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ABSTRACT The electric power grid is a complex cyberphysical energy system (CPES) in which information
and communication technologies (ICT) are integrated into the operations and services of the power grid
infrastructure. The growing number of Internet-of-things (IoT) high-wattage appliances, such as air condi-
tioners and electric vehicles, being connected to the power grid, together with the high dependence of ICT
and control interfaces, make CPES vulnerable to high-impact, low-probability load-changing cyberattacks.
Moreover, the side-effects of the COVID-19 pandemic demonstrate amodification of electricity consumption
patterns with utilities experiencing significant net-load and peak reductions. These unusual sustained low
load demand conditions could be leveraged by adversaries to cause frequency instabilities in CPES by
compromising hundreds of thousands of IoT-connected high-wattage loads. This article presents a feasibility
study of the impacts of load-changing attacks on CPES during the low loading conditions caused by the
lockdown measures implemented during the COVID-19 pandemic. The load demand reductions caused by
the lockdown measures are analyzed using dynamic mode decomposition (DMD), focusing on the March-
to-July 2020 period and the New York region as the most impacted time period and location in terms of load
reduction due to the lockdowns being in full execution. Our feasibility study evaluates load-changing attack
scenarios using real load consumption data from the New York Independent System Operator (NYISO) and
shows that an attacker with sufficient knowledge and resources could be capable of producing frequency
stability problems, with frequency excursions going up to 60.5 Hz and 63.4 Hz, when nomitigation measures
are taken.

INDEX TERMS Cyberphysical energy systems, COVID-19 pandemic, load-changing attacks, dynamic
mode decomposition, electric power systems, frequency stability.

I. INTRODUCTION
The wide-scale deployment of information, sensing, and
communication technologies in electric power systems (EPS)
contribute to various power grid functionalities. For exam-
ple, Internet-of-Things (IoT) devices are widely utilized in
industrial assets to provide control andmonitoring support for
supervisory control and data acquisition (SCADA), advanced
metering infrastructure (AMI), and other types of commu-
nication and control infrastructures. As a result, during the
last few years, the efficiency, robustness, and reliability of
cyberphysical energy systems (CPES) have been greatly
improved. At the same time, the vulnerabilities inherited from
the IoT ecosystem have expanded the CPES threat surface.
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The roll-out of customer-end IoT-controllable high-wattage
devices and distributed energy resources (DERs) unlocks
new vulnerabilities on the demand-side of CPES and opens
new avenues for adversaries to launch large-scale coordi-
nated remote attacks on power system’s assets. For example,
DERs or modern controllable loads use IoT devices to coor-
dinate their operations with other CPES (e.g., via IoT-based
smart meters or other home assistants such as Amazon Echo
and Google Home). Naturally, these IoT interfaces become
great attack vectors due to the countless vulnerabilities engen-
dered by the complex IoT supply chains. Insecure remote
login passwords of IoT devices can be exploited for malware
infection as in the Mirai botnet which, in 2016, success-
fully compromised thousands of household IoT devices in
a distributed denial-of-service campaign [1]. Firmware
updates are another source of contamination [2], making
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consumer devices such as printers [3] and relay
controllers [4], [5] vulnerable to firmware attacks. Ghost
domain name system (DNS) attacks can infect IoT devices
by routing them to malicious DNS servers [6]. Attacks on
electricity consumers and DERs are essentially facilitated
by the negligence of the customers that use default or weak
security credentials [7].

Adversaries capable of compromising IoT-controllable
high wattage loads and DERs of CPES can maliciously affect
the stability of the grid, causing degradation of grid equip-
ment or even power outages and large-scale blackouts [8].
Although currently hypothetical due to the low penetration
rates of high-wattage loads and DERs (prosumers), these
types of attacks are projected to become realistic in the near
future as the penetration rates are anticipated to grow expo-
nentially [9]. Due to the distributed nature of load-changing
attacks, which disturb the system from the demand-side,
as well as the various ways of attack payload weaponiza-
tion [10], it is difficult for system operators to detect and
mitigate such attacks in order to maintain frequency stabil-
ity and ensure that voltage and frequency levels are within
operational limits. In addition, IoT-based attacks to CPES do
not require operational knowledge of the power system and
are very easy to repeat.

Starting in early 2020, the COVID-19 pandemic
has directly affected businesses and individuals, sig-
nificantly increasing their dependency on the Internet
(e.g., remote work). This reliance expanded the number
of cyberspace-related incidents as malicious attempts have
proliferated to exploit this sudden unplanned shift in soci-
ety. COVID-19 drives criminal and political cyberattacks
across networks, cloud, andmobile phones; pandemic-related
attacks increased exponentially from under 5,000 per week
in February 2020, to over 200,000 per week in late
April 2020 [11]. For instance, COVID-19 scams often use
phishing emails and malicious websites to promote fake
vaccines and cures, fraudulent charity drives, and false infor-
mation on government aid, while at the same time delivering
malware to unsuspecting users and insecure services. Table 1
shows a summary of some of the most prominent threats and
vulnerabilities exacerbated due to the COVID-19 pandemic
and lockdown measures. Example attack categories range
from malware, Zoom bombing, and phishing attacks all
the way to sophisticated critical infrastructure attacks that

TABLE 1. Threats and vulnerabilities increased during
COVID-19 pandemic.

could compromise the integrity of the power grid. Due to
the barrage of cyberattacks during COVID-19, the mali-
cious exploitation potential of ICT and control interfaces of
IoT-controllable loads could, more than ever before, consti-
tute a realistic cyber-threat to power grid operations.

II. RELATED WORK & CONTRIBUTIONS
A. LOAD-CHANGING ATTACKS
Existing work on load-changing attacks1 has focused on the
modeling and analysis of attack vectors in which system
conditions, e.g., electric power demand and electricity prices,
make use of forecasting models which do not account for
sudden reductions in peak demand and delivered energy
nor modification of consumption patterns [24]. The authors
in [25] have demonstrated that load-changing attacks can
cause controlled load shedding but not cascading failures.
Sudden IoT attacks increasing the system load demand will
cause under frequency load shedding (UFLS) control to
split the frequencies of the buses into islands of different
operating regions of the grid when the system cannot han-
dle the load and the frequency drops. In [22], the authors
investigated the feasibility of a load-changing attack using
compromised electric vehicles (EVs). After canvassing pub-
licly available data, they recovered the exact configuration
of the high-voltage power grid and public EV charging sta-
tions (EVCS) in Manhattan, NY. Using this publicly avail-
able data, the work designed a data-driven attack mechanism
requiring from around 500 to about 5,000 compromised Tesla
EVs, depending on grid conditions and attack parameters,
to destabilize the frequency, leading to a major blackout.
Furthermore, a dynamic load-changing attack against power
system stability is studied in [20]. The authors formulated the
problem as a close-loop attack in which a dilettante adversary
controls the changes in the compromised load based on the
system frequency feedback.

