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ABSTRACT Quantitative structure—activity relationship (QSAR) modeling is an established approach
for drug discovery, but many QSAR datasets suffer from the curse of dimensionality, a challenge that
is usually addressed by using dimensionality reduction techniques such as principal component analysis
(PCA). However, although linear feature extraction techniques have low computational cost and can handle
linear relationships between descriptors, they cannot handle the complex structures found in QSAR data.
Hybridization of feature extraction techniques is an effective approach to address the challenges of high-
dimensional datasets, and combining the benefits of at least two dimensionality reduction techniques has
been successful in many fields. This paper proposes Auto-KPCA, a two-step hybrid feature extraction
technique that leverages (i) the fast computational capability of kernel PCA (KPCA) and (ii) the performance
of a deep generalized autoencoder in handling complex data structures. Based on classification accuracy, the
proposed approach is compared to other feature extraction techniques on the same benchmark dataset. The
capability of Auto-KPCA is then investigated further by testing four deep-learning classification models,
namely a convolutional neural network, a recurrent neural network, a feedforward deep neural network,
and long short-term memory. To the best of the authors’ knowledge, this study is the first to investigate
hybridization of KPCA and a deep generalized autoencoder in the context of QSAR. The reported results
(1) provide invaluable insights regarding the behavior of different techniques in predicting class labels and (ii)
demonstrate increased classification accuracy and noticeably decreased mean square error when compared
with KPCA and autoencoders.

INDEX TERMS Autoencoder, deep generalized autoencoder (dGAE), dimensioanlity reduction, feature
extraction, kernel principal component analysis (KPCA), quantitative structure—activity relation (QSAR),
blood-brain barrier (BBB) permeability.

I. INTRODUCTION

With the growing popularity and prominence of drug dis-
covery and new drug design, an abundance of biologi-
cal and chemical data is now available, and ligand-based
virtual screening helps to search large libraries of chemi-
cal databases to identify new compounds [1]. Quantitative
structure—activity relationship (QSAR) modeling is a way to
identify a relationship between a molecule and its activities.

The associate editor coordinating the review of this manuscript and
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This goal is achieved by (i) finding a representation of a given
molecule’s structure and (ii) building a model to investigate
the relationship between that representation and the desired
activity or property [2].

An essential task in QSAR is to analyze the biological
activities of a chemical structure based on the information
encoded in the molecular descriptors. A chemical structure
can be described by a myriad of molecular descriptors, also
called features, and thus QSAR datasets are characterized
as being high dimensional [3]. However, despite the many
encoded descriptors, only a few are representative and related
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to the compound’s structure [4]; unnecessary descriptors
result in redundancy and noise, thereby leading to inad-
equate classification performance. Identifying the relevant
descriptors related to a compound can be accomplished by
means of feature selection or extraction methods [5]. Given
the multi-dimensionality of QSAR datasets, dimensionality
reduction techniques are an integral part of QSAR modeling
[6], and many feature selection and extraction techniques
have been used to address the challenges posed by QSAR
high-dimensionality [4], [7], [8].

Research is underway into dimensionality reduction for
QSAR data [8]-[10]. In a previous study of how fea-
ture extraction methods affect high-dimensional QSAR data,
a dataset representing the problem of blood-brain bar-
rier (BBB) permeability [7] was investigated, and five state-
of-the-art feature extraction methods were examined, all
associated with promising levels of performance in other
domains [8]. These methods were (i) linear principal com-
ponent analysis (PCA) [11], (ii) kernel PCA (KPCA) [12],
(iii) deep generalized autoencoder (dGAE) [13], (iv) Gaus-
sian random projection (GRP) [14], and (v) sparse random
projection (SRP) [15]. The study showed that dGAE could
separate data points, thereby indicating their ability to handle
complex datasets, and PCA was found to demonstrate the
best class separation when compared to the other feature
extraction techniques.

Based on the observations made and results obtained in
the aforementioned empirical comparative study [8], we pro-
pose herein Auto-KPCA, a two-step hybrid feature extraction
technique for QSAR modeling. The proposed technique is
based on KPCA and dGAE, and we reason that leveraging
the capabilities of KPCA and dGAE could highlight useful
ways of handling complex QSAR data and extracting more
relevant features. Expanding on the feature extraction tech-
niques examined by Alsenan et al. [8], the present paper
contributes to QSAR research as follows. 1) It presents a
novel hybrid feature extraction technique based on dGAE
and KPCA, and to the best of our knowledge the proposed
technique is yet to be tested in the QSAR context. KPCA is
computationally more efficient than dGAE, whereas dGAE is
better at handling complex data structures. We investigate the
performance of the proposed hybrid technique in comparison
with KPCA or dGAE alone and based on measuring the mean
square error (MSE) to analyze the amount of lost information
following feature extraction. 2) It analyzes the technique’s
ability to separate class labels by visualizing the data points
using scatterplots. 3) It develops four deep learning (DL)
classifiers and compares their performance before and after
employing Auto-KPCA. 4) It compares the performance of
the proposed hybrid technique with those of state-of-the-
art techniques and similar approaches in the literature. The
performance is assessed based on the classifier accuracy mea-
sures indicated by Idakwo et al. [16] and Sahithi et al. [17].
5) It compares the running time of the Auto-KPCA hybrid
technique with those of KPCA and autoencoders (AEs)
separately.
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The rest of this paper is organized as follows. In Section II,
we review the literature on feature extraction techniques
in QSAR. In Section III, we outline the present research
methodology, including the experimental setup, the prepro-
cessing, the proposed feature extraction technique, and the
classification models. We present the experimental results in
Section IV and our conclusions in Section V.

