
Received December 11, 2020, accepted December 19, 2020, date of publication December 24, 2020,
date of current version January 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3047259

ANNETTE: Accurate Neural Network Execution
Time Estimation With Stacked Models
MATTHIAS WESS 1,2, MATVEY IVANOV1,2, CHRISTOPH UNGER1, ANVESH NOOKALA1,
ALEXANDER WENDT1,2, (Member, IEEE), AND AXEL JANTSCH 1,2, (Senior Member, IEEE)
1Institute of Computer Technology, TU Wien, 1040 Vienna, Austria
2Christian Doppler Laboratory for Embedded Machine Learning, Institute of Computer Technology, TU Wien, 1040 Vienna, Austria

Corresponding author: Matthias Wess (matthias.wess@tuwien.ac.at)

This work was supported in part by the Austrian Federal Ministry for Digital and Economic Affairs, in part by the National Foundation for
Research, Technology and Development, and in part by the Christian Doppler Research Association.

ABSTRACT With new accelerator hardware for Deep Neural Networks (DNNs), the computing power for
Artificial Intelligence (AI) applications has increased rapidly. However, as DNN algorithms become more
complex and optimized for specific applications, latency requirements remain challenging, and it is critical
to find the optimal points in the design space. To decouple the architectural search from the target hardware,
we propose a time estimation framework that allows formodeling the inference latency of DNNs on hardware
accelerators based on mapping and layer-wise estimation models. The proposed methodology extracts a set
of models from micro-kernel and multi-layer benchmarks and generates a stacked model for mapping and
network execution time estimation. We compare estimation accuracy and fidelity of the generated mixed
models, statistical models with the roofline model, and a refined roofline model for evaluation. We test the
mixed models on the ZCU102 SoC board with Xilinx Deep Neural Network Development Kit (DNNDK)
and Intel Neural Compute Stick 2 (NCS2) on a set of 12 state-of-the-art neural networks. It shows an average
estimation error of 3.47% for the DNNDK and 7.44% for the NCS2, outperforming the statistical and
analytical layer models for almost all selected networks. For a randomly selected subset of 34 networks of the
NASBench dataset, the mixed model reaches fidelity of 0.988 in Spearman’s ρ rank correlation coefficient
metric.

INDEX TERMS Analytical models, estimation, neural network hardware.

I. INTRODUCTION
Deep Neural Networks have become key components in
many AI applications, including autonomous driving [1],
medical diagnosis [2], [3] and machine translation [4]. The
computational intensity of some AI applications based on
DNNs prevents their use on embedded system platforms,
as these algorithms often have to meet latency and perfor-
mance requirements to fulfill their purpose.

Attempting to close the gap between the computational
intensity of DNNs and the available computing power, a wide
variety of hardware accelerators for DNNs and other AI
workloads have emerged in recent years. A considerable
amount of research has improved the efficiency of DNNs
and reduced their memory consumption by applying meth-
ods such as pruning [5], [6], quantization [7]–[9], and fac-
torization [10], [11]. Alternatively, a network architecture

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masini .

that is expected to work efficiently on the target device can
be designed and trained directly. Networks like MobileNet
[12] and ShuffleNet [13] are specifically designed to reduce
the number of Multiply-Accumulate operations (MACs),
but they contain specific layer types that are not necessar-
ily optimal for all hardware types. In addition, computa-
tional efficiency depends largely on the specific architectural
parameters of each layer and the hardware platform used [14].

Finally, also the mapping toolchain optimizing the orig-
inal network graph for the selected hardware platform has
to be considered since many hardware accelerators allow
specific combinations of layers to be fused together to
reduce inter-layer data transfer and/or to optimize data flow.
Therefore, when optimizing the network architecture towards
‘‘direct metrics’’ such as latency or energy consumption,
‘‘indirect metrics’’ such as Floating Point Operation (FLOP)
or memory footprint can serve as a starting point but do
not take into account the platform-specific non-linearities.
As a result, networks optimized towards ‘‘direct metrics’’

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 3545

https://orcid.org/0000-0002-1877-4114
https://orcid.org/0000-0003-2251-0004
https://orcid.org/0000-0002-1094-1985


M. Wess et al.: ANNETTE With Stacked Models

considerably outperform ‘‘indirect’’ optimized architectures
in terms of the selected metrics [14], [15]. On the one hand,
the enormous design space for neural network architectures
makes it difficult to design a network that runs at high
efficiency on all hardware architectures. On the other hand,
not all networks work with the same efficiency on a given
platform. For example, Fig. 1 shows the effective compute
performance when running 12 networks used for evaluation
in this paper on a ZCU102 Xilinx MPSoC evaluation board.
Furthermore, the computational roofline shows themaximum
reachable, effective compute performance.

FIGURE 1. Effective compute performance when inferring the DNNs from
Table 2 on the Xilinx ZCU102 evaluation board.

We can see the high variance of the effective compute
performance for a variety of different network architectures
when executed on the same hardware. Due to the large differ-
ences in effective compute performance, we can conclude that
it is not sufficient to divide the number of operations of a net-
work by the peak compute performance of the target device
to achieve a satisfying estimation of the network execution
time. So when aiming for field deployment, it is difficult to
choose a specific hardware platform before deciding on the
network architecture. As a result, there have been some recent
attempts to predict network latency and performance on dif-
ferent hardware platforms. However, most of the work targets
either Graphic Processing Units (GPUs) [16], [17] server or
the embedded Central Processing Units (CPUs) [18], [19],
leaving out a wide range of hardware accelerators such as
Field Programmable Gate Arrays (FPGAs) and hardware
specifically designed for AI tasks e.g. Xilinx ZCU102 and
Intel NCS2. In this work we aim to model performance of
such DNN hardware accelerators. Also, the existing work
does not take into account the graph optimizations undertaken
by the compiler, which leads to changes in the accuracy of the
prediction.

Therefore, we propose a framework for the generation of
stacked, mapping models and layer models to estimate the
network execution time. To our knowledge, this is also the
first work in which the different approaches to modeling
layer execution time and mapping models are systemati-
cally investigated and evaluated on a broad range of network
architectures.