B. IMPACT OF COVID-19 IN POWER SYSTEMS
The recent novel coronavirus disease (COVID-19) severely
affected the entire globe as a public health and economic
crisis. At the same time, the COVID-19 pandemic caused
substantial changes in the operations of bulk power sys-
tems and electricity markets. One of the most evident
effects of the health crisis on EPS is the reduction in
peak demand and consumed energy; electricity demand
remains lower than typical expectations during the pan-
demic in many regions of the world. For example, the elec-
tricity demand in June 2020 in EU countries was 10%
below the 2019 levels. In Italy, the 2019-2020 year-on-year
change in electricity demand, weather corrected, reached
28% during the 15th week of 2020 [26]. Similarly in Spain,
the electricity consumption decreased by 13.5% during the

1Prior work has used the names ‘‘manipulation of demand via IoT attack
(MadIoT)’’ [8], ‘‘dynamic load-altering attack (DLAA)’’ [20], ‘‘coordinated
load changing attack’’ [21], ‘‘demand-side cyberattacks’’ [22], and ‘‘power
botnet attacks’’ [23]. Our terminology of load-changing attacks refers to
such attack strategies aiming in a coordinated way to control IoT connected
high-wattage appliances and DERs.
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March-to-April period when compared to the average load
consumption of the last five years due to the lockdown
measures implemented to stop the spread of the COVID-19
pandemic [27]. The reduction was mainly observed during
working days with an average 14.5% reduction while dur-
ing weekends the reduction observed was around 10.6%.
In the African region, one example is the study conducted by
researchers in [28], where an exploratory research aimed at
investigating the impacts caused by the COVID-19 pandemic
in the South African power grid was performed. According to
the authors, the electricity consumption and peak demand in
South Africa decreased by 28.1% and 20.2%, respectively;
exacerbating issues in the reliability of the South African
electric grid. Furthermore, in the East Asian region, and more
specifically in China, a 13% electricity demand drop, during
the lockdown period, was observed [29].

COVID-19 lockdownmeasures are also being analyzed for
several cities and regions of the United States (U.S.). One
example is the study conducted in [29], where researchers
found that New York City’s (NYC) hourly demand in mid-
April 2020 ranged from roughly 5% to 21% below typi-
cal levels while reductions in electric consumption averaged
21% below expected values during the 8 am hour. Similarly,
researchers in [30] explored the impacts that the stay-at-home
orders (SAHO), issued in response to the COVID-19 pan-
demic, had on the regional electricity generation fuel mixes in
three major Regional Transmission Operators (RTOs) in the
U.S., i.e., New York Independent System Operator (NYISO),
Midcontinent Independent System Operator (MISO), and
Pennsylvania Jersey Maryland (PJM). The authors use of
the Shannon-Wiener diversity index, an index designed to
measure the fuel diversity of a generation portfolio, in order
to compare the before and after SAHO periods in terms of
electricity generation fuel mixes. Even though they did not
find any significant difference in the average diversity index
between the two periods, the variance (i.e., σ 2) of the index
for MISO, NYISO, and PJM was significant, with a lower
35% value for the first two RTOs and an 8% higher value for
the latter.

The impact on energy consumption and peak demand
as well as the alternation of the consumption patterns has
brought numerous challenges for utilities and system oper-
ators. Different practices have been followed to proactively
mitigate technical issues and maintain normal operating con-
ditions of CPES [24]. Examples include switching off and
on automatic voltage control systems, capacitors, and reac-
tors, utilizing STATCOM (static synchronous compensator)
and UPFC (unified power flow controller) devices to absorb
reactive power, or the use of automatic UFLS and reserve
arrangements, among others. In [31], a comprehensive review
of the implications of the COVID-19 pandemic for the elec-
tric industry is presented. In this review, the impacts that
the pandemic caused in the power balance and electricity
prices are explored, with the main focus on exploring how
the uncertainty of load demand, voltage violation conditions,
and other challenges have posed higher pressure on system

operators and system maintenance. According to the authors,
in most countries that applied lockdown measures, the total
load demand decreased, and this, in turn, increased the uncer-
tainty of load and posed higher requirements for load fore-
casting accuracy and system reserves. A similar study is
presented in [32], where authors explore the impacts of the
pandemic on the U.S. electricity demand and supply. The
work performs an analysis of the electricity consumption data
up to the end ofMay 2020 and examines some of the variables
(e.g., daily peak, demand ramp rate, demand forecast error,
and net electricity interchange, etc.) that could indicate stress
on the power grid. The study conducted is limited to three
states: California, Florida, and New York, and concluded that
the effect of the pandemic may not only be a simple reduction
in the load, but there exist noticeable differences among the
examined regions during the SAHOs. Focusing on smaller
electric grids, the research in [33] presents a detailed study
regarding the impact that the COVID-19 pandemic had on
the operation of the Estonian, Israeli, and Finnish grids with
a special focus on three major effects: changing patterns in
generation and consumption, frequency stability, and high
integration of renewables. The authors concluded that the
reduction of load consumption during a pandemic-type event
affects considerably the management and control of gener-
ation units and leads to voltage and frequency deviations
that reduce the reliability of the system. For these reasons,
the addition of tools and regulation devices designed to
manage abnormal events and mitigate reliability problems is
suggested in the long-term planning of the grid infrastructure.

C. CONTRIBUTIONS & METHODOLOGY
This article focuses on analyzing the feasibility of
load-changing attacks in power systems during the 2020
COVID-19 pandemic while using the previous year (2019)
as a baseline. The methodological approach to investigate
the feasibility of load-changing attacks in CPES is presented
in Fig. 1. The contributions of this article, highlighting also
the differences between the proposed work and the reviewed
literature, can be summarized as follows:
• A methodology for investigating the feasibility of
load-changing attacks in CPES during pandemic-type
events is proposed as depicted in Fig. 1. The proposed
methodological approach consists of three main steps:
(i) An analysis of the impact of the COVID-19 lock-
down measures in load consumption, (ii) Modeling
of realistic high-impact, low-probability load-changing
attacks, and (iii) A feasibility analysis that evaluates
the impact of the modeled load-changing attacks in a
compromised CPES.

• In order to accomplish (i), dynamic mode decomposi-
tion (DMD) and statistical analyses of load consump-
tion data during the COVID-19 outbreak are performed.
The objective of these analyses is identifying dynamic
load patterns that could cause abnormal loading condi-
tions in CPES, and thus create vulnerable circumstances
that attackers could use in their advantage to perform
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FIGURE 1. Methodological approach for analyzing the feasibility of load-changing attacks.

load-changing attacks. Using these analyses, we are able
to identify the most affected U.S. region and time peri-
ods by recognizing spatio-temporal patterns.

• In order to realize (ii), mathematical and threat model
formulations are designed in order to methodically
examine a realistic high-impact, low-probability threat
targeted at creating frequency instabilities. We inves-
tigate the possibility of attackers compromising power
system stability taking into consideration abnormal
loading conditions caused by lockdown measures as the
ones observed during the COVID-19 pandemic.

• In order to accomplish (iii), the analyses and threat
model developed are used in conjunction to experimen-
tally examine and simulate load-changing attack sce-
narios. The investigation demonstrates that such events
can adversely impact the frequency of CPES during the
decreased load demand conditions caused by COVID-19
lockdown measures.

The rest of the paper is organized as follows. In Section III,
the impact of the lockdown measures is evaluated based on
the COVID-19 pandemic response timeline using DMD and
statistical analyses. The most affected region in the U.S.
is identified and then used jointly with the threat model
presented in Section IV. In Section IV, the threat model of
load-changing attacks and the operational standards for fre-
quency stability are presented. Section V presents the exper-
imental setup and results of the case studies used to evaluate
the feasibility of load-changing attacks during low net-load
demand periods, as the ones observed during the COVID-19
pandemic. Finally, SectionVI presents conclusions and future
work.