II. LITERATURE REVIEW

High dimensionality is a major problem when building a
classification model because it can result in feature noise,
redundancy, and computational complexity. QSAR datasets
can benefit from dimensionality reduction techniques to
solve these problems, and the high dimensionality of QSAR
datasets has encouraged the application of feature selection
and extraction methods to handle this type of dataset.

In feature selection, a subset of features is kept while
less-relevant features are discarded. The feature subset is
chosen such that the essence of the original representation is
retained. There are many types of feature selection methods,
including filters, wrappers, and embedded/hybrid methods
[4], [18]. Li et al. [19] used a feature selection method
known as recursive feature elimination (RFE) to extract the
most effective features in a QSAR dataset; they reported
that the features selected by RFE contributed to the best-
performing classification model. Castillo-Garit et al. [20]
used wrapper feature selection for dimensionality reduction,
and Brito-Sanchez et al. [21] used a feature selection method
known as forward stepwise to select compounds. Danishud-
din et al. [4] reviewed QSAR feature selection methods; they
showed that using feature selection methods alone produces
enhanced results, but they recommended including a feature
extraction step to handle efficiently the complexity and high
dimensionality of QSAR data [3].

Feature extraction works by transforming the original fea-
ture space into a new lower-dimensional one. The initial
features undergo various operations to produce new features,
thereby meaning that the new features cannot be associ-
ated easily with their original components. Many state-of-
the-art feature extraction techniques have been used to deal
with high-dimensional QSAR datasets, such as genetic algo-
rithms (GAs) and partial least squares regression [22]-[24],
ant colony optimization [25], k-means clustering [26], and
PCA [11].

PCA has become widely popular in the context of QSAR
dimensionality reduction [11]. Research suggests that PCA is
less sensitive to noise when compared to other well-known
feature extraction methods such as Isomap, locally linear
embedding (LLE), and Hessian LLE (HLLE) [27], [28]. PCA
has also been shown to outperform linear discriminant anal-
ysis when dealing with complex data structures [16], [29],
[30].

With the growing success of DL techniques, AEs have been
used for dimensionality reduction [31]. AEs can deal effi-
ciently with nonlinear data [32]-[34] and can learn two-way
mappings between high- and low-dimensional spaces [35].
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This is considered highly advantageous compared to other
techniques such as LLE, which is limited to one-way
mapping and cannot extract features gradually, thereby
meaning that the relationship between samples is not
preserved properly because all features are extracted at
once [31].

Dorronsoro et al. [36] and Guerra et al. [37] used an unsu-
pervised artificial neural network (ANN) to extract descrip-
tors for a classification model. Wang et al. [7] subjected their
dataset to a combination of selection and extraction methods
and compared the performance of the developed predictive
model using different subsets of feature selection techniques;
they selected variance threshold (VT), univariate feature
selection (UFE), RFE, Pearson correlation coefficient, and
PCA. Of the fingerprints used in their study, they reported
that the Molecular Access System ones outperformed the
rest. As the feature selection and extraction methods, they
chose VT, UFE, and RFE to reduce the dimensionality to
only 72 descriptors.

Recently, Alsenan er al. [8] tested five state-of-the-art
feature extraction methods in the context of QSAR, namely
(i) linear PCA [11], (ii) KPCA [12], (iii) dGAE [13], (iv) GRP
[14], and (v) SRP [15].

That study shed light on the effectiveness of feature
extraction techniques in QSAR to predict BBB permeability.
Through visualization after projecting the data in a lower-
dimensional space, Alsenan et al. concluded that dGAE
demonstrated the best separation of instances, indicating that
dGAE has great potential for extracting features from com-
plex data. They also showed that PCA exhibited the best class
separation and could identify the two classes better than could
random projection or dGAE.

To address the challenges of high-dimensional datasets,
much effort has been made to combine the benefits of
dimensionality reduction techniques [16], [38]. Hybridiza-
tion of dimensionality reduction techniques is usually done
in at least two steps, with different methods applied usu-
ally in a pipeline. Linear discriminant analysis combined
with a GA was used for gene selection to increase the
prediction accuracy of many microarray gene expression
datasets [39]. A GA was also combined with a support
vector machine (GA-SVM) [40] and simulated annealing
[41]. Susmi et al. [42] subjected a gene-expression leukemia
dataset to PCA combined with canonical correlation analysis,
and the hybridization was an improvement compared to using
a single dimensionality-reduction technique. In a recent sur-
vey, Almugren and Alshamlan [43] highlighted many hybrid
feature selection methods based on bio-inspired evolutionary
methods. They applied the reviewed hybrid methods in the
context of gene selection and cancer classification, and the
hybrid methods included GA, ant colony optimization, bat
algorithm, artificial bee colony, particle swarm optimization,
and grasshopper optimization.