This paper makes the following key contributions:

• We introduce Accurate Neural Network Exectution
Time Estimation (ANNETTE), a time estimation
framework that allows predicting the execution time of

Deep Neural Networks on hardware accelerators based
on a stacked modeling approach of mapping models and
layer-wise estimation models

• We propose mixed models for layer execution model-
ing to decrease the necessary model complexity of the
statistical models to cover also computational utilization
inefficiencies

• We propose a methodology to extract mapping mod-
els and layer execution models from micro-kernel and
multi-layer benchmarks. Our evaluation of the generated
mapping models and layer models on a set of 12 state-
of-the-art models show amean absolute percentage error
of 3.41% for the ZCU102

• We compare mixed layer models with statistical layer
models, the roofline model, and a refined roofline model
in terms of accuracy and fidelity

II. RELATED WORK
Several studies have been performed to measure how well
certain DNNs perform on different hardware. Their purpose
is to explore the design space and to get the highest efficiency
out of the hardware. In EmBench [20], common DNNs like
ResNet, ShuffleNet, and MobileNet were tested on a wide
range of hardware, ranging from power consuming server
hardware like the NVIDIA GeForce RTX 2080 Ti GPU
to mobile devices like the Intel NCS2. A key finding in
EmBench was the Pareto curve of accuracy and latency of
different networks on the hardware devices. Often, it depends
on the type of layers used in the respective networks. While
they tested all different combinations of networks and hard-
ware, our work takes another approach. For each hardware,
we provide a method that measures latency for each layer
type and then estimates the latency of a whole composed
network. Together with known accuracies of the architectures
in NASBench [21], we can then explore the Pareto curve of a
specific hardware platform without further measurements.

MLPerf [22] is an attempt by over 30 organizations to
create an industry-wide standard benchmark to assess the vast
number of machine learning software and hardware combina-
tions, while DAWNBench [23] is led by academia. MLPerf
limits the problem space by defining a set of scenarios,
datasets, libraries, frameworks, and metrics. Additionally,
it specifies prohibited operations to enhance comparability
under equal terms. For our statistical model, MLPerf could
provide additional measurements to align it for new hardware
and enhance our measurements. However, the available data
does not suffice to construct accurate mapping models and
layer models.

Besides characterizing accelerator hardware, hardware
optimized neural architecture search (NAS) is becom-
ing increasingly popular and powerful. While handcrafted
cells of ResNet and Inception lie close to the Pareto
optimum at GPUs [21], the design space for mobile
devices is very large [24]. It offers potential for automated
architecture search, especially when the demand for cus-
tomized networks rises. FBnetV3 [25], SqueezeNAS [26] and

3546 VOLUME 9, 2021



M. Wess et al.: ANNETTE With Stacked Models

Proxyless NAS [15] focus on low-latency network archi-
tecture search for mobile devices. They were developed to
replace costly redesign DNNs for certain tasks on certain
platforms. While SqueezeNAS focus on semantic segmen-
tation, FBNetV3 and Proxyless NAS focus on classification
tasks. Both tools show superior latency-accuracy tradeoffs
compared to MobileNet. SqueezeNAS, as well as Proxyless
NAS, first generate a super network, in which each cell is
selected from a search space. They approximate latencies
by building look-up tables for the selected blocks within
the design space to save time. All three works could profit
from a uniform estimation framework that accurately pre-
dicts performance for multiple platforms. In NetAdapt [14],
empirical measurements on a Google Pixel 1 CPU are used
to construct layer-wise look-up tables to shrink a pre-trained
MobileNetV1 until the resource constraints are met to opti-
mize DNNs for inference on mobile devices. FBNetV3 uses
multi-use predictors to power their neural architecture search
algorithm by predicting architecture statistics such as accu-
racy and the proxymetrics FLOPS and number of parameters.

NeuralPower [17] is an attempt to estimate execution
latency, power, and as a result, overall energy consump-
tion based on layer-wise sparse polynomial regression for
GPU platforms. In terms of execution time estimation, Neu-
ralPower achieves an average accuracy of 88.24% on the net-
works VGG-16, AlexNet, NIN, Overfeat, CIFAR10-6conv.
In addition to the layer-wise time estimation, the same
modeling method is also applied to estimate power and
finally energy consumption with even higher accuracy. Fast-
DeepIoT [18] uses execution time models based on linear
model trees to predict the layer execution time on the devices
Nexus 5 and Galaxy Nexus to finally compress VGGNet
for both devices and reduce the neural network execution
time by 48% to 78% and energy consumption by 37% to
69% compared with the state-of-the-art compression algo-
rithms. In PreVIous [19], the execution timemodels are based
on linear regression, and for the devices, Raspberry 3 and
Odroid-XU4 reaches about 96% average accuracy for the
layer-wise estimation. These results lead us to believe that the
task of estimating layer execution times for task optimized
computing architectures is significantly more challenging
than for CPUs. Therefore, we propose a methodology for
generating stacked mapping and layer execution time models
for hardware accelerators and systematically compare the
prediction accuracy of different modeling approaches. Other
than that, MLPAT [27] and DNN-Chip Predictor [28] propose
white box approaches to estimate timing, power and energy.
MLPAT reports only 10% error when predicting the power
of the TPU-v1. DNN-Chip Predictor’s predicted performance
differs from those of measurements of FPGA/ASIC imple-
mentation by no more than 17.6% when evaluated for two
DNNs on three accelerator architectures.

III. ARCHITECTURE
Fig. 2 shows an overview of the proposed framework, allow-
ing us to generate abstraction models for the hardware

FIGURE 2. Overview of the Annette architecture: In the benchmark phase
(1), first the platform benchmarks are performed and then the platform
models are generated. In the estimation phase (2), the Estimation Tool
reads a network description graph, and provides an estimated network
execution time, a detailed layer-wise execution time prediction table, and
a predicted execution graph.

platform and the mapping toolchain. The Benchmark Tool
generates networks, which are then optimized by the pro-
vided mapping toolchain for the selected platform. During
the benchmark phase, we execute the generated models on
the target device and extract detailed layer execution times.
We rely on the provided platform tools for mapping, infer-
ence, and profiling. With the collected profiling informa-
tion, the Model Generator can create abstraction models of
the graph optimizations and the different layer types. These
abstraction models are used in ourEstimation Tool to predict
the performance of a network without compiling and execut-
ing the model. Furthermore, detailed insights are gained to
produce efficient networks for themodeled hardware devices.

IV. BENCHMARK TOOL
For platform characterization, we make use of two kinds
of benchmarks: micro-kernel benchmarks and multi-layer
benchmarks. We aim to characterize the computational effi-
ciency of a hardware platform when executing only a specific
layer with the micro-kernel benchmarks. On the other hand,
multi-layer benchmarks give us a deeper understanding of
which kind of layers are executed separately and which layers
can be fused, reducing the off-chip data movement. Fig. 3
depicts the workflow of the Benchmark Tool.

We define a benchmark as one parametric network graph
profiled several times on the hardware with different input
resolutions or kernel-sizes. Each generated network architec-
ture stays the same for each benchmark, while only the layer
parameter settings (e.g. number of channels and kernel size)
are changed according to the configuration file. The input for
each benchmark is a configuration and a graph description
file. The configuration file defines the parameter settings of
each measurement. The graph description file defines the
architecture of the benchmarked dummy network. The Graph
Generator module builds the network models based on the
description and configuration information and feeds it to
the hardware-specific modules. In each hardware module,
the network graph is initially optimized and compiled by

VOLUME 9, 2021 3547



M. Wess et al.: ANNETTE With Stacked Models

FIGURE 3. The Benchmark Tool profiles the provided set of benchmark
models with different configuration settings on the hardware platforms
and generates layer data files.

the platform mapping toolchain. The optimized graph is then
inferred on the target device in a platform specific benchmark
application. Then, a report is generated with the help of
the platform profiling tool. Finally, the report is parsed into
a standard format, and the Graph Matcher compares the
collected layer data with the original input network.