III. ANALYZING THE IMPACT OF COVID-19 LOCKDOWN
MEASURES IN EPS THROUGHOUT THE U.S
Before examining the feasibility of load-changing attacks
in CPES during the COVID-19 pandemic, it is important

to first understand the impact that the lockdown measures,
due to the novel COVID-19 pandemic, had in the electricity
consumption around the U.S. In order to understand this
impact, we obtained and analyzed electricity consumption
data obtained from a cross-domain open-source data hub,
COVID-EMDA [34]. This data hub integrates weather, satel-
lite imaging, mobile device location, and electricity market
data from seven regions that cover some of the top hardest-hit
states in the U.S, i.e., California, Texas, Midcontinent Cen-
tral region, Kansas, Illinois, New York, and Massachusetts.
In this article, we focus our attention in analyzing seven main
representative urban areas that belong to the major RTOs
in the U.S. Urban areas have been the most affected areas
by COVID-19 spread and lockdown measures; according
to the United Nations (UN), they have become the epicen-
tre of the pandemic with more than 90% of all reported
cases [35], [36]. The representative urban areas analyzed and
their corresponding RTO are:

1) Houston - ERCOT
2) Boston - ISO-NE
3) Central - MISO
4) New York City (NYC) - NYISO
5) Chicago - PJM
6) Kansas City - SPP
7) Los Angeles - CAISO

A. COVID-19 OUTBREAK TIMELINE & QUANTIFICATION
OF LOAD DEMAND CHANGES DUE TO
COVID-19: 2019 VS. 2020
In order to understand the load demand changes and the
magnitude of the COVID-19 impacts across the seven major
regions examined, we first analyze the possible reasons of
why such changes occurred. Thus, we compiled a series
of important events, in a timeline, that correlate with the
load variation during the outbreak. Fig. 2 shows the timeline
for the different regions analyzed. As seen in this timeline,
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FIGURE 2. COVID-19 response timeline from March 1st to June 30th, 2020, with the most important events for the seven states analyzed. SoE - state of
emergency, SAHO - stay-at-home-order, WHO - World Health Organization, POTUS - President of the United States.

the majority of the lockdown measures in the analyzed states
occurred during the March-to-May period of 2020. Also,
it should be noted that re-openings in most of these places
occurred during the second and third weeks of May. Based on
this timeline, we selected the period ranging from March 1st
to June 30th as the one to compare with the previous
year (2019) for load consumption comparisons and impact
analysis.

In Fig. 3, we can observe how the electricity con-
sumption in the major U.S. zones and RTOs during the
COVID-19 pandemic of 2020 was notably reduced, com-
pared to 2019, during the period of March 1st to June 30th.
The most affected time periods are the ones between 6 am
and 12 pm in all regions. Also, the most affected city due
to the lockdown measures is clearly NYC since a significant
load demand reduction can be observed at all times during
the lockdown period. In regions such as Central-MISO and
NYC-NYISO, overall low net-load demand conditions can
be observed throughout the day. In NYC, the highest load
difference between the average load of 2019 and 2020 is
found at the time period of 11 am to 12 pm, where a load
difference of around 860 MW exists (around 10% of the total
maximum load). Similarly, in Central-MISO, the highest load
difference between the average load of 2019 and 2020 is
found at the time period of 7 am to 8 am, where the load
difference is around 2,020 MW (around 5% of the total
maximum load). These results indicate that NYC is one of the
most affected regions by the COVID-19 lockdown measures,
and thus, we focus our attention on this region.

B. DISCOVERING DYNAMIC PATTERNS IN THE
REDUCTION OF LOAD CONSUMPTION CAUSED
BY COVID-19 ACROSS THE U.S
DMD is a recently developed method capable of per-
forming spatio-temporal decomposition of high-dimensional
data [37]. This process captures snapshots or measurements

in time from a given system and decomposes them into
dynamic modes or patterns that can be used to explain the
system’s behavior. In our case, our ‘system’ is determined
by the load consumption data during the time period of the
COVID-19 outbreak of some of the most affected regions
in the U.S. In order to apply DMD, we structure the load
consumption data: xm+1 represents future measurements
(snapshots) and xm represents previous measurements from
the vector x ∈ Rn; where n represents the number of spatial
points at each snapshot. For data pairs in x, a best-fit linear
operator matrix A is defined as:

xm+1 = Axm (1)

where xm is equal to xm = [x1, x2, . . . xn] at snapshot m.
In our case, the spatial points n represent the individually
normalized load consumption values for different affected
regions across the U.S. It is important to note that according
to [37], the relationship presented in Eq. (1) does not need
to be exact since other theoretical works have demonstrated
the approximation of A (i.e., the full high-dimensional sys-
tem matrix) as Ã (i.e., the rank-reduced representation) can
be used for complex non-linear system applications [38].
This approximation is useful as it avoids the computational
complexity of performing the full eigendecomposition of
the high-dimensional system matrix. Using this relationship,
we can essentially separate our dynamic system into datasets:

X =
[
x1 x2 . . . xm−1

]
(2)

X′ =
[
x2 x3 . . . xm

]
(3)

where X and X′ ∈ Rn×m−1. Combining Eq. (1), (2), and (3),
the relationship of the states in our system can be described
as:

X′ ≈ AX (4)
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FIGURE 3. 2019 and 2020 load demand 5% to 95% percentiles for: a) Houston - ERCOT, b) Boston - ISO-NE, c) Central region - MISO, d) New York City
(NYC) - NYISO, e) Chicago - PJM, f) Kansas City - SPP, and g) Los Angeles - CAISO.

where the DMD modes, also called dynamic modes of
the evaluated dynamical system, are the eigenvectors of A,
while each DMD mode corresponds to a particular eigen-
value of the matrix A [37]. However, as mentioned before,
in a high-dimensional system, the matrix A may be
intractable to be analyzed directly. So, in order to avoid
the full eigendecomposition of A, DMD makes use of its
rank-reduced representation in terms of the proper orthogonal
decomposition-projected matrix, Ã. All the steps necessary
for performing DMD in a given dataset are presented below:

1) Perform the singular value decomposition (SVD)
of X:

X ≈ U6V∗ (5)

where * denotes the conjugate transpose, and U ∈
Cn×r , 6 ∈ Cr×r , and V ∈ Cm×r . Here, r is the rank

of the reduced (truncated) SVD approximation to X.
For more details regarding the process and benefits of
truncation in DMD see [37].

2) Calculate the matrix A using the pseudoinverse of X
obtained using SVD:

A ≈ Ã = X′V6−1U∗ (6)

3) Compute the eigendecomposition of Ã:

ÃW =W3 (7)

where the columns of W are eigenvectors and 3 is
the diagonal matrix that contains the respective
eigenvalues.