Encouraged by (i) the literature showing the benefits of
hybridization approaches and (ii) the observations from the
recent comparative study of feature extraction techniques [8],
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FIGURE 1. Quantitative structure-activity relationship (QSAR) modeling.

we investigate herein the proposed two-step hybrid feature
extraction technique.

lll. METHODOLOGY

In this section, we outline the present research methodology.
Winkler et al. [44] reviewed how to represent the relationship
between a chemical structure and its properties and activ-
ities. The process involves gathering a dataset of chemical
compounds, converting those compounds to SMILES (Sim-
plified Molecular Input Line Entry Specification), calculating
the molecular descriptors, curating and preprocessing the
data, applying dimensionality reduction to select the relevant
descriptors, and finally developing and validating the clas-
sification model. Fig. 1 shows the steps involved in QSAR
modeling.

In this research, we propose Auto-KPCA, a novel two-
step hybrid dimensionality reduction technique. According
to Idakwo et al. [16], a common method for assessing the
performance of a feature extraction technique is to compare
classifier performance before and after feature extraction.
Herein, we follow that approach by examining and comparing
the performance of DL classification models before and after
applying Auto-KPCA. The classification models are based on
four DL algorithms, namely (i) a feedforward deep neural net-
work (FFDNN), (ii) a convolutional neural network (CNN),
(iii) a recurrent neural network (RNN), and (iv) long short-
term memory (LSTM). Herein, we examine the proposed
feature extraction technique by modeling a QSAR problem
known as BBB permeability [45], and we summarize the
present methodology as the following steps:

1) obtain a dataset of compounds encoded in unique
SMILES representation with known logBB values;

2) calculate descriptors (features) representing the chemi-
cal and biological properties of compounds to generate
a high-dimensional dataset;

3) curate and preprocess the high-dimensional dataset;

4) save the high-dimensional data as BBB-Dataset A;

5) apply Auto-KPCA to reduce the high dimensionality
of BBB-Dataset A; the new dataset with the extracted
features is saved as BBB-Dataset B;
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FIGURE 2. Auto-KPCA architecture.

6) develop and train the four DL classifiers to predict the
logBB values;

7) test the DL classifiers on BBB-Datasets A and B;

8) compare the classifier performance with each dataset
to obtain the capabilities of the proposed technique;

9) compare the classifier performance on BBB-Dataset B
against other approaches in the literature.

The present methodology gives insights into the capabil-
ities of the proposed feature extraction method in extracting
valuable information. Because the proposed hybrid technique
is based on two widely used feature extraction methods,
namely KPCA and dGAE, it is important to assess the ability
of each technique in retaining important features. Therefore,
after the classification task, we calculate the MSE of the
hybrid technique in comparison with KPCA and dGAE indi-
vidually.

A. EXPERIMENTAL SETUP

The high-dimensional dataset is for the well-known QSAR
problem of BBB permeability. Compounds are classified as
having either high permeability (BBB+) or low permeabil-
ity (BBB—). To measure a compound’s permeability to the
central nervous system, a splitting threshold is chosen to
separate the two class labels; we follow previous studies and
split the compounds as logBB > —1 for class BBB+ and
logBB < —1 for BBB— [19]. The benchmark dataset was
acquired from Wang et al. [7] as the largest BBB dataset;
it contains 1803 BBB+ compounds and 547 BBB— com-
pounds (2350 in total).

The dataset is a list of compound instances encoded as
SMILES along with the class labels. To generate the high-
dimensional dataset, molecular descriptors (features) are
calculated using chemical tools that are specialized for this
task. We use the software tools AlvaDes [46] and OCHEM
(Online Chemical Modeling Environment) [47] to calcu-
late 1D, 2D, 3D and fingerprints for each compound. For
the 2350 compounds, 6394 descriptors were calculated for
this experiment, forming a high-dimensional QSAR dataset.
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B. PREPROCESSING

Machine learning and DL require several preprocessing steps
to ensure data efficiency, with data cleaning, integrating,
and transformation being important steps before any classi-
fication task. After generating the descriptors, the 1D, 2D,
3D descriptors and fingerprints were integrated into one
dataset. To clean the dataset after calculating the descrip-
tors, we searched the dataset for records with no calculated
descriptors or missing values. Eight compounds were found
with no calculated descriptors and were dropped. As for
records with some null values, we performed a “replace
by the mean” operation by calculating the mean value for
the descriptor in the entire dataset and substituting that for
the null values. The descriptors had various value ranges,
so we performed MinMax scaling to normalize the range of
descriptors values in the dataset; this step transformed the
values to be between 0 and 1.