Running each benchmark separately is a time-consuming
task of about three to five days per benchmark, as each model
must go through the entire compilation toolchain before
the desired measurements can be made. Therefore, we have
developed some network models that allow us to measure
several kernels within a benchmark run. In this case, the mod-
els must be constructed in a particular manner so that the
compiler cannot fuse layers or that the computational effort
for an operation is not increased. It would result in measuring
more than just the desired micro-kernel. Those linear network
graphs still count as micro-kernel benchmarks since we still
measure the execution time of each layer individually. It must
be taken into account that when using graphs with more
than one layer for micro-kernel benchmarking, the maximum
allowable layer size may be smaller than when measuring
a single layer. The choice of configuration parameters has
an additional influence on the benchmark wall time. It also
influences the insights that can be gained from the collected
data and on the understanding of how tomodel the accelerator
This topic is discussed in Section V.

We use the same mechanism for the multi-layer bench-
marks, with the difference that they have more configuration
parameters. The goal of these benchmarks is primarily to
model the mapping toolchain and understand which opti-
mizations the graph optimization toolchain can perform, but
also to be able to benchmark multiple layers at the same time.

The Graph Generator builds the network models, which
are benchmarked on the target platform, based on the graph
description and the configurations table. It iterates through
the configurations table generating one network model per
parameter setting. We apply micro-kernel benchmarks for
2D convolution, 2D depth-wise separable convolution, max

pooling, average pooling, and fully connected layers, with
values in the range from 8 to 2048 for height (h), width (w),
number of input channels (c), number of filters (f), input and
output neurons, kernel sizes (kh, kw) 1, 3, 5, and 7, and pooling
sizes from 2 to 10, resulting in a total of about 35k measure-
ments per layer. Figure 4 illustrates the network architectures
used for the multi-layer benchmarks. All convolution layers
are followed by batch normalization and ReLU layers.

FIGURE 4. The multi-layer benchmark networks (a) ANNETTE ConvNet for
characterizing convolution and pooling layers; (b) ANNETTE FCNet for
benchmarking global average pooling and fully connected layers.

The Hardware Modules are simple scripts that automat-
ically call the platform optimization (Graph Optimizer) and
compilation toolchain to prepare the benchmark models for
inference. In the case of DNNDK, as a developing framework
for the hardware module Deep Neural Network Processing
Unit (DPU) on the ZCU102 MPSoC board, optimization
and compilation functionality are provided through the Deep
Compression Tool (DECENT) and the Deep Neural Net-
work Compiler (DNNC) respectively [29]. In the case of
NCS2 the graph is optimized and compiled by the Open-
VINO Toolkit [30]. Similarly, we rely on provided execu-
tion and the platform specific profiler applications (Profiler
App) to extract the layer execution times for the compiled
networks. To avoid measurement errors, we average the
results of 20 iterations. Finally, a Report Parser extracts the
layer-specific information and maps it back to the original
graph, comparing the executed layers with the original layers
by their names. Therefore, the Profiler App must provide
execution times and layer names. The execution information
is stored in a standardized format so that the Graph Matcher
can process the provided data in the same way for each
platform. These encapsulated hardware modules make it easy
to add future hardware to the benchmarking tool.

In addition to the Report Parser, theGraphMatcher extracts
information about the differences between the original input
graph and the final net graph executed on the target device.
While the parser merely ensures that there are no changes
to the original naming scheme and provides a standardized
output, the Graph Matcher extracts additional information
about the optimization behavior of the mapping toolchain.
The Graph Matcher creates a layer result file for each exe-
cuted layer and an optimization mapping file for the entire
benchmark. The layer result files contain information about
the layer parameters, e.g., height, width, number of input
channels, and the resulting execution times. To track the
behavior of the mapping toolchain, we also store ternary
variables that successive layers have been fused with the

3548 VOLUME 9, 2021



M. Wess et al.: ANNETTE With Stacked Models

measured layer. This merging variable can store the following
states: not-fused, fused, and possibly-fused. Possibly-fused is
used because, it is not possible to detect where the layer has
been merged or not for layers with multiple inputs.

FIGURE 5. Graph optimization.

Fig. 5 shows an example of how a graph could be optimized
by the mapping toolchain. In the specific example we set the
fused flags for BiasAdd, Activation operation in the Convolu-
tion layer of block 1 and 2 to fused. In block 2, the fused flag
for the Pooling operation is set to fused as well. Here, it is
important to note that since the pooling layer also has a set of
parameters, i.e., pooling height, poolingwidth, pooling stride,
and pooling type that define its execution policy, we also
need to add those parameters to the already existent stored
parameters for the convolution layer. It enables the graph
optimizer modeler to extract rules that define in the case of
which parameter combinations the layers can be fused. Since
the element-wise addition layer may have been matched to
either block 1 or block 2, the fused flag for the Add operation
is set to possibly-fused in both blocks.
The generated layer data consists of a table for each layer

type that for each measurement contains the parameter set-
tings of the layer e.g. height, width, channels, kernel size as
well as the measured execution time. This data is then fed to
theModel Generator to extract optimization and layer models
for the final estimation step.

V. MODEL GENERATOR
This section explains how we model the graph optimizations
of the mapping toolchain and the computational efficiency
of the hardware platforms to achieve better overall latency
estimation accuracy. As depicted in Fig. 1, not all networks
are computed with the same efficiency when compared to
the number of operations in the convolution layers. There are
two leading causes of the non-linear nature of the relationship
between the number of operations and execution time. First,
the non-convolutional layers cannot be neglected. They are
not considered in the commonly claimed number of opera-
tions, such as element-wise addition, concatenation, activa-
tion, or pooling. It is crucial for the execution time of these
layers, whether they are executed in isolation or connection
with a convolution layer [31]. The second factor is that the
utilization of computational resources for the same layer can

FIGURE 6. The model generator, extracts a stacked model consisting of
mapping models and layer models.

depend on the parameter settings on a specific layer (e.g.,
height, width). It means that two compute-bound layers with
the same number of operations but with differently shaped
input and weight tensors are not necessarily computed with
the same efficiency [18].