4) Finally, the reconstruction of A can be performed using
W and 3, where the eigenvalues of A are determined
using3 and the eigenvectors, that represent the patterns
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FIGURE 4. Surface plots depicting the load consumption data and outputs of the dynamic mode decomposition (DMD) process applied to
2019 and 2020 data during the time-periods of March 1st to July 8th. All surface plots show on the z-axis the load consumption data for all seven
regions (CAISO-Los Angeles, PJM-Chicago, MISO-Central, NYISO-NYC, ISONE-Boston, SPP-KCK, and ERCOT-Houston) normalized individually. The
x-axis represents the temporal dimension in terms of days during the time period of March 1st to July 8th (130 days) and the y-axis represents
the spatial dimension that covers all seven regions, from the first city (Los Angeles) implementing SAHO to the last city (Houston) implementing
SAHO according to the COVID-19 response timeline.

of the DMD modes, are determined by the columns
of 8. 8 is then computed as follows:

8 = X′V6−1W (8)

The utilization of the discussed DMD method can identify
coherent spatio-temporal patterns (modes – 8) in the dataset
by calculating the respective eigenvectors and eigenvalues.
Each eigenvalue describes the growth or decay and oscillatory
patterns observed in each dynamic mode (eigenvector) iden-
tified in the dynamic system. Therefore, DMD is applied to
spatio-temporal raw load consumption data, across different
regions/cities in the U.S., in order to identify the effects
and patterns that the COVID-19 outbreak caused in load
consumption reduction across these regions. The 1t chosen
are 1-hour and 1-day resolutions so that the variations of
the patterns across the selected temporal scales can be easily
translated to load consumption variations during the different
COVID-19 related events.

The first step performed in our examination is a
spatio-temporal analysis designed to capture the variations in
load consumption patterns between the years 2019 and 2020.
Asmentioned previously, we focus on theMarch-to-July time
periods of the aforementioned years since these were the
periods when COVID-19-related actions, such as SoE and
SAHO, were in full execution. To perform the proposed
DMD analysis, we processed and organized the raw load
consumption data from the seven different regions (cities)

across the U.S. This data is used to create X and X′ matri-
ces, where m (temporal snapshots) represents different days
in the time-period evaluated (March 1 to July 8th), and
n (spatial) represents the different regions/cities evaluated
(LA, Chicago, NYC, MISO-Central, Boston, KCK, and
Houston).

Fig. 4 shows the raw data and outputs of the DMD pro-
cess executed using the 2019 and 2020 load consumption
data, respectively. As seen in this figure, there are signif-
icant differences in the load consumption from the years
2019 and 2020 for most of the cities evaluated. By analyz-
ing the temporal and spatial modes identified by the DMD
process, we can characterize how the COVID-19 counter-
measures impacted load consumption patterns in the seven
studied regions. In essence, we can observe, through load
consumption data, how COVID-19 was spreading through
the U.S. and along the response timeline. In addition, we can
also observe that, from the seven cities analyzed, NYC was
one of the most affected regions in terms of significant load
variation across the U.S. Cross-referencing these results with
the timeline presented in Fig. 2, Fig. 4 clearly depicts how
this low load-valley period ismore prominent during theNYC
SoE and SAHO events.

The second analysis using the DMD approach is
performed based on temporal load consumption data avail-
able from NYC. According to the statistical analysis per-
formed in the previous subsection and the spatio-temporal
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FIGURE 5. Surface plots depicting the load consumption data and outputs of the dynamic mode decomposition (DMD) process applied to 2019 and
2020 NYC data during the time-periods of March 1st to July 8th. All surface plots show on the z-axis the load consumption data for NYC. The x-axis
represents the temporal dimension in terms of days during the time-period of March 1st to July 8th (130 days) for both the 2019 and 2020 periods
combined and the y-axis represents another temporal dimension that covers the different times during the day (12 am to 11pm). The plots shown in the
lower left quadrant show the direct outputs of the DMD process, where the first one shows the eigenvalues of Ã, the second one depicts the modes
identified in terms of frequency, and the third one shows the eigenvalue spectrum of Ã.

DMD analysis of all the U.S. regions, the NY region was one
of the most affected by the COVID-19 lockdown measures
in terms of load consumption variation. In Fig. 5, it can
be observed how the DMD process is applied in order to
identify temporal modes for load consumption during the
daily 24 hours and, at the same time, identify the temporal
modes in a slower frequency rate (i.e., 1-day resolution)
during the March-to-July time periods of 2019 and 2020.
The lower left side of the figure shows the eigenvalues,
identified modes, and eigenvalue spectrum outputted by the
DMD process while the right side shows the reconstruc-
tions of some of the most prominent modes that character-
ize each temporal domain. Noticeable differences between
the 2019 and 2020 load consumption can be seen in the
figures shown on the right side. For example, based on
modes 1 to 3, we observe how the 2020 data is significantly
lower (represented with a darker blue) during the morning
hours of the day, while modes 5 to 8 show how the evening
load is flattened out as the lockdown measures were imple-
mented during the COVID-19 response timeline. On the
other hand, the plot reconstructing modes 9 to 12 shows a
clear side-by-side comparison that demonstrates how, dur-
ing the same time period of 2019 vs. 2020, load demand
significantly decreased as the COVID-19 outbreak worsened
throughout NYC.

C. IMPACT OF COVID-19 LOCKDOWN MEASURES
IN NYC NET-LOAD DEMAND
Based on all the analyses conducted, further investigations are
carried out to evaluate the impact of the lockdown measures
in NYC, i.e., the most affected city during the analyzed
period. Fig. 6 and Fig. 7 show heatmaps comparing the
normalized load consumption of NYC during the March 1st
to June 30th time period. The vertical represent the different
days in the period and the horizontal represent the time of
the day. As seen, there is a clear difference between the same
periods during 2019 (pre COVID-19 pandemic) and 2020
(during the COVID-19 pandemic). It can also be observed
that the most significant variations in load demand reduction
are concentrated during the SAHO declared in NYC, that
began in March 22 and ended in May 15, as seen in the
presented timeline (Fig. 2). The variation observed during this
period can be characterized by a 20% to 30% reduction in
load demand during weekdays.

In order to avoid bias from load changes due to
non-pandemic related events, we analyzed the weather con-
ditions, and specifically temperature data for NYC during
the same period of time. Figs. 8 and 9 show the normalized
temperature values for NYC during the period of March 1st
to June 30th. The temperature data is normalized using
−7.22 Celsius as the minimum value and 33.9 Celsius as the

2552 VOLUME 9, 2021



J. Ospina et al.: On the Feasibility of Load-Changing Attacks in Power Systems During the COVID-19 Pandemic

FIGURE 6. Normalized load demand heatmap for NYC during March 1st
to June 30th Period, 2019.

FIGURE 7. Normalized load demand heatmap for NYC during March 1st
to June 30th Period, 2020 (during COVID-19 outbreak).

maximum value. Based on this data, four days are selected as
candidates for investigating the feasibility of load-changing
attacks due to low net-load demand conditions, April 9,
April 10, April 11, and April 12. These days are selected due
to their similarity in temperature values between 2019 and
2020 and falling inside the SAHO time period declared
in New York. Choosing these days allowed us to discard
temperature as a driving factor of the significant variation
in electricity consumption, and helped us to focus on the
possible repercussions a pandemic-type event, as the one
being experienced, could cause in the cyberphysical security
of EPS.

To characterize the temperature similarities between the
days during the March 1st to June 30th period, average
percentage differences are calculated between the respective
days of 2019 and 2020. From the 122 days analyzed in the
aforementioned time period, April 11 is under 10% of the
days that had lower average temperature differences between
2019 and 2020. April 12 is under 20%, April 9 is under
35%, and April 10 lies under 50% of the days that had lower
average temperature differences between 2019 and 2020.

FIGURE 8. Normalized temperature heatmap for NYC during March 1st to
June 30th Period, 2019.

FIGURE 9. Normalized temperature heatmap for NYC during March 1st to
June 30th Period, 2020 (during COVID-19 outbreak).

In addition, we also took into account that April 9 and 10were
weekdays while April 11 and 12 from 2020 were weekend
days.