C. AUTO-KPCA

Auto-KPCA is a novel two-step hybrid dimensionality
reduction technique that can be used to transform a high-
dimensional QSAR dataset (BBB permeability in the present
study) from a high-dimensional space to a low-dimensional
space. The proposed approach is based on KPCA and dGAE,
with the motivation for combining the two nonlinear tech-
niques stemming from the desire to benefit from the fast
computational capability of KPCA and the performance of
dGAE in handling complex data structures. This architecture
reduces the computational complexity of AEs, therefore the
complete high-dimensional data are passed through KPCA
first and then input into dGAE.

Fig. 2 shows the data flow of descriptors from a high-
dimensional space to a low-dimensional space. The com-
plete set of descriptors comprised 6394 descriptors and
fingerprints, each of which was used as an input for KPCA.
The objective of first passing the complete high-dimensional
data to KPCA was to transform the data to a lower-
dimensional space while achieving minimum information

2469



IEEE Access

S. A. Alsenan et al.: Auto-KPCA: A Two-Step Hybrid Feature Extraction Technique for QSAR Modeling

loss and faster computational processing compared with
dGAE.

With KPCA, the kernel function for KPCA was set to a
polynomial. The number of components returned by KPCA
can be specified, but for our model we allowed KPCA
to return all non-zero values in the space with reduced
dimension. This was accomplished by not passing any
value to KPCA in terms of the number of components (the
parameter n_components), thereby allowing the model to
retain all invaluable information. After passing the complete
high-dimensional dataset to KPCA, 3603 descriptors were
returned.

The retained descriptor set was then passed to dGAE,
which was constructed using six encoder layers with a 30%
dropout rate and five decoder layers with a 20% dropout rate.
The first encoder layer of the model was the input layer, while
the final encoder layer was the output to obtain the space with
reduced dimension. The number of hidden units in the first
encoder layer amounted to 3603, which corresponded to the
number of features obtained from KPCA. The hyperparam-
eter tuning of the model was set experimentally to Adam as
an optimizer with a learning rate of 0.01, and the activation
function was ReLU with an epoch size of 50 and a batch size
of 64. Although the AE was trained using both the encoder
and the decoder, the reduced dimensionality was obtained
from the smallest hidden layer in the encoder, known as the
“bottleneck.” This layer transformed the input to the “latent
space,” which is the lowest space level in the architecture.
dGAE extracted 2250 features in total.

The pseudocode of Auto-KPCA in which the latent space is
computed is shown in Algorithm 1. The input values to Auto-
KPCA are represented in lines 2—4 and 18-20, and the output
values are represented in lines 6 and 23. The input of Auto-
KPCA is a high-dimensional dataset S, which is processed
in two steps. In step 1, the eigenvectors, eigenvalues, and
principal components are computed by KPCA. The “for”
loop in lines 11-14 represents the process of obtaining the
final matrix and projecting the data to the low-dimensional
space. Line 16 represents the output Y, which is a lower-
dimensional dataset. In step 2, the output from KPCA is input
to dGAE. We define / hidden layers and 4 neurons. The ““for”
loop in lines 24-29 trains the network and updates the weights
to minimize the error. For all hidden layers, the activation
function is computed and the output Y is constructed. The loss
is calculated and backpropagated to fine-tune the weights.
This process is repeated until the minimum error is reached.
The final reduced dataset is produced by computing the latent
space of the encoder.

D. CLASSIFICATION MODELS

Four DL classification models were developed to assess
how Auto-KPCA affects classifier performance. The main
hypothesis is that Auto-KPCA can extract useful features
that enhance classifier prediction. The hyperparameters for
the DL models were set experimentally until the best model
was realized. The activation function for the DL models
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Algorithm 1 Two-Step Auto-KPCA
Step 1: Kernel PCA (KPCA)

Input:

S: high-dimensional dataset

f: kernel choice

d: number of principal components
Output:

Y: low-dimensional dataset

A A

7: K = compute kernel matrix (S, f)

8: K~ = normalize kernel matrix (K)

9: U = TopEigenVectors (K™, d)

10: A = TopEigenValues (K™, d)

11: fori =1tomdo

122 forr=1tod do

132 Yei= 0L o (K Gax) Ul
14:  end for

15: end for

16: Return Y

Step 2: Deep generalized autoencoder (AGAE)

17: Input:

18: Y: lower-dimensional dataset
19: h: hidden units

20: [: hidden layers

21: Output:

22: ¥: decoder output

23: (: latent space from encoder

24: for all / do

25:  a; = hidden activation function

2:  ¥: = reconstruct output from hidden activation (a;)
27: e = compute error gradient ()A’)

28:  Backpropagate to update weights (e)

29: end for

30: Q = compute latent space using encoder bottleneck
31: Return Q

was ReLU, with the Adam optimizer and a learning rate
of 0.01. In each model, two batch optimization layers were
used to normalize the output of each layer before passing
it to the next layer. The number of epochs for this experi-
ment was set to 100 and the batch size to 200. The models
were validated with 10-fold validation, with the dataset split
into 10 subsets. In each validation iteration, one subset was
retained for testing while the rest were used for training. This
process was repeated until each subset had been used once
for testing. To ensure that no data leaked to the classifier and
affected its performance or caused overfitting, each iteration
was concluded with a clear_session function. Because BBB
permeability is a binary classification problem, we used a
sigmoid in the final output layer to make the class prediction
between BBB+ and BBB—. The details of each DL model
are given below.
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1) FFDNN: The FFDNN model had three hidden layers
(also called dense layers). The number of neurons in
each hidden layer was determined by trial and error in
a range between the numbers of neurons in the input
and output layers [48].