To cover all these aspects, we propose a stacked model
approach to model the overall network execution time accu-
rately. Fig. 6 shows how the different models are fused for
the generation of the platform model. Tab. 1 describes the
parameters for the models extracted from the benchmarks.
The first performed benchmarks are input parameter sweeps
to determine the unrolling parameters Es and Eα. These parame-
ters describe the amount of parallel performedmultiplications
in per dimension of the compute architecture and the paral-
lelization efficiency. With the help of these two parameter
vectors, we can construct a model that describes the utiliza-
tion efficiency of several compute architectures (e.g. systolic
arrays). Additionally, preliminary values of Ppeak and Bpeak
are determined, which describe the peak performance and the
peak off-chip bandwidth.

TABLE 1. Model parameters.

VOLUME 9, 2021 3549



M. Wess et al.: ANNETTE With Stacked Models

These parameters are determined automatically based on
measurements or knowledge of the computing architecture.
Once determined, the parameters are fed back to the Bench-
mark Tool to adjust the parameter settings for the succeeding
benchmarks. The rest of the micro-kernel benchmark results
are used to generate the Roofline Model by deducing the
final values of Ppeak and Bpeak , which together with the previ-
ously determined unrolling parameters, construct theRefined
Roofline Model. We combine the Statistical Model and
the Refined Roofline Model in the Mixed Model. For the
final Platform Model, we add the Mapping Model, which
covers optimizations performed on the graph before the actual
execution.

A. LAYER EXECUTION TIME MODELS
For the construction of layer-level execution time models,
we rely on the measurements performed in the benchmarks.
We construct parametric analytical models for the convo-
lution, the depth-wise separable convolution, the fully con-
nected, and pooling layer. The selection of these layers is
motivated, similarly as in the works [16], [17], by the fact
that these are the most computational intense layers and,
therefore, most critical. However, we will also show that it is
also crucial for more complex network architectures to model
different layers to achieve accurate results with high fidelity.
While the simple roofline model describes most layers with
satisfying accuracy, we refine the roofline model for the
convolution layer to increase the estimation accuracy.

1) ANALYTICAL MODELS
For the estimation framework to always work with at least
the most simple model, we implement the roofline model
[32] for all layer types as a fallback solution. In the roofline
model for each layer n, smallest achievable execution time is
either limited by the peak computational performance Ppeak
or the maximal bandwidth Bpeak . In layer n, with the data to
be transferred Dn and the number of operations fn give us the
estimated execution time T̂roofn with the effective computa-
tion performance Peff equal to Ppeak

T̂roofn (fn,Dn) = max(
fn

Ppeak
,
Dn
Bpeak

). (1)

Keeping in mind that for fused layers the term ofDn has to be
corrected (see Section V-B), this formulation of the roofline
model can be applied to the four named layer types and will
be denoted in the experimental section as roofline model.

However, as mentioned earlier, computational efficiency
also depends on how the shapes of the input-, weight- and
output tensors are mapped on the computing architecture.
When incorporating the reduced utilization efficiency ueff in
equation (1) we obtain

T̂refn (fn,Dn) = max(
fn

Ppeakueffn
,
Dn
Bpeak

) (2)

Next we aim to describe the utilization efficiency of a
general compute architecture with an array of Processing

Elements (PEs). The number of spatial dimensions A and the
number of PEs alongside each dimension Es ∈ NA define
the compute architecture. For example an array could be
described with A = 2 and Es =

(
16 12

)
, which amounts to a

total of 192 PEs.When computing a layer, the operations have
to be mapped onto the array either spatially or temporally.
With the parameter settings of the layer as the feature vector
Ex we can approximate the utilization efficiency with

ueff (Ex) =
A∏
i=1

xi/si
dxi/sie

. (3)

Hereby the size of the vector Ex does not have to match the size
of the vector Es as the operations can also be mapped in the
temporal dimension. For example, when mapping a 2D 1× 1
convolution layer with a 12× 6× 128 input feature map and
256 output channels, the feature vector describing the layer
could be any permutation of

(
12 6 128 256 1 1

)
depending

on the mapping of the layer onto the array. With equation
(3), for the presented example case and the input feature
map height andwidthmapped spatially onto the 16x 12 array,
we would get ueff = 0.375.
It has to be mentioned that equation (3) neglects the over-

head of control units and warming up as well as possible
input parameter augmentation for xi < si. For example,
since the first layer in most DNNs has three input channels
(xi = 3), channel augmentation can often improve perfor-
mance in the first layer of the neural network. To allow for
further adjustment of the model to different efficiencies for
each element of Es we add the unrolling efficiency vector Eα
to get the final utilization efficiency of the refined roofline
model

ueff (Ex) =
A∏
i=1

(αi +
dxi/sie
xi/si

(1− αi))−1 (4)

where Eα ∈ RA
| 0 ≤ αi ≤ 1. The coefficients αi adjust the

impact of the spatial unrolling. According to the terminology
used in [33], αi allows us to adjust the impact of spatial and
temporal fragmentation on the overall utilization efficiency.
So far, we have identified no other method to derive the values
of Eα from the system architecture than by measurement.

This refined version of the roofline model allows us to
model not only the reduced utilization efficiency of n-D con-
volutions due to the mapping restrictions of existing compute
architectures. It can also be used to model jumps in utilization
efficiency caused by higher-level features such as the number
of input parameters, weights, or outputs.

We apply the simple roofline model with separately mea-
sured data throughput rate and peak performance to the
pooling, depth-wise separable, and fully connected layers,
respectively, under the presumption that accuracy does not
have to be as high as for the convolutional layers. However,
it is still important to also capture the execution time of those
layers. Furthermore, for fused layers, we define the first term
of equation (2) as the sum of the execution time of the con-
volution layer and the following fused layer. For the second

3550 VOLUME 9, 2021



M. Wess et al.: ANNETTE With Stacked Models

term, we adjust the number of transferred data to the overall
amount of the fused layer. For example, a convolution layer
with a succeeding pooling layer with a stride greater than one
has a reduced number of output parameters.

Within the modeling framework, we determine model
parameters Ppeak , Bpeak , Es and Eα for all layers automatically
based on the measurements of the Benchmark Tool. At first,
we perform sweep benchmarks to measure the layer execu-
tion time while sweeping each of the parameters describing
the layer. For example, in one sweep for a 2D convolution
layer, we measure the execution time, incrementing the num-
ber of input channels in each measurement. These sweeps
are performed for each parameter at multiple points, while
the other layer parameters are set to the same value for the
entire sweep. Based on these measurements, we can extract
the preliminary values of Ppeak and Bpeak by finding the
maximum performance and data throughput values. Next we
determinate the values of si and αi, by fitting equation (3)
to the collected data using mean square minimization, with
the conditions Eα ∈ RA

| 0 ≤ αi ≤ 1 and Es ∈ NA. Lastly
with the determined values of Es and Eα we perform the rest
of the benchmarks using preferably layer settings with (3) to
determine the final values of Ppeak and Bpeak .