IV. MODELING LOAD-CHANGING ATTACKS: THREAT
MODEL & MATHEMATICAL FORMULATION
Modern EPS integrate different technologies, such as intelli-
gent controls and real-time measurement devices, providing
system operators with real-time visibility and thus improv-
ing system security, stability, and reliability. However, this
integration can be a double-edged sword since the use of
more interconnected IoT devices exposes the power grid
to new cyberattack vectors altering completely the threat
model. As more high-wattage loads are equipped with IoT
devices, the feasibility of a load-changing attack signifi-
cantly increases. In this section, we focus on describing
load-changing attacks that can be performed by attackers with
sufficient motivation, capabilities, and resources to cause
major disturbances in transmission and distribution systems
via the use of botnets capable of simultaneously controlling
large groups of high-wattage loads and DERs.
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A. THREAT MODEL: LOAD-CHANGING ATTACK
In this work, we consider an attacker capable of leverag-
ing vulnerabilities of IoT devices to compromise and con-
trol high-wattage appliances, such as HVACs, water heaters,
or EV chargers. By simultaneously switching on and off or
granularly adjusting the power consumption of hundreds or
thousands of compromised devices, the attacker may be able
to cause severe adverse impacts, such as frequency instabili-
ties and over/under voltage conditions, in the CPES.

Table 2 shows the threat model used for the load-changing
attack according to related work in the area [39]. As observed,
for the load-changing attack, the attacker can be considered as
an oblivious (i.e., no detailed knowledge of EPS topology) or
semi-oblivious (i.e., has limited information of the EPS topol-
ogy) adversary. In addition, since the attack can be performed
through IoT-connected devices, no possession is required.
This means that the attacker does not needs to physically
possess the attacked device(s) since they can be compro-
mised through the communication network. For specificity,
the attack is considered a targeted attack since the adversary’s
target are devices (e.g., IoT connected high-wattage loads)
capable of directly affecting the power grid and possibly
cause instabilities that could lead to blackouts and frequency
fluctuations in the system. In layman’s terms, specificity
relates to how specific the attack is, i.e., targeted or non-
targeted. As for adversary’s resources, in the investigated
load-changing attack, we consider a Class II adversary cat-
egorization, where Class I represents an adversary that does
not need and/or has sufficient resources to carry out very com-
plex attackswithout being detected, andClass II represents an
adversary that needs and/or disposes of sufficient motivation
and resources to materialize the coordinated load-changing
attack without being easily detected. ThisClass II categoriza-
tion is assumed due to the complexity related to performing a
coordinated load-changing attack capable of simultaneously
affecting multiple load zones in the power grid that could
cause significant damage in the system. This type of attack
differs from the dilettante attack mechanism in [22] and
requires significant resources and knowledge, such as the
appropriate instruments and training for being able to infect

TABLE 2. Threat model formulation of load-changing attacks.

and/or compromise multiple high-impact load zones, to be
effectively carried out.

In addition, the load-changing attack is considered to have
an iterative attack frequency and a multiple-times repro-
ducibility in terms of the attack model formulation of the
threat modeling approach. This means that the attack needs to
be performed in an iterative manner, i.e., the adversary must
attack multiple loads and iteratively change their set-points
in order to accomplish the desired effect of destabilizing
the system (iterative attack). Also, the attack is considered
a multiple-times attack since it can be performed or repro-
duced multiple times before being detected and mitigated by
operators. Furthermore, the attack level in the attack model
formulation is considered as a Level 1 (L1) or Level 2 (L2)
attack according to the level at which the vulnerable assets
(e.g., smart HVACs, IoT-connected motors, PLCs, HMIs,
breakers, controllers, etc.) are compromised. These levels
can be at the industrial network layer or the local network
layer. The attack technique describes the attack method used
by the adversary. In the case of the load-changing attack
considered, the attack technique is assumed to be a modifi-
cation of control logic or a wired/wireless compromise of the
controllable loads that affects the integrity of the data in the
system. The load-changing attack is considered as a subset
of data integrity attacks (DIA) due to the fact that the attack
is targeted at affecting the integrity of either the system’s
measurements (e.g., current, voltage, power, or status mea-
surements) or the system’s controls (e.g., power set-points or
status control changes, etc.). Finally, the premise of the attack
is related to the integrity of the cyber-system, i.e., how the
attack affects primarily the integrity of the ICT devices that
make up the communication network. More details regarding
the mathematical formulation of the load-changing attack as
a DIA is presented in the next subsection.

B. FORMULATION OF LOAD-CHANGING ATTACKS
The load-changing attack presented in this work can be char-
acterized as a DIA-type of attack. In order to present its
mathematical formulation, we first consider a cyberphysical
system (CPS) plant described by:

x(k + 1) = Gx(k)+ Bu(k) (9)

y(k) = Cx(k)+ e(k) (10)

where x(k) ∈ Rn represents the physical system’s states,
u(k) ∈ Rl represents the control variables, and y(k) ∈ Rm

represents the system’s measurements. The matrices G ∈
Rn×n, B ∈ Rn×l , and C ∈ Rm×n represent the system,
input, and output matrices, respectively. The system input
measurement noise is represented by the term e ∈ Rm. The
cyber-system of the CPS can be generally expressed as:

u(k + 1) = Hy(k) (11)

H ∈ Rl×m represents the control matrix [40]. Fig. 10 shows
a diagram that depicts the variables affected by the DIA
load-changing attack in the CPS structure.
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As observed in Fig. 10, in a DIA, either the measurements
(y) or the controls (u) could be compromised by the adver-
sary via fabrication or modification. More specifically for a
load-changing attack, the controls (u) of the IoT-controllable
loads are ‘altered/attacked’ as:

ua = u+1u (12)

FIGURE 10. Diagram of CPS model and load-changing DIA cyberattack.

where ua represents the ‘altered/attacked’ control variables, u
represent the original control variables, and1u represent the
variations injected by the adversary in the control variables.
This modification of controls affects the CPS by:

xa(k + 1) = Gx(k)+ Bua(k) (13)

ya = C
(
x(k + 1)+ B1u(k)

)
+ e(k + 1) (14)

where ya and xa represent the input measurements and states
of the CPS affected by ‘altered’ control variables.

Mapping the above formulation to a load-changing attack,
we can modify the term ua so it represents ‘altered’ load
demand in a CPES as follows:

pa(k) = pi(k)+1p(k) (15)

where p represents the controllable load demand in the sys-
tem, pi is the initial ‘un-altered’ load demand, 1p repre-
sents the portion of the total load demand affected by the
load-changing attack, and pa represents the total load demand
‘altered’ by the load-changing attack at one bus. If the attack-
ers simultaneously compromise more than one load/bus in the
system, Eq. (15) can be extended as:

PT (k) =
m∑
l=0

pi,l(k)+
n∑
j=0

pa,n(k)+ Ploss (16)

where PT represents the total demand in the system, m is
the number of total ‘unaltered’ loads in the system, n is the
total number of loads compromised by adversaries, and Ploss
represents the total losses.

Due to the network power balance, to maintain frequency
stability, the sum of all the generation needs to be approxi-
mately equal to the total demand and losses in the system:

PT (k) ≈
Ng∑
g=0

Pg(k) (17)

whereNg represents the number of g generators in the system.
Hence, in order to understand the effect of load changes in the
frequency stability at each generator bus, we can investigate

the swing equation which describes the behavior of rotor
dynamics in transient stability studies. The swing equations
shown in Eq. (18) - Eq. (20) describe the relationship between
the input mechanical power (Pm), output electrical power
(Pe), and the rotational speed of the generator (ω) [41]. The
term Pe is directly related to Pg as seen in Eq. (21), since it
represents the generator power output plus electrical losses of
the generating unit.