2) CNN: The CNN model was developed by convert-
ing the dataset from 2D to 3D shape. Feature maps
were calculated in each convolutional layer using fil-
ters. Four convolutional layers were constructed with a
batch normalization layer between layers. The number
of neurons for each hidden layer was 1024, 512, 512,
256, and 1.

3) RNN: The RNN model is known for solving sequential
problems as well as problems with fixed input vectors
like the problem in hand. RNN span (t) time back to
predict the current time (t) allowing it to store previous
representations. Four RNN layers were formed with
the number of neurons set to 1024, 512, 512, and 256.
We set the parameter Return_sequence to “true”
to preserve the previous output.

4) LSTM: The LSTM model is proposed for the first time
to solve the problem of BBB permeability. Although
it contains infinite memory, RNN normally loops back
5-10 time steps. LSTM was proposed by Hochreiter
et al. [49] as a solution to the short memory of RNN.
To develop the LSTM model, we constructed six
LSTM layers and two batch normalization layers. Simi-
larly to the RNN model, Return_sequence was set
to “true.”

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for the pro-
posed two-step hybrid dimensionality reduction technique
Auto-KPCA and compare them with those for the five fea-
ture extraction techniques investigated previously by Alsenan
et al. [8]. We also discuss comparisons with other studies
from the literature. First, we describe and explain the evalu-
ation metrics used to compare the classification models, then
we present the results of the four DL classifiers before and
after applying Auto-KPCA [16], [17]. The MSE of Auto-
KPCA is calculated and compared with that of KPCA and
dGAE individually, and we use scatterplots to visualize how
the proposed technique affects the shape of the dataset.

The original high-dimensional dataset comprised 6394
descriptors, which were transformed into 3603 extracted fea-
tures using KPCA. In turn, the new set of descriptors was
input to dGAE, where the reduced dimensions of 2250 fea-
tures were extracted from the latent space in the AE (i.e., the
“bottleneck’). The result was a low-dimensional dataset that
was subsequently input into each of the DL models.

A. EVALUATION MEASURES

The proposed Auto-KPCA and the other feature extraction
techniques are assessed on the same benchmark data based
on the classification accuracy in predicting class labels. The
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following five performance measures are used to assess the
effectiveness of each model when given real data.

Accuracy is the percentage of compounds that are classi-
fied correctly, and it is calculated as

TP + TN
TP+ TN + FP+FN'

Accuracy = (D
Specificity is the percentage of BBB— compounds classified
correctly out of the total number of BBB—, and it is calculated
as

TN

—_— 2
IN + FP @

Specificity =
Sensitivity is the percentage of BBB+ compounds classified
correctly out of the total number of BBB+-, and it is calculated
as

TP

—_—. 3
TP + FN )

Sensitivity =
Measuring the correlation between actual and predicted
labels in binary classification, the Matthews correlation coef-
ficient (MCC) is commonly used in QSAR modeling, espe-
cially in imbalanced binary classification. It is calculated as

(TP x TN)-(FP x FN)

~ J(FP + IN)(FP + TP)FN + IN)(FN 1 TP)’
“4)

Mcc

In (1)—(4), TP is the true-positive rate of compounds classified
correctly as BBB+, TN is the true-negative rate of com-
pounds classified correctly as BBB—, FP is the false-positive
rate of compounds classified mistakenly as BBB+-, and FN
is the false-negative rate of compounds classified mistakenly
as BBB—.

Receiver operating characteristic (ROC) graphs are impor-
tant for visualizing classifier performance and comparing
different algorithms, showing 7P in comparison to FP. The
area under the ROC curve (AUC) is an important measure
for assessing the performance of binary classification models
[50], showing the classifier’s ability to separate compounds
classified as BBB+ or BBB—.

B. RESULTS

To assess the performance of Auto-KPCA, we conduct four
types of evaluation: 1) the hybrid technique is compared to
the individual KPCA and dGAE techniques based on the
classification accuracy of the FFDNN model; 2) the dataset is
visualized in the low-dimensional space via visual encoding
with scatterplots; 3) the proposed technique is tested via
four DL classification models, namely FFDNN, CNN, RNN,
and LSTM; to evaluate how the proposed feature extraction
method affects high-dimensional QSAR data, the result of
each classifier is considered before and after applying Auto-
KPCA, and the best classification models with Auto-KPCA
are compared with the literature based on the same bench-
mark dataset; 4) the running times are presented.
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TABLE 1. Performance of dimensionality reduction techniques (ACC = overall accuracy, Sens = sensitivity, Spec = specificity, AUC = area under curve,
MCC = Matthews correlation coefficient, RP = random projection, FFDNN = feedforward deep neural network, DR = dimensionality reduction).

