
of the proposed model from machine learning theory. For
example, it is highly likely that the weight matrix sequence
in SCBAMM learning can be sparse and meaningful than
those of its peer model. Such a study would be useful to know
whether the specific operations proposed in SCBAMMwould
be redundant for some special datasets (e.g. imbalanced data).
To further verify the effectiveness of SCBAMM, it will be
applied to other emotion classification databases. In addi-
tion, it will be extended to speech recognition and image
classification.
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