2) STATISTICAL MODELS
Apart from the analytical estimation model, we also generate
statistical regression models to estimate the performance for
all benchmarked layer types. In general, we found that the
statistical models produce more precise results when pre-
dicting utilization efficiency rather than the resulting exe-
cution time. We estimate the utilization efficiency ustat =
f (Ex) where ustat ∈ R | 0 < ustat ≤ 1 for each
layer separately based on a feature vector Ex describing the
layer’s parameter settings. Similar to [17], [18] we include
higher-level features such as the number of input param-
eters and the number of operations. For example, for the
2D convolutional layer we select the feature vector Ex =
(h,w, c, f , kh, kw, stride, #ops, #in, #out, #weights).

We applied random forest regression for the statistical
models of the network layers, which worked best for the data
collected in the benchmarks. Although tree-based regression
methods generally do not extrapolate well, they have the use-
ful property that the output values do not explode but remain
constant when the input values are outside the training data
range. In the case of the ustat estimate, this behavior does not
degrade the quality of the estimate. For the final prediction
of the layer execution time, we then apply the roofline model
with statistically computed utilization efficiency:

T̂mixn (fn,Dn) = max(
fn

Ppeakustatn
,

Dn
Bpeakn

) (5)

Due to the large number of architectural parameters for
the convolution layer, we have to carefully select for which
configuration parameter settings to perform the measure-
ments. This is important since the points of measurement
influence the quality of the resulting statistical models. To

find the best points of measurement for our statistical model,
we generate three datasets. For the first dataset, we aim to
model the surface of points with the best utilization efficiency.
Therefore, we reduce the space of measurements to points
with utilization efficiency equal to 1. For the generation of
the second dataset, we add Gaussian noise to the parameters
with si > 1 to also cover cases with utilization efficiency< 1.
The third dataset is the union of datasets 1 and 2.

The experimental results show that, depending on the
selected statistical model, too large amounts of measurement
points would be required tomodel the entire surface of dataset
3 correctly. Therefore, we use dataset 1 for the generation of
the statistical models and follow a third approach. We com-
bine the generated statistical models with the refined roofline
model from Section V-A1 to achieve higher accuracy for the
points with utilization efficiency < 1.

3) MIXED MODELS
To combine the advantages of the statistical and analytical
models, we also implement a mixed modeling approach by
stacking the statistical model and the refined roofline model.
The execution time of the mixed model T̂mix for the layer n
can be expressed as

T̂mixn (fn,Dn) = max(
fn

Ppeakueffnustatn
,
Dn
Bpeak

) (6)

Decoupling the modeling of ueff and ustat has the advan-
tage that the necessarymodel complexity for the estimation of
ustat is reduced, as the model only needs to correctly estimate
the points with ueffn = 1. Fig. 7 shows how combining the
statistical model and the refined roofline model results in the
mixed model.

FIGURE 7. An example of predicted execution time surfaces for the
refined roofline model (top left), statistical model (top right) and mixed
model (bottom). The plane of the mixed model is an overlay of the
refined roofline model and the statistical model.

VOLUME 9, 2021 3551



M. Wess et al.: ANNETTE With Stacked Models

The analytical part of the model, namely the refined
roofline model, covers the step-wise linear shape of the tar-
get surface. Based on the refined roofline model, we can
determine at which points we want to perform measurements
for the statistical model. As mentioned in section V-A2,
we only select points with ueff = 1 for computing the
regression model for ustat . Therefore, the refined roofline
model improves the statistical model twofold: by refining the
area with ueff 6= 1 and regarding the selection of points for
the measurements.

Due to the better choice of data points, the statistical model
will produce a better result with a lower risk of overfit-
ting. This also explains why the regression model based on
dataset 1 is outperforming the models with additional data
points. However, thanks to the analytical part of the mixed
model, we can still model the local shape of the surface.
We can say that while the analytical part is responsible for
modeling inefficiencies of the computational architecture,
the statistical model covers the memory architecture.

B. MAPPING MODELS
The last estimation module we present is the mapping model.
Themain objective is to predict whether two successive layers
have been fused or not. This is important for cases where
Ttotal 6= T1 + T2, where Ttotal is the total execution time of
layers 1 and 2; T1 and T2 are the execution times of the two
layers when executed separately. As mentioned above, this
difference is mainly due to reduced off-chip data transfer and
pipelining effects. For the generation of the mapping models,
we use the input feature vectors Ex previously defined for the
statistical model and aim to predict the values of the fused
flags extracted by the Graph Matcher in Section IV). We rely
on Decision Tree Classifiers to determine the rules for the
mapping prediction. For example, Fig. 8 shows a simplified
version of the decision tree for the fusion of a convolution
layer followed by a max-pooling layer. We can see that in
the example shown, the decision if the two layers are merged
or not depends mainly on whether a certain number of chan-
nels and filters in the convolution layer is exceeded or not.
We apply the same concept to all fused layer combinations
we were able to find in our evaluation networks in Tab. 2.

FIGURE 8. Sample decision tree for fusing pooling and convolution on
NCS2.

VI. ESTIMATION
For the network level estimation, we apply the stacked model
presented in Section III on a network description graph.
At first, we apply the mappingmodels to reconstruct the map-
ping of the platform mapping toolchain. For this, we iterate

through all directly connected layers and check whether they
should be fused or not. Afterwards, we apply the layer level
models on each remaining layer of the optimized graph. The
network execution time estimation T̂total is the sum of all
estimated layers T̂n.

Because of the different models available for each layer,
we implement the estimation framework in a way that we can
select the preferred model type but always use the roofline
model as a fallback solution so that the highest possible
number of layers execution times is always estimated.

VII. RESULTS AND PERFORMANCE ANALYSIS
To quantify the accuracy of the latency estimation methods
presented in Section III, we compare the estimated results to
measured times for 12 state-of-the-art DNNs listed in Tab. 2
from Xilinx Model Zoo [34] and a randomly selected subset
of 34 networks from the models generated in NASBench [21]
on target devices.

TABLE 2. Networks used to evaluate estimation accuracy.

A. EXPERIMENTAL SETUP
All experiments were performed with batch size 1 to achieve
the lowest possible latency, but by adding the batch-size
as an additional input parameter for the benchmark dataset
and by adding the batch size to the input feature vec-
tor of the estimation models, it would also be possible to
extend the method to larger batch sizes. For Xilinx DPU,
we used a ZCU102 evaluation board with a DPU config-
uration of 4096 MAC units. Measurements on the NCS2
were performedwith an Intel i5-4590 3.3 GHz host processor
equipped with 16 GB of RAM in synchronous mode. For
both platforms, we used the provided tools for mapping and
compilation. To assess the estimator performance, we use two
test sets.Test set 1 contains the 12DNNs listed in Table 2, and
we use it to evaluate in detail the performance for commonly
used networks.WithTest set 2, we aim to understand whether
ANNETTE could be used for a hardware-oriented neural
architecture search. Therefore, we randomly select 34 models
of the NASBench [35] neural architecture search dataset,
which contains a large variety of different architectures with
similar sizes, and evaluate the accuracy and fidelity of our
estimator.