2 H
ωs

d2δ
dt2
= Pm − Pe (18)

dδ(t)
dt
= ω(t)− ωs (19)

2 H
ωs

dω(t)
dt
= Pm − Pe (20)

Pe =
VsVr
X

sin(δ) (21)

H represents the constant normalized inertia, ωs is the syn-
chronous speed (i.e., 50 or 60 Hz), and δ is the power angle.
Vs is the voltage at the generator bus, Vr is the voltage at
receiving bus, and X is the reactance based on the classical
model of a generator. The relationship between the electrical
frequency ω(t) with the power angle δ is shown in Eq. (19).
Therefore, it is evident based on these relationships that any
sudden change in load demand caused by high-wattage loads
turning on/off in the CPES will affect Pe, and thus cause
frequency fluctuations as seen in Eq. (20).

C. OPERATIONAL CHALLENGES & STANDARDS:
FREQUENCY THRESHOLDS FOR NERC, ERCOT, AND NYISO
Before analyzing the feasibility of load-changing attacks in
a system experiencing low net-load demand conditions such
as the ones observed in our investigations, we first explore
what are the operational challenges that exist in EPS and
are related to load demand changes. According to the Elec-
tric Power Research Institute (EPRI) [42], there are differ-
ent types of challenging operational conditions, related to
net-load demand changes, that could cause steady-state or
dynamic threats to the contingency security of EPS. These
challenging operational conditions are:

1) Peak-demand conditions: Congested networks or lim-
ited generation capacity.

2) Rapid change in demand or supply conditions: A
rapid change in demand or supply. For example: morn-
ing demand ramps, PV-related net demand ramps,
or sudden failure of EPS elements.

3) Low net-demand conditions: Periods when the sys-
tem load demand is significantly reduced. During these
periods, system voltages may rise and system inertia
may be affected. Excess generation may be forced to
remain online to meet the demand at a later time.

In addition to handling these operational challenges, sys-
tem operators must provide protective mechanisms to resolve
system instabilities, protect system assets, and maintain
normal operations. Some of these mechanisms are, for
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example, underfrequency relays designed to trip when the
system’s frequency is lower than some predefined values.
These predefined values are generally given as frequency
bounds programmed into protection mechanisms, and thus
are essential to determine the types of remedial actions
needed to maintain system stability. The North American
Electric Reliability Corporation (NERC) is a nonprofit corpo-
ration that provides comprehensive standards for EPS oper-
ation in North America. More specifically, NERC requires
power systems to operate within a frequency range of 59.5 Hz
to 62.2 Hz. If the frequency is out of these bounding ranges,
underfrequency or overfrequency protection relays trip parts
of the system with the objective of protecting the respec-
tive system assets and the overall grid infrastructure [43].
Similarly, the Electric Reliability Council of Texas (ERCOT)
sets its own frequency thresholds to be 59.3 Hz for under-
frequency and 61.8 Hz for overfrequency, respectively.
In addition, some system operators may have more complex
protection mechanisms that provide rules to shed a certain
percentage of the load in the system in case of frequency
stability issues [44].

Since our load data and load-changing attack scenarios
are based on NYISO and NYC, we utilize the operational
standard (frequency thresholds) provided by NYISO. In com-
parison with NERC and ERCOT, NYISO has more strict
criteria tomitigate underfrequency and overfrequency scenar-
ios. NYISO defines a major system disturbance as any event
that causes the frequency to drop below 59.9 Hz or increase
over 60.1 Hz [45]. The specific thresholds given by NERC,
ERCOT, and NYISO are provided in Table 3.
More specifically, for underfrequency scenarios, NYISO

requires fast UFLS to be performed at different percentages
when the frequency is rapidly declining. Consecutive 7%
load shedding is performed when the frequency drops below
59.5 Hz, 59.3 Hz, 59.1 Hz, and 58.9 Hz. At this point, if the
frequency is still declining, transmission operators must take
the necessary steps to minimize damage and service interrup-
tion. However, the UFLS required in ERCOT differs from
the one applied in NYISO due to its different operational
thresholds. In ERCOT, the UFLS starts at 59.3 Hz, where
5% of the system load is tripped. Then, an additional 10%
of the load is tripped at 58.9 Hz and an additional 10%
at 58.5 Hz. It is important to remember that the intent of
UFLS is not to recover the frequency but to stop the frequency
decline [46].

On the other hand, for overfrequency scenarios, both
ERCOT and NYISO have similar procedures to follow in
order to maintain compliance with the NERC Balancing
Authority ACE Limit (BAAL) standard. Specifically for the
NYISO case, a sustained high frequency of 60.10 Hz is con-
sidered an indication of a major load-generation imbalance,
and if it continues to decline it can be declared as a ‘major
emergency’ [45]. In order to address this emergency NYISO
takes the following actions [45]:

1) Request all over generating suppliers to adjust their
generation and match schedules.

TABLE 3. Operational frequency thresholds for NERC, ERCOT, and NYISO.

2) Reduce the applicable dispatchable generation to min-
imum operating limits.

3) Request internal generators to voluntarily operate in
‘manual’ mode and below minimum dispatchable
levels.

4) Attempt to schedule variable load or storage to alleviate
the problem.

5) Request reduction or cancellation of all transactions
that are contributing to the imbalance event.

6) If the overgeneration (i.e., overfrequency) scenario per-
sists, NYISO will declare a ‘major emergency’ and
de-commit applicable internal generators until the vio-
lation is eliminated.

V. ANALYZING THE FEASIBILITY OF LOAD-CHANGING
ATTACKS: EXPERIMENTAL SETUP & RESULTS
In this section, we present the experimental setup used for
evaluating the feasibility of a load-changing attack in a
system such as NYISO during low load demand periods
such as the ones encountered during the COVID-19 pan-
demic. As presented in Section III, four days are selected as
candidates for investigating the feasibility of load-changing
attacks during low net-load demand periods. These days are
April 9, 10, 11, and 12 of 2019 and 2020.

A. TEST SYSTEM: IEEE-14 BUS SYSTEM
For our experimental analysis, 5-minute resolution load data
are obtained from the 11 load zones that exist in NYISO.
Due to the lack of NYISO topological information, we uti-
lize NYISO load data and the respective NYISO load zones
are mapped to every load bus in the IEEE-14 bus test
system [47], [48]. Below, we describe how to prepare the data
in order to examine our load-changing attack case studies.
First, the mapping of the NYISO regions to IEEE-14 bus
system is performed as follows:

1) A - WEST→ Bus #2
2) B - GENESE→ Bus #3
3) C - CENTRL→ Bus #4
4) D - NORTH→ Bus #5
5) E - MHK VL→ Bus #6
6) F - CAPITL→ Bus #9
7) G - HUD VL→ Bus #10
8) H - MILLWD→ Bus #11
9) I - DUNWOD→ Bus #12

10) J - N.Y.C.→ Bus #13
11) K - LONGIL→ Bus #14
Fig. 11 shows the NYISO map with the corresponding

mappings. In order to adapt the NYISO load values to the
IEEE-14 test system, we performed a normalization process
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FIGURE 11. NYISO control area load zones mapped to IEEE-14 bus
system.

that consists of obtaining the average load consumption of
each zone (based on historical data), calculating a ratio of load
demand, and finally computing the corresponding load value
for the IEEE-14 test system. Fig. 12 demonstrates all the steps
of the process based on the WEST zone. All other regions
follow the same process for computing their corresponding
values. The adapted version of the IEEE-14 bus test system,
with its respective 2019 and 2020 load profiles, is modeled
and evaluated using the Power System Analysis Toolbox
(PSAT) [49]. PSAT is an open-source MATLAB toolbox
specifically designed to perform power system analysis and
simulation.

