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ABSTRACT Melanoma and non-melanoma skin cancers have shown a rapidly increasing incidence rate,
pointing to skin cancer as a major problem for public health. When analyzing these lesions in dermoscopic
images, the hairs and their shadows on the skin may occlude relevant information about the lesion at the time
of diagnosis, reducing the ability of automated classification and diagnosis systems. In this work, we present
a new approach for the task of hair removal on dermoscopic images based on deep learning techniques.
Our proposed model relies on an encoder-decoder architecture, with convolutional neural networks, for the
detection and posterior restoration of hair’s pixels from the images. Moreover, we introduce a new combined
loss function in the network’s training phase that combines the L1 distance, the total variation loss, and a loss
function based on the structural similarity index metric. Currently, there are no datasets that contain the same
images with and without hair, which is necessary to quantitatively evaluate our model. Thus, we simulate the
presence of hair in hairless images extracted from publicly known datasets. We compare our results with six
state-of-the-art algorithms based on traditional computer vision techniques by means of similarity measures
that compare the reference hairless image and the one with simulated hair. Finally, theWilcoxon signed-rank
test is used to compare the methods. The results, both qualitatively and quantitatively, demonstrate the
effectiveness of our model and how our loss function improves the restoration ability of the proposed model.

INDEX TERMS Deep neural networks, dermoscopy, hair removal, image processing, inpainting, skin lesion.

I. INTRODUCTION
Melanoma is the most aggressive, metastatic and deadliest
type of skin cancers, turning this disease into a major
problem for public health. In Europe, it accounts for
1–2% of all malignant tumors [1], and its estimated mortality
in 2018 was 3.8 per 100.000 men and women per year [2].
Although melanoma is still incurable, its early diagnosis
is of great importance. Its early detection can prevent
malignancy and increase the survival rate and the effective-
ness of the treatment. Nowadays, practitioners rely on the
dermoscopic evaluation for completing the clinical analysis
and the diagnosis of melanoma. This practice improves the
diagnostic accuracy up to 10–30% [3] compared to simple
clinical observation. This in-vivo, non-invasive skin imaging
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technique enables the visualization of specific subsurface
structures, forms and colors that are not discernible by a
simple visual inspection. The diagnosis of skin lesions is
mainly based on their morphological characteristics, such
as an irregular shape, asymmetry and a variety of colors,
along with a history of changes in size, shape, color and/or
texture. However, their evaluation might be altered by the
individual judgment of the observers, which depends on
their experience and subjectivity [4]. Thus, in order to help
physicians to obtain an early, objective, and reproducible
diagnosis of skin lesions, sophisticated Computer-Aided
Diagnosis (CAD) software are developed. These compu-
tational tools are designed based on clinical protocols
[5]–[8] and focus mainly on image acquisition, artifact
removal (hairs, bubbles, etc.), segmentation of the lesion,
extraction and selection of features, and final classification
of the lesion.
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In the pre-processing stage during the analysis of the
lesions, hair removal is one of the key steps. The presence
of hair in dermoscopic images usually occludes significant
patterns reducing the accuracy of the system. Once the hairs
are detected and removed, the next step is to estimate and
restore the underlying information (i.e., color and texture
patterns) of the skin pixels underneath the hair regions.
Extensive previous research has been done addressing the
hair removal process in dermoscopic images. To the best of
our knowledge, previous works presented approaches based
on traditional computer vision techniques. Thus, tackling the
problem with classical generative and discriminative models,
which rely on hand-crafted features. However, hand-crafted
features needed to be defined and their impact is typically
tested with small datasets [9]. In recent years, deep learning
has shown to be a powerful tool for image analysis. More
specifically, deep learning techniques have achieved a higher
performance with respect to traditional approaches for the
majority of applications within the medical field [10].
Deep Convolutional Neural Networks (CNNs) allow to
automatically learn features of different complexity directly
from data through a set of trainable filters. Moreover, it has
shown to be a powerful tool when working with large
datasets.

In the preprocessing step, hair removal stands out as one
of the most useful and used methods. However, traditional
approaches are still used for this task in more advanced
systems in which the main model uses deep learning
techniques [11], [12]. Thus, we face the task of developing
a deep learning model for the detection and removal of
hairs. Such model could be integrated into a complete CAD
system based entirely on deep learning. Our objective is
threefold. First, to design a novel model based on deep CNNs
for the removal of skin hair in dermoscopic images and
the subsequent restoration of the affected pixels. Second,
to qualitative and quantitatively assess its performance. Third,
to compare the results with other hair removal strategies
using the same database, which would provide an objective
comparison of the strengths and weaknesses, and therefore
of the quality of the method presented.