3552 VOLUME 9, 2021



M. Wess et al.: ANNETTE With Stacked Models

FIGURE 9. The experimental setup for prediction accuracy evaluation.

Figure 9 shows the experimental setup. In the first phase,
the benchmarks from Section IV are executed on the target
platforms. The execution times of the layers are extracted
using the provided profiling tools and stored together with
the configuration files of the benchmarks. With the Model
Generator (Section V), the mapping and hardware abstraction
models are derived and made available to the Estimation Tool
(Section VI). In the second phase, the network graphs are
fed into the estimator. For evaluation, the resulting estimated
times are compared with the execution times measured on
the target device. The detailed information provided by the
profiling tools allows us to compare not only the total execu-
tion times of the networks but also the execution time of each
layer.

B. LAYER EXECUTION TIME MODELS
First, we evaluate the accuracy of the previously presented
layer execution time models. Tab. 3 reports the Mean-
Absolute-Error (MAE), the Mean-Absolute-Percentage-
Error (MAPE) and the Root-Mean-Square-Percentage-Error
(RMSPE) of the different layer models for all convolution
layers of the networks in Table 2. The results were estimated
andmeasured for both the NCS2 and the ZCU102 SoC-board.
Additionally, we also report the accuracy of other state-of-
the-art execution time prediction methods [16], [17].

TABLE 3. Layer execution time model evaluation for all convolution
layers of the networks in Table 2.

The mixed model outperforms the other model types for
both platforms in terms of MAE, MAPE and RMSPE. It is
noticeable that for the ZCU102, the refined roofline model

has a lower MAE than the statistical model. Since the MAE
is a non-weighted error metric, we conclude that for the
ZCU102, the refined roofline model predicts larger layers
more accurately than the statistical model.

For fair comparison to other state-of-the-art works, it has
to be mentioned that the reported numbers were measured
on a different set of networks1 and for a different set of
target devices. While the Paleo [16] and NeuralPower [17]
target server GPUs (Titan X), our work targets prediction
for specific accelerators for neural networks. However, even
in this case, the statistical prediction method outperforms
the analytical model. Nevertheless, analytical models are
easier to understand and can be easily adapted to similar
architectures, whereas a statistical model can only be based
on measurements. Additionally, we applied the NeuralPower
estimation method with our collected data for the NCS2 and
ZCU102, but we were not able to produce any useful results
with a MAPE lower than 1000%, so we don’t list the results
of this approach in Tab. 3. To our mind, these results are a
consequence of the bad extrapolation behavior of polynomial
functions, which are used for estimation in NeuralPower.

C. MAPPING MODELS
We evaluate the performance of the mapping models on the
dataset consisting of the layers from the example networks
generated by the Benchmark Tool. For the training data set,
we consider only the layer pairs that contain the target layer,
e.g., for training the decision tree that predicts whether a
pooling layer is fused or not, we include only layer pairs in
the data set, at least one of which is a pooling layer. Then we
select 80% of the samples for training and 20% for validation.
Tab. 4 shows the F1 score and the Matthews Correlation
Coefficient (MCC) for the fusing of element-wise addition
and pooling layers.

TABLE 4. Mapping model evaluation for fusing pooling and element-wise
addition with a preceding convolution layer.

Since the F1 score ignores true negatives, the MCC, which
depends on all four confusion matrix categories, should be
preferred for the evaluation of the binary classification [36].
It can be seen that the mapping prediction works quite well
for both platforms. However, the prediction for the DNNDK
(ZCU102) for both layer types achieves a higher F1 score
and MCC than the prediction for the NCS2. We assume that
the reasons for this are that the DNNDK is generally more
capable of merging several layers and that the optimization
behavior of the OpenVINO toolkit depends more on the

1Paleo and Neuralpower on VGG-16, AlexNet, NIN, Overfeat,
CIFAR10-6conv

VOLUME 9, 2021 3553



M. Wess et al.: ANNETTE With Stacked Models

architecture of the whole network than only on the parameter
settings of the individual layers.

D. EVALUATION FOR TEST SET 1
For evaluation of the generated platform models of the NCS2
and DNNDK, we perform the mapping and layer-wise esti-
mation for the models listed in Table 2. Then, we compare
the predicted network execution time with the measured time.
Table 5 shows the MAE and MAPE of all presented models
for the executed networks for the ZCU102 and NCS2.

Fig. 10 and Fig. 11 show the estimation accuracy of the
platform models. Due to moderate parallelization effects
on the NCS2, the roofline model and the refined roofline
model have similar performance. However, in some cases,
the refined roofline model provides slightly better predic-
tions. Also for the NCS2, the statistical and the mixed model
achieve almost almost similar performance with a MAPE
of 7.92% and 7.44%, respectively. Overall, the mixed model
consistently performs the best for the NCS2. Similarly, for the
ZCU102, the mixedmodel provides the most accurate predic-
tions with a MAPE of only 3.47%. Interestingly, in the case
of the ZCU102, for some of the networks, the refined roofline
model estimates the network execution time more accurately
than the statistical model. Since the refined roofline model
mainly covers reduced utilization efficiency due to the com-
putational architecture, we can conclude that for those cases,
the main inefficiency lies in the low utilization efficiency
of computational resources due to a parameter not align-
ing with the number of available multiplier resources (see
Seciton V-A1). The comparison to other state-of-the-art exe-
cution time estimators, which are also denoted in Tab. 2,

FIGURE 10. Accuracy of the estimated latency for the selected of Table 2
networks on NCS2.

FIGURE 11. Accuracy of the estimated latency for the selected Table 2 on
DNNDK.

TABLE 5. Network execution time estimation evaluation for all the
networks in Tab. 2. The mixed model outperforms the other models for
both platforms in MAE and MAPE.

is difficult since the necessary complexity of the model and
the resulting accuracy highly depends on the target device.
In addition, the evaluation performed in this work includes
more complex and larger networks with several different
layer types than in other works.

E. EVALUATION FOR TEST SET 2
To evaluate the accuracy of the estimations for design
space exploration, we perform the estimation for a randomly
selected subset of 34 network architectures generated for the
NASBench dataset. We select this dataset since it contains
several networks with similar sizes that were constructed for
the same task. Therefore it is more appropriate to evaluate
the fidelity of the estimation tool on Test Set 2. We assess
the performance on Test Set 2 for the NCS2, which was
performing worse on Test Set 1. Table 6 provides the MAE,
MAPE and Spearman’s rank correlation coefficient ρ as
fidelity metric. A perfect Spearman correlation of +1 occurs
when the variables are a perfect monotonically increasing
function of each other. This property makes ρ a valid measure
for fidelity [37].