B. DESCRIPTION OF CASE STUDIES
Four 24-hour runs for the days April 9, 10, 11, and 12 are
analyzed and inputted into the adapted IEEE-14 bus test
system modeled in PSAT. The objective of this study is to
find times where the system could be more vulnerable to
load-changing attacks due to low net-load demand conditions
caused by action events of the COVID-19 pandemic.

For each case study, or day analyzed, a preliminary analysis
is conducted to determine the time of day when the 2020 sys-
tem is more vulnerable (i.e., has lower demand) than the
2019 system, and also to determine the loads (or buses) that
have the highest impact in frequency stability of the system.
In other words, this analysis indicates the period where the
biggest difference in the total load demand of the system
exists, when comparing 2019 and 2020 load profiles, and then
clearly shows which buses, if compromised, would have the
highest impact in the 2020 system. The total load demand
difference is calculated by subtracting the total load demand
of 2019 minus the total load demand of 2020:

LD = TL2019 − TL2020 (22)

where LD is the total load demand difference between
2019 and 2020, and TL is the total load demand of the
respective years.

FIGURE 12. Normalization process for IEEE 14 test system using NYISO
load data.

Additionally, in order to determine the buses (or loads)
that, if compromised, would have the highest impact on the
2020 system when compared to the 2019 system, a ratio of
the load at each bus and the total load for the specific year
(i.e., 2019 or 2020) is calculated. Then, these ratios are sub-
tracted to compute the load impact index difference (LIID) for
each individual bus in the system as seen in Eq. (23).

LIIDi =
L i2019
TL2019

−
L i2020
TL2020

(23)

where L is the load at the respective load i for the respective
year, 2019 or 2020. It should be noted that all the values used
in this analysis are in per unit (p.u.).

After the preliminary analysis is conducted and the ‘ideal’
period of time to attack the system is identified, a load-
changing attack is conducted in each selected day and period,
while the frequency of the system is monitored. The selection
of the compromised bus(es) for each case study depends on
the results obtained in the preliminary analysis. More details
regarding the specific case studies are presented below.

C. CASE STUDY 1: APRIL 9
1) PRELIMINARY ANALYSIS
A preliminary analysis is performed in order to identify the
‘ideal’ time period and bus(es) that would need the min-
imum effort to cause a high impact in the system when
a load-changing attack is performed; or simply the period
when a peak of LD matches with a negative peak in LIID.
Figs. 13 and 14 show the LD and the LIID for April 9.
Based on the results from the analysis, the period when

VOLUME 9, 2021 2557



J. Ospina et al.: On the Feasibility of Load-Changing Attacks in Power Systems During the COVID-19 Pandemic

FIGURE 13. Total load demand difference (LD) calculated for the days: a) April 9, b) April 10, c) April 11, and d) April 12.

the highest difference in load demand between 2019 and
2020 arises is in the hours between 6:30 am to 7:30 am and
4:30 pm to 6:00 pm. The highest LD value during themorning
period is 0.309. However, in order to find the discussed ‘ideal’
period for the load-changing attack, we also need to find out
the most negative LIID value observed during the examined
periods and then correlate it to the high LD value period
observed in the LD graph. As seen in Fig. 14, the ‘lowest’
negative LIID values occur during the 11:30 am to 1:30 pm
period, with a peak of −0.0248. Nonetheless, when correlat-
ing these two values, we can clearly see that our LIID peak
period does not match with any of the two LD identified
periods, so no bus(es) in the system can be identified as the
one(s) that could cause a high impact in the 2020 systemwhen
compared to the 2019 system scenario. Any load-changing
attack implemented in 2020 system will have a similar effect
on 2019 system, making April 9 a difficult day to analyze
in terms of how more vulnerable the system is when low
net-load demand conditions exist.

2) LOAD-CHANGING ATTACK IMPACT
According to the analysis obtained from the preliminary
analysis step, we recognized that for this particular day

there are no time periods where an attacker could effectively
compromise the frequency of the system when compared to
2019withminimum effort. Both systems (2019 and 2020 sce-
narios) would have a fairly similar response, thus making it
very hard to evaluate the feasibility of a load-changing attack
when low net-loading conditions exist. This is indicated by
the fact that the lowest (most negative) value of LIID does not
align with the highest value of LD in the analyzed scenario.
In a nutshell, April 9 is a day when an attacker would no
see any significant differences between attacking a system
with lower loading conditions, based on how the 2020 system
scenario compares to the 2019 system scenario.

D. CASE STUDY 2: APRIL 10
1) PRELIMINARY ANALYSIS
Figs. 13(b) and 14(b) show the LD and the LIID for
April 10. Based on these results, we identify that the
period when the highest difference in load demand between
2019 and 2020 occurs is in the hours between 5:00 am and
10:00 am, more specifically, at 7:30 am when the LD value
is 0.356. Following a similar approach as the one presented
in the previous case study, we correlate the most negative
LIID value of the analyzed day, which occurs between
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FIGURE 14. Load impact index difference (LIID) calculated for each bus in the system for the days: a) April 9, b) April 10, c)
April 11, and d) April 12.

8:30 am and 9:00 am (i.e., the negative peak of the purple
line), with the period of maximum LD. It is worthwhile to
remember that the negative LIID value tells us which bus(es)
in the system will have the greatest impact in the 2020 system
while requiring the minimum effort (minimum load change
required) when compared to the 2019 system. Based on
the observed correlation, we conclude that attacking bus #5
(purple line) between 8:30 am and 9:00 am (i.e., the negative
peak of the purple line), together with bus #9 (light blue line),
would cause the greatest impact on the frequency stability of
the 2020 system scenario.

2) LOAD-CHANGING ATTACK IMPACT
Based on the preliminary analysis, we simulate a
load-changing attack on the loads connected to bus #5 and
bus #9 for both the 2019 and 2020 system scenarios. Fig. 15
shows the impact of the 5-second load changing attack during
300 seconds (i.e., 5 minutes from 8:40 am to 8:45 am),
where the load-changing attack is executed at 200 seconds.
As seen in the graph, the frequency of the 2020 system
scenario crosses the overfrequency NYISO limit of 60.1 Hz

when the load-changing attack disconnects the compromised
loads (i.e., loads at bus #5 and bus #9). On the other hand,
the 2019 system scenario presents no overfrequency prob-
lems and thus we can see that the low net-load demand of
the 2020 system makes more feasible the implementation of
a high-impact load-changing attack that could compromise
the stability of the system. It should also be noted that a more
sustained attack (e.g., a 1 or 5-minute attack) has the potential
of causing more severe problems.