DR Training set Test set
technique
ACC [%] Sens[%] Spec[%] | ACC[%] Sens[%] Spec[%] AUC[%] MCC [%]
Auto-KPCA | 99.68 99.58 99.79 98.19 98.87 97.54 99.53 96.40
dGAE 97.19 96.90 97.48 93.67 94.01 92.72 97.85 86.71
KPCA 99.93 99.86 100 95.84 94.13 97.56 98.88 91.72
Receiver Operating Characteristic Reconstruction Error plot
R e — — — LOss
- VALIDATION LOSS
/" 0.5
%\ 0.8 | ///
£ 0.6 // <
% 0.4 /// é 21
E 0.2 ,f’/’ 0.2
,//’ —— test ROC curve (area = 0.995)
004 * train ROC curve (area = 0.998) 014 —

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate or (1 - Specifity)

FIGURE 3. ROC of FFDNN classifier with Auto-KPCA.

1) AUTO-KPCA VERSUS dGAE AND KPCA

Table 1 lists the results for the proposed hybrid Auto-KPCA
in comparison with those for dGAE and KPCA individually
with the FFDNN model. When the FFDNN model was fit-
ted for training, Auto-KPCA and KPCA demonstrated the
best learning, in comparison with dGAE. In the testing set,
Auto-KPCA outperformed the other techniques in terms of
overall accuracy, sensitivity, AUC, and MCC. Auto-KPCA
achieved an overall accuracy of 98.19% compared to 93.67%
and 95.84% for dGAE and KPCA, respectively. Auto-KPCA
achieved the best prediction of BBB-penetrating compounds
by scoring 98.87% on the sensitivity measure.

Auto-KPCA achieved a specificity score of 97.54%, which
is somewhat consistent with that obtained using KPCA. The
AUC score for Auto-KPCA was 99.53%, which was the most
accurate compared to the other techniques.

Fig. 3 shows the ROC graph of the FFDNN model using
Auto-KPCA. The ROC graph illustrates TP in comparison
with FP, and the plotted data are toward the top left corner,
thereby showing that the classifier can distinguish between
sensitivity and specificity.

MCC is a classification measure that delivers a high score
only if the results are consistently satisfactory with respect
to all confusion-matrix scores (i.e., TP, FN, TN, and FP),
thereby making it a highly reliable measure for classification
tasks [51], [52]. In this experiment, the proposed technique
yielded the highest MCC score compared to the other exam-
ined techniques. The best single technique scored 91.72%
in the MCC measure, whereas the proposed Auto-KPCA
achieved an MCC score of 96.40%.

2472

o] 10 20 30 40 50
Epoch

FIGURE 4. Classifier reconstruction error with Auto-KPCA.

Overall, the proposed two-step hybrid dimensionality
reduction technique outperformed its single components in
terms of improving the classifier’s prediction ability across
various accuracy measures.

The primary goal of training is to allow the classifier to
learn data well enough to generalize to previously unseen
data. This can be measured by evaluating the reconstruction
error, which shows the classification loss during training and
validation with respect to multiple epochs. When the recon-
struction error is minimized between training and validation,
it reflects the classifier’s performance consistency on new
data. The reconstruction error of the classifier with Auto-
KPCA is shown in Fig. 4, where the training and validation
lines converge. This reflects consistency in terms of accuracy,
as well as overall success in terms of classifier training.

Comparing the accuracy measures of the classifier with
the dimensionality reduction technique provides insights into
how the proposed technique affects the classifier’s prediction
[16], showing its ability to extract important features that
affect the classifier’s learning process. Another way to mea-
sure the performance of Auto-KPCA is to use MSE, which
for KPCA is calculated using the inverse-transform function.
KPCA was applied first to reduce dimensionality, then the
inverse-transform function was used to obtain the data loss
between the actual and inverse-transformed data. In dGAE,
training is performed based on the loss function; therefore,
in this experiment we used the reconstruction loss calculated
with MSE to find the error [31]. The error was calculated by
comparing the predicted and actually obtained values during
training. Table 2 presents the MSE score for each technique.
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TABLE 2. Mean squared error of Auto-KPCA compared with Kernel PCA
and dGAE.

DR Technique | Mean squared error (MSE)
dGAE 0.030155909674066887
Kernel PCA 5.331339499693642¢-28
Auto-KPCA 9.932557459779348e-08

« BBB+
BBB -

X1 e 00

1.0

FIGURE 5. Scatterplot visualization of data prior to diemsnioanlity
reduction.

For Auto-KPCA, the dataset was first passed to KPCA
for training through the fit function, and the transformed
dimensions were passed to dGAE for further feature reduc-
tion. When the lowest dimensions were reached with the
AE, the output from the predict function was calculated
using the decoder to retain the initial dimensions. The initial
dimensions were passed back to KPCA through the inverse
function to obtain the complete dataset projected back to the
full dimension. Finally, the datasets were compared to obtain
the MSE values.