TABLE 6. Fidelity and accuracy metrics for Test Set 2.

Fig. 12 shows the resulting estimated and measured time in
milliseconds for the NCS2. Due to the selected resolutions,
there is no difference between the results of the roofline
and the refined roofline model. Hence, also the statistical

FIGURE 12. NCS2 estimation performance for Test Set 2.

3554 VOLUME 9, 2021



M. Wess et al.: ANNETTE With Stacked Models

and mixed models achieve the same results. For Test Set 2,
the mixed/statistical modeling approach reaches almost a
Spearman’s rank correlation coefficient of +1 and outper-
forms the analytic models by more than 20 percentage points
in MAPE.

VIII. CONCLUSION
We propose a framework for execution time estimation for
neural network hardware accelerators. It is based on stacked
models, consisting of mapping models and mixed layer mod-
els. We generate the models based on micro-kernel and
multi-layer benchmark results and evaluate the performance
on two sets of networks for two selected hardware accel-
erators. Overall, the mixed models perform best. For a set
of 12 state-of-the-art DNNs, the estimation with mapping
models and mixed models reach a MAPE of only 3.47% on
the Xilinx ZCU102 SoC and 7.44% on the Intel NCS2 when
estimating total network execution times. For the use case
of design space exploration, we evaluate the fidelity of the
generated models by applying the estimation method on a
randomly selected subset of 34 models of the NASBench
dataset. The estimation with mapping models and mixed
layer models reaches fidelity of 0.988 in Spearman’s ρ rank
correlation coefficient metric. The evaluation demonstrates
the advantages of applying mixed models for the selected
hardware platforms. In the future, we aim to extend the eval-
uation to additional embedded hardware, such as the Nvidia
Jetson platform, to gain additional insights for a different
class of accelerators.

Due to the large parameter space of DNNs, one crucial
point for the development of the estimation framework is
to make assumptions about the computing architecture to
exclude as many non-meaningful measurement points as pos-
sible. An essential clue is the step-wise linear nature of archi-
tecture resources, such as an array of multipliers or caches.
They follow a linear performance trend until the cache or
the multiplier array is fully allocated. Besides, for a precise
estimation, it is important to consider not only the individual
layers in isolation but also how they are executed in the overall
context.

We are confident that accurate estimation methods can
significantly facilitate informed making of decisions. Nev-
ertheless, it is in the area of neural architecture search
where estimation can make a critical contribution to a
hardware-specific search or the right choice of networks and
hardware in advance of the development of applications.

REFERENCES
[1] C. Fruhwirth-Reisinger, G. Krispel, H. Possegger, and H. Bischof,

‘‘Towards data-driven multi-target tracking for autonomous driving,’’ in
Proc. 25th Comput. Vis. Winter Workshop (CVWW). Slovenia, Balkans,
2020, pp. 27–36.

[2] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng,
‘‘Cardiologist-level arrhythmia detection with convolutional neural net-
works,’’ CoRR, vol. abs/1707.01836, pp. 1–9, Jul. 2017.

[3] M. Wess, P. D. Sai Manoj, and A. Jantsch, ‘‘Neural network based ECG
anomaly detection on FPGA and trade-off analysis,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[4] J. Zhang and C. Zong, ‘‘Deep neural networks in machine translation: An
overview,’’ IEEE Intell. Syst., vol. 30, no. 5, pp. 16–25, Sep. 2015.

[5] F. Tung and G. Mori, ‘‘CLIP-Q: Deep network compression learning by
in-parallel pruning-quantization,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7873–7882.

[6] S. Srinivas and R. V. Babu, ‘‘Data-free parameter pruning for deep neural
networks,’’ CoRR, vol. abs/1507.06149, pp. 1–12, Jul. 2015.

[7] M. Wess, S. M. P. Dinakarrao, and A. Jantsch, ‘‘Weighted quantization-
regularization in DNNs for weight memory minimization toward HW
implementation,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 11, pp. 2929–2939, Nov. 2018.

[8] S. Shin, K. Hwang, and W. Sung, ‘‘Fixed-point performance analysis of
recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2016, pp. 976–980.

[9] D.Miyashita, E. H. Lee, and B.Murmann, ‘‘Convolutional neural networks
using logarithmic data representation,’’ 2016, arXiv:1603.01025. [Online].
Available: http://arxiv.org/abs/1603.01025

[10] M. Jaderberg, A. Vedaldi, and A. Zisserman, ‘‘Speeding up convolutional
neural networks with low rank expansions,’’ inProc. Brit. Mach. Vis. Conf.,
2014, pp. 1–12.

[11] C. Tai, T. Xiao, and X. Wang, ‘‘Convolutional Neural Networks with Low-
Rank Regularization,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2016,
pp. 1–11.

[12] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[13] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6848–6856.

[14] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,
and H. Adam, ‘‘NetAdapt: Platform-aware neural network adaptation for
mobile applications,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 285–300.

[15] H. Cai, L. Zhu, and S. Han, ‘‘ProxylessNAS: Direct neural architecture
search on target task and hardware,’’ in Proc. Int. Conf. Learn. Represent.
(ICLR), 2019, pp. 1–13.

[16] H. Qi, E. R. Sparks, and A. Talwalkar, ‘‘Paleo: A performance model for
deep neural networks,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2017,
pp. 1–10.

[17] E. Cai, D. Juan, D. Stamoulis, and D. Marculescu, ‘‘NeuralPower: Pre-
dict and deploy energy-efficient convolutional neural networks,’’ CoRR,
vol. abs/1710.05420, pp. 1–16, Oct. 2017.

[18] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher,
‘‘FastDeepIoT,’’ in SenSys. New York, NY, USA: ACM Press, 2018.

[19] D. Velasco-Montero, J. Fernandez-Berni, R. Carmona-Galan, and
A. Rodriguez-Vazquez, ‘‘PreVIous: A methodology for prediction of
visual inference performance on IoT devices,’’ IEEE Internet Things
J., vol. 7, no. 10, pp. 9227–9240, Oct. 2020.

[20] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D. Lane,
‘‘EmBench,’’ in Proc. 3rd Int. Workshop Deep Learn. Mobile Syst. Appl.,
2019, pp. 7–13.

[21] C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter,
‘‘NAS-bench-101: Towards reproducible neural architecture search,’’ in
Proc. Int. Conf. Mach. Learn. (ICML), vol. 97, Jun. 2019, pp. 7105–7114.

[22] V. J. Reddi, C. Cheng, D. Kanter, and P. Mattson, ‘‘Mlperf inference
benchmark,’’ CoRR, vol. abs/1911.02549, pp. 1–5, Dec. 2019.