E. CASE STUDY 3: APRIL 11
1) PRELIMINARY ANALYSIS
Similar to April 10, April 11 seems to be a day where a
load-changing attack could be feasible if mitigation measures
are not taken. But, to confirm this, we perform the preliminary
analysis and identify the highest LD values and the most
negative LIID values based on Figs. 13(c) and 14(c). These
figures show the LD and the LIID for April 11. Based on
these results, the period when the highest difference in load
demand between 2019 and 2020 exists is in the hours between
7:30 am and 3:00 pm. Similarly to the previous case study,
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FIGURE 15. Load-changing attack impact on the frequency of the system
during April 10 of 2019 and 2020. The upper and lower limits given by
NYISO are provided for reference.

in order to find the ‘ideal’ period for the load-changing attack,
we need to find out the most negative LIID value observed
during the examined period and then correlate it to the high
LD value period observed in the LD graph. Correlating these
two graphs, we observe that attacking bus #9 (light blue line)
between 1:00 pm and 2:00 pm (i.e., the negative peak of
the light blue line) would cause the greatest impact on the
frequency stability of the 2020 system scenario.

2) LOAD-CHANGING ATTACK IMPACT
A load-changing attack on the load connected to bus #9 is
implemented for both the 2019 and 2020 system scenarios,
according to the results obtained in the preliminary analysis.
Fig. 16 shows the impact of the 5-second load changing attack
during 300 seconds (i.e., 5 minutes from 1:40 pm to 1:45 pm),
where the load-changing attack is executed at 200 seconds.
This graph shows how the frequency of the 2020 system
scenario crosses the overfrequency limit of 60.1 Hz and goes
up to 60.5 Hz when the load-changing attack compromises
the load connected at bus #9. Differently, the 2019 system
scenario presents no major overfrequency problems, so we
can conclude again that the low net-load demand of the
2020 system makes more feasible the implementation of
a high-impact load-changing attack that could negatively
impact the stability of the system.

F. CASE STUDY 4: APRIL 12
1) PRELIMINARY ANALYSIS
Using a similar approach as the ones implemented in the
previous case studies, a preliminary analysis is conducted to
determine the ‘ideal’ time period to attack the April 12 sys-
tem scenario. Figs. 13(d) and 14(d) show LD and the cor-
responding LIID values for April 12. As seen in these
graphs, the periodwhen the highest difference in load demand
between 2019 and 2020 appears is in the hours between
6:30 am to 12:30 pm, with a peak value of 0.628 at 8:10 am.
This period can be correlated to the period when the most
negative LIID values are observed, which in turn, is the period

FIGURE 16. Load-changing attack impact on the frequency of the system
during April 11 of 2019 and 2020. The upper and lower limits given by
NYISO are provided for reference.

between 10:00 am and 11:30 am (i.e., the negative peak of
the orange line with a peak negative value of -0.0257 at
10:35 am). Using this information, we conclude that attack-
ing bus #3 (orange line) between 10:00 am and 11:30 am
would produce the greatest impact in the frequency stability
of the 2020 system scenario, while requiring the minimum
attacker’s effort, when compared to the 2019 system.

2) LOAD-CHANGING ATTACK IMPACT
Following the same approach described in previous case stud-
ies and based on the preliminary analysis results, we perform
a load-changing attack on the load connected to bus #3 for
both the 2019 and 2020 system scenarios. Fig. 17 shows the
impact of the 5-second load changing attack during 300 sec-
onds (i.e., 5 minutes from 10:33 am to 10:38 am), where the
load-changing attack is executed at 200 seconds. Different
from previous results, both the 2019 and 2020 systems have
severe frequency stability problems since the frequency peaks
at around 64.02 Hz and 63.46 Hz for the 2019 and the
2020 system scenarios, respectively. Diving deeper into these
results, we discovered that bus # 3 is one of the most critical
buses in the system due to the fact that it represents an average
of around 37% of the total load of the 2019 system scenario
and 36% of the total load of the 2020 system scenario. This
makes bus #3 one of the most critical buses in the system, and
the results that are shown in Fig. 17 clearly demonstrate that
no matter if the system is experiencing low loading condi-
tions (2020 system) or not (2019 system), a load-changing
attack that disconnects this high-impact load zone would
cause severe frequency fluctuations. In a nutshell, an attacker
with enough capabilities to perform an attack targeted at bus
#3 of the analyzed system will cause severe problems in the
frequency stability of the system.

G. DISCUSSION OF CASE STUDIES
Based on the results of the four case studies investigated,
it can be observed that each one of them enables different
insights regarding the feasibility of load-changing attacks
in a CPES experiencing low loading conditions. Evaluating
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FIGURE 17. Load-changing attack impact on the frequency of the system
during April 12 of 2019 and 2020. The upper and lower limits given by
NYISO are provided for reference.

all these four cases provides a good perspective on some
probable scenarios of the load-changing attack spectrum.
For instance, case study 1 (April 9) demonstrates a scenario
where an attacker, implementing a load-changing attack,
would not perceive any difference between compromising
a system experiencing low loading conditions, such as the
2020 scenario, and a nominal system, such as the 2019 sce-
nario. On the other hand, both case study 2 and case study 3
(April 10 and April 11) clearly show how the low net-load
demand conditions, that exist during the COVID-19 pan-
demic lockdowns, make the 2020 system scenario more vul-
nerable to low probability, high-impact load changing attacks
when compared to the 2019 scenario. In both case studies,
it can be observed how the same load-changing scenario has
minor impacts on the 2019 system’s frequency while produc-
ing major problems on the 2020 system’s frequency. Finally,
case study 4 (April 12) is an example of how compromising
a critical bus in a CPES will cause severe frequency stabil-
ity problems no matter if low loading conditions are being
experienced. From a planning, operation, and cybersecurity
perspective, system operators need to ensure these nodes are
identified, and they must take appropriate mitigation strate-
gies to handle any possible attacks to these critical buses.

VI. CONCLUSION AND FUTURE WORK
This article explores the feasibility of load-changing attacks
in CPES that experience abnormal low loading conditions
caused by events such as the COVID-19 pandemic and its
corresponding lockdown measures. We explore the differ-
ences in loading conditions of the main affected regions in
the U.S. and analyze the abnormal load patterns caused by
lockdown measures in these regions, with a primary focus
on the NYSIO region, by applying DMD to load consump-
tion data from the years 2019 and 2020. Based on these
analyses, we formulate a load-changing attack and further
explore the feasibility of such attack in a system expe-
riencing the low loading patterns identified by the DMD
process. Finally, we simulate and evaluate the impacts of
load-changing attacks in a test grid system experiencing low

loading conditions (2020), when compared to the 2019 his-
torical loading conditions, using NYISO data. Our results
demonstrate that low loading conditions can be leveraged by
attackers with the objective of compromising the frequency
stability of power systems. Specifically, the presented case
studies show that an attacker with sufficient resources and
capabilities would require less effort to compromise a system
experiencing low loading conditions such as the ones experi-
enced during the COVID-19 pandemic of 2020.

Future work will focus on considering distribution systems
with high penetration of renewable energy resources while
evaluating both frequency and voltage stability problems
caused by load-changing attacks. Systems with high pene-
tration of intermittent renewable energy resources (such as
PV and wind energy) are expected, due to the non-existent
coordination of voltage regulation devices and the impacted
system inertia (e.g, the removal of synchronous genera-
tors results in less system inertia with impacts on tran-
sient and small-signal stability), to be more vulnerable to
load-changing attacks when considering their effects in other
system areas and control routines such as voltage regula-
tion. Another area of research will be the impact evaluation
of other types of cyberattacks, such as false data injection
attacks and time-delay attacks, in systems experiencing low
loading conditions, such as the one investigated throughout
this research.
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