To interpret MSE, we sought the technique with the low-
est MSE. Table 2 presents the MSE scores obtained with
KPCA, dGAE, and Auto-KPCA. Auto-KPCA obtained a
lower MSE score compared to dGAE, which indicates that
passing the high-dimensional data to KPCA first resulted in a
decreased reconstruction loss with Auto-KPCA. Therefore,
Auto-KPCA can extract meaningful features with minimal
information loss.

2) DATA VISUALIZATION

To visualize the data transformation before and after apply-
ing Auto-KPCA, we use visual encoding with scatterplots.
Fig. 5 shows the dataset before applying Auto-KPCA, where
a positive correlation is noticeable (i.e., the data points move
together in one direction). Fig. 6 visualizes the distribution of
the data points after applying Auto-KPCA, and we note the
following: (i) the positive and negative classes are separated
noticeably across the graph axes; (ii) the level of overlap

VOLUME 9, 2021

+ BBB+
BBB -

X3

FIGURE 6. Scatterplot visualization of Auto-KPCA.

among data points is considerably lower than that in Fig. 6,
thereby indicating that the proposed nonlinear technique can
separate instances [53]; (iii) there is no indication of a positive
correlation among data points.

3) DEEP LEARNING MODELS RESULTS

Here, we show the performance results for the four DL
models before and after applying Auto-KPCA. Table 3 sum-
marizes the experimental results for Auto-KPCA, showing
that the overall accuracy of the FFDNN model increased
from 95.11% (before applying Auto-KPCA) to 98.19%. The
sensitivity, AUC, and MCC values also improved to 98.78%,
99.53%, and 96.40%, respectively.

The CNN model exhibited a moderate improvement in
terms of overall accuracy and sensitivity. However, the
RNN model’s overall accuracy increased from 96.53% to
97.22%. Meanwhile, the LSTM model showed the great-
est performance improvement; in particular, before applying
Auto-KPCA, the accuracy was 90.85%, which increased sub-
sequently to 96.67%. This indicates that LSTM was sensitive
to noise when dealing with the high-dimensional data.

Overall, the four models were associated with noticeable
improvements in overall accuracy using Auto-KPCA when
tested on an external unseen dataset. FFDNN and CNN
achieved a perfect score, while the overall accuracy of RNN
and LSTM improved from 90% to 95% and from 80% to
85%, respectively.

To compare our proposed models properly with other pre-
vious studies, it is important to find ones conducted on similar
datasets. Table 4 lists the performance of Auto-KPCA in
comparison with other feature extraction techniques using
similar datasets and under similar environments [8], namely
linear PCA [11], GRP [14], and SRP [15]. To investigate other
classification models from the literature, we chose the studies
by Wang et al. [7] and Yuan et al. [45] based on the following
criteria: (i) conducted on a similar BBB permeability dataset
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TABLE 3. Performance evaluation of proposed deep learning (DL) models (ACC = overall accuracy, Sens = sensitivity, Spec = specificity, AUC = area
under curve, MCC = Matthews correlation coefficient, DL = deep learning, DR = dimensionality reduction, Ext = external dataset accuracy).

Classification model Training Testing
DR DL ACC[%] Sens[%] Spec[%] | ACC[%] Sens[%] Spec[%] AUC[%] MCC[%] ACCext [%]
algorithm
FFDNN 99.86 99.72 100 95.11 92.15 98.11 98.38 90.40 95
CNN 99.55 99.36 99.75 96.81 95.00 98.11 98.01 93.14 95
No DR
RNN 99.61 99.31 99.90 96.53 94.91 98.09 98.6 93.14 90
LSTM 95.90 99.87 91.91 90.85 82.88 99.42 96.50 83.02 80
FFDNN 99.68 99.58 99.79 98.19 98.87 97.54 99.53 96.40 100
With CNN 99.87 99.88 99.86 96.91 96.10 96.84 98.6 92.85 100
Auto-KPCA RNN 100 100 100 97.22 98.33 96.13 99.64 94.48 95
LSTM 98.54 99.26 97.48 96.67 95.05 98.32 98.34 93.40 85

TABLE 4. Best-performing DL models in comparison with other studies (ACC = overall accuracy, Sens = sensitivity, Spec = specificity, AUC = area under
curve, MCC = Matthews correlation coefficient, DL = deep learning, DR = dimensionality reduction, MLP = multilayer perceptron neural network).

DR method Dataset Model ACC [%] Sens[%] Spec[%] AUC[%] MCC [%]
Auto-KPCA 2350 FEDNN | 98.19 98.87 97.58 99.53 96.40
Auto-KPCA 2350 RNN 97.22 98.33 96.13 99.64 94.48

VT+RFE+UFE [7] 2350 SVM 91.0 933 83.8 94.0 ]

VT+RFE+UFE [7] 2330+ MLP 96.6 99.0 833 91.0 ]
92 (BBBH)

Manual subsets [45] 1990 SVM 95.7 96.2 94.4 0.894

KPCA [8] 2350 FFDNN | 95.84 94.13 97.56 98.88 91.72

PCA (8] 2350 FFDNN |  96.23 95.32 96.92 96.76 91.11
4GAE [§] 2350 FFDNN | 93.67 94.01 92.72 97.85 86.71

based on passive diffusion; (ii) encompassed a larger BBB
dataset; (iii) published in the past five years; (iv) achieved
the highest accuracy in the literature on BBB permeability.