[23] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis,
K. Olukotun, C. Ré, and M. Zaharia, ‘‘Dawnbench: An end-to-end deep
learning benchmark and competition,’’ Training, vol. 100, no. 101, p. 102,
2017.

[24] B. Wu, K. Keutzer, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,
P. Vajda, and Y. Jia, ‘‘FBNet: hardware-aware efficient ConvNet design
via differentiable neural architecture search,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, p. 10.

[25] X. Dai, A. Wan, P. Zhang, B. Wu, Z. He, Z. Wei, K. Chen, Y. Tian, M. Yu,
P. Vajda, and J. E. Gonzalez, ‘‘FBNetV3: Joint architecture-recipe search
using neural acquisition function,’’ 2020, arXiv:2006.02049. [Online].
Available: http://arxiv.org/abs/2006.02049

[26] A. Shaw, D. Hunter, F. Landola, and S. Sidhu, ‘‘SqueezeNAS: Fast neural
architecture search for faster semantic segmentation,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis. Workshop (ICCVW), Seoul, South Korea, 2019,
pp. 2014–2024.

VOLUME 9, 2021 3555



M. Wess et al.: ANNETTE With Stacked Models

[27] T. Tang and Y. Xie, ‘‘Mlpat: A power area timing modeling framework for
machine learning accelerators,’’ in Proc. DOSSAWorkshop, 2018, pp. 1–3.

[28] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, ‘‘DNN-chip
predictor: An analytical performance predictor for DNN accelerators with
various dataflows and hardware architectures,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Barcelona, Spain, May 2020,
pp. 1593–1597, doi: 10.1109/ICASSP40776.2020.9053977.

[29] Xilinx. (2020). Xilinx Deep Neural Network Development Kit.
Accessed: Apr. 17, 2020. [Online]. Available: https://www.xilinx.
com/products/design-tools/ai-inference/edge-ai-platf%orm.html#dnndk

[30] Intel. (2018). OpenVINO Toolkit. Accessed: Dec. 12, 2018. [Online].
Available: https://software.intel.com/en-us/openvino-toolkit

[31] M. Alwani, H. Chen, M. Ferdman, and P. Milder, ‘‘Fused-layer CNN
accelerators,’’ inProc. 49th Annu. IEEE/ACM Int. Symp.Microarchitecture
(MICRO), Oct. 2016, pp. 1–12.

[32] S. Williams, A. Waterman, and D. Patterson, ‘‘Roofline: An insightful
visual performance model for multicore architectures,’’ Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[33] Y. Chen, T. Yang, J. S. Emer, andV. Sze, ‘‘Eyeriss v2: Aflexible accelerator
for emerging deep neural networks on mobile devices,’’ IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308, Jun. 2019, doi:
10.1109/JETCAS.2019.2910232.

[34] Xilinx. (2020). Xilinx AI-Model-Zoo. Accessed: Apr. 17, 2020-04-17.
[Online]. Available: https://github.com/Xilinx/AI-Model-Zoo

[35] C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hut-
ter, ‘‘Nas-bench-101: Towards reproducible neural architecture search,’’
CoRR, vol. abs/1902.09635, pp. 1–15, May 2019.

[36] D. Chicco and G. Jurman, ‘‘The advantages of the matthews correlation
coefficient (MCC) over f1 score and accuracy in binary classification
evaluation,’’ BMC Genomics, vol. 21, no. 1, Jan. 2020.

[37] H. Javaid, A. Ignjatovic, and S. Parameswaran, ‘‘Fidelity metrics for
estimation models,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2010, pp. 1–8.

MATTHIAS WESS received the B.Sc. and M.Sc.
degrees from the Department of Electrical Engi-
neering, TU Wien, Vienna, Austria, in 2013 and
2017, respectively, where he is currently pursuing
the Ph.D. degree with the Institute for Computer
Technology. He is part of the Christian Doppler
Laboratory for Embedded Machine Learning at
TU Wien, Austria. His current research interests
include hardware acceleration of deep neural net-
works and energy-efficient machine learning

MATVEY IVANOV is currently pursuing the bach-
elor’s degree with the Faculty of Electrical Engi-
neering and Information Technology, TU Wien,
Austria. Since 2019, he has been part of the Chris-
tian Doppler Laboratory for Embedded Machine
Learning at TU Wien.

CHRISTOPH UNGER received the B.Sc. degree
in computer engineering and the M.Sc. degree in
automation and control from TU Wien, Vienna,
Austria, in 2015 and 2020, respectively, where he
is currently pursuing the Ph.D. degree with the
Automation and Control Institute (ACIN). He is
currently a Researcher with ACIN, TU Wien. His
work is focused on the topics of machine intelli-
gent control as well as skill transfer learning in
the area of robotics. His research interests include

robotics, generative deep learning, and intelligent and optimal-based control.

ANVESH NOOKALA received the Bachelor of
Science degree in electrical engineering from TU
Wien, in 2019, where he is currently pursuing the
master’s degree in embedded systems, with a focus
on a range of topics such asmechatronics, machine
vision, computer systems, and electronics design.
Parallel to his studies, he is part of the Siemens
Electronics Research Group, Vienna, where his
work is focused on hardware for artificial intelli-
gence and related topics.

ALEXANDER WENDT (Member, IEEE) received
the degree in technical physics, in 2007, and
the Ph.D. degree in decision making in artificial
intelligence, in 2016. He is currently a Research
Coordinator with the Christian Doppler Labora-
tory for Embedded Machine Learning, TU Wien,
Austria. After successfully completing his degree,
he worked as a Safety Engineer with Frequentis
AG. Until 2020, he focused on software architec-
tures for smart grids and cognitive architectures as

control systems in buildings. Since 2020, his research focus is on the char-
acterization and optimization of neural networks for embedded hardware.
He has published more than 30 articles, acted as the session chair in sessions
about machine learning and cognitive architectures.

AXEL JANTSCH (Senior Member, IEEE) received
the Dipl.Ing. degree and the Ph.D. degree in com-
puter science from TU Wien, Vienna, Austria,
in 1987 and 1992, respectively.

From 1997 to 2002, he was an Associate Pro-
fessor with KTH Royal Institute of Technology,
Stockholm. From 2002 to 2014, he was a Full
Professor in electronic systems design at KTH.
Since 2014, he has been a Professor of systems on
chips with the Institute of Computer Technology,

TUWien. His current research interests include systems on chips, self-aware
cyber-physical systems, and embedded machine learning. He has published
five books as an editor and one as an author and over 300 peer-reviewed
contributions in journals, books, and conference proceedings. He has given
over 100 invited presentations at conferences, universities, and companies.

3556 VOLUME 9, 2021

http://dx.doi.org/10.1109/ICASSP40776.2020.9053977
http://dx.doi.org/10.1109/JETCAS.2019.2910232