Choosing a larger dataset is essential for undertaking this
study. Yuan et al. [45] noted that a smaller dataset leads
to higher accuracy, which results from the classifier being
specific to certain compounds and unable to generalize to a
larger dataset. This is also partially the reason for choosing
recent studies, given that recent ones could gather larger
datasets as a result of ligand-based virtual screening to
find new compounds. Finally, it is important to compare
the proposed model against the state of the art from the
literature.
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Table 4 demonstrates previous efforts on the same
benchmark data, including those of Wang et al. [7] and
Yuan et al. [45]. Yuan et al. [45] shared a large dataset in
which different subsets of descriptors and fingerprints were
examined. Wang e al. [7] performed experiments using
an SVM and a DL consensus model based on two feature
selection methods, namely VT and RFE; their SVM model
achieved an overall accuracy, sensitivity, and specificity of
91.0%, 93.3%, and 83.8%, respectively. Wang et al. [7]
proposed a consensus model with a multilayer perceptron
neural network using the same benchmark data, with an
additional 92 compounds classified as BBB+ for validation.
As shown in Table 4, their consensus model achieved an
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FIGURE 7. Performance trade-off between accuracy, sensitivity and specificity.

TABLE 5. Running times.

Running time for Running time
Model DR [s] for classification [s]
FFDNN alone - 83.24
FFDNN with KPCA 10.90 25.20
FFDNN with dGAE 155.41 178.13
FFDNN with
Auto-KPCA 94.46 113.45

overall accuracy of 96.6%, a sensitivity of 99.0%, and a
specificity of 83.3%. The proposed FFDNN, CNN, and RNN
models outperformed Wang et al. [7] across all accuracy
measures.

The SVM model due to Yuan et al. [45] achieved an overall
accuracy of 95.7%, a sensitivity of 96.2%, a specificity of
94.4%, and an MCC of 89.4%. Although the overall accuracy
was lower than that achieved by Wang er al. [7], the model
due to Yuan et al. [45] showed greater consistency in the
prediction of both class labels.

The best DL models with Auto-KPCA outperformed that
due to Yuan et al. [45] in overall accuracy, sensitivity, and
specificity. This improvement shows that the proposed fea-
ture extraction technique can select more effective features
than those selected manually. In particular, the MCC of
the proposed FFDNN and RNN models surpassed that of
Yuan et al. [45] by 0.894%, which is a substantial margin.
Auto-KPCA distinctly outperformed linear PCA, GRP, and
SRP in overall accuracy, sensitivity, AUC, and MCC. Also,
as mentioned in Section IV-B1, Auto-KPCA outperformed
its individual components, and it outperformed linear PCA in
all accuracy measures.

4) RUNNING TIME

Table 5 summarizes the running time for each model during
compilation in terms of performing dimensionality reduction,
as well as the classification task. The running time for dGAE
for a complete split was 155.41 s, and the complete classifi-
cation task took 178.13 s.
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When Auto-KPCA was applied, KPCA took 9.7 s to reduce
the dimensions from 6394 to 3603. The transformed set of
features was, in turn, input into dGAE for further reduction,
where it took only 84.717 s to complete the dimensionality
reduction task, and a total of 178.13 s per split for the classi-
fication. This time is less than that taken by dGAE, given that
the complete running time for the classification task per split
took only 113.45 s with Auto-KPCA.

V. CONCLUSION

The present research constitutes a new approach to feature
extraction techniques to reduce high dimensionality. Best
QSAR practices were followed to compile the classification
models based on the largest publicly available BBB perme-
ability dataset.

This study initiated a line of research to address QSAR
high-dimensionality problems by means of feature extrac-
tion methods. Considering the problem of encoding full sets
of descriptors with dGAE, a novel two-step hybrid feature
extraction technique was proposed named Auto-KPCA and
based on dGAE and KPCA. We compared the proposed
technique with renowned techniques that have achieved
promising results using the same dataset. To investigate the
capabilities of Auto-KPCA, four DL models were developed,
and the accuracy of each model increased significantly after
applying Auto-KPCA to the high-dimensional dataset.

The investigated feature extraction techniques represent
merely a fraction of the techniques that have demonstrated
adequate capability in dimensionality reduction. Therefore,
future work should involve further evaluation of available
feature extraction techniques to solve QSAR modeling prob-
lems. In addition, Auto-KPCA led to an enhancement in clas-
sifier performance, which indicates that the proposed tech-
nique can extract useful information from high-dimensional
data. Therefore, it would be worthwhile to investigate the
capabilities of Auto-KPCA in the context of other domains
and research problems.
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