The contributions of this work are three-fold:
• To the best of our knowledge, we are the first to use deep
learning techniques for hair removal in dermoscopic
images.

• We introduce a loss function for the detection and
posterior restoration of hair’s pixels based on the
combination of loss functions that focus on different
aspects, which complement each other towards a more
robust reconstruction.

• We extend the dataset presented in [13] by creating
more synthetic hair on dermoscopic images. This eases
the quantitative evaluation of hair removal approaches.
We will make the data available for further research in
the field.

The rest of the document is structured as follows. First,
in Section II, we review the related work on hair removal

methods in dermoscopic images. Then, in Section III,
we present our method based on CNNs and detail the
loss function that we have used to train the network.
Next, in Section IV, we describe the database and the
implementation details, as well as presenting the results
obtained, and performing an ablation study of the loss
terms and some architecture’s aspects. Finally, in Section V,
we discuss the previous results and study the strengths and
limitations of this study.

II. RELATED WORK
In this section, we describe previous works that addressed the
task of hair removal in dermoscopic images. To the best of
our knowledge, only traditional computer vision approaches
have been used to address this task. In addition to describing
these methods, we will use them, in Section IV, to evaluate
the performance of our model.

Several traditional computer vision approaches have been
used for hair removal in dermoscopic images. Here we
highlight six state-of-the-art algorithms, based on their
availability and wide use in the literature. These are the ones
proposed by Lee et al. [14], Xie et al. [15], Abbas et al. [16],
Huang et al. [17], Toossi et al. [18] and Bibiloni et al. [19].
A summary of the approaches considered by each of them can
be seen in Table 1.
Nowadays, deep learning techniques have shown their

potential when addressing computer vision tasks and have
shown to be the state-of-the-art for many problems. Specifi-
cally, deep learning-based image restoration techniques have
been used in other fields for image inpainting [20], image
deblurring and image denoising [21], among others. These
methods learn the parameters of the network to reconstruct
images directly from training data, that is composed by pairs
of clean and corrupted images. This is usually more effective
in real-world images. For instance, Xie et al. [20] proposed
an approach for image denoising and blind inpainting that
combines sparse coding with pre-trained deep networks,
achieving good results in both tasks. Vincent et al. [22]
presented a stack of denoising autoencoders for image
denoising that is applied not only to the input, but also
recursively to intermediate representations, to initialize the
deep neural network. Also, Cui et al. [23] proposed a cascade
of multiple stacked collaborative local autoencoders for
image super-resolution. Their method searches in each layer
non-local self-similarity to enhance high frequency texture
details from the image patches to suppress the noise and
combine the overlapping patches. In [24],Mao et al. proposed
an encoding-decoding framework for image denoising and
super-resolution combining convolutions and deconvolution
layers linked symmetrically by skip connections, which helps
improving the training process and the network’s perfor-
mance. Finally, Jain and Seung [25] and Dong et al. [26]
proposed a fully convolutional CNN for image denoising
and image super-resolution, respectively. The authors shown
that their methods achieve comparable results to traditional
computer vision techniques.
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TABLE 1. Detection and inpainting techniques employed in the literature to remove hair from dermoscopic images.

FIGURE 1. Architecture of our proposed network. The pairs of reference hairless images (GT) and its corrupted (hair simulated) images are passed
through the encoder to extract complex features. The decoder, connected to the encoder with skip-connections, reconstructs the image.

When focusing on the hair removal process on dermoscopy
images and deep learning techniques, Attia et al. [27]
used them to simulate hair. The authors used Generative-
Adversarial-Networks to generate fake hair and add it to
the image. In this work, we address the inverse problem,
including the location and reconstruction of the hair regions
in dermoscopic images using CNNs. Given the promising
results achieved by deep learning models for other computer
vision related tasks and the need for robust models for hair
removal in dermoscopic images, we present a novel model
that relies on an autoencoder to address this task.

III. METHODOLOGY
In this section, we describe our proposed deep learning
model for hair removal in dermoscopic images and depict the
introduced reconstruction loss function.

We designed and propose a convolutional encoder-decoder
architecture for the task of hair removal in dermoscopic
images. Our model, which is detailed in Figure 1, is com-
posed of 12 layers. To train our model, we use pairs of
images formed by the reference image without hair and its
corresponding image with simulated hair. The output is the
reconstructed dermoscopic without hairs on it. During the
learning process, the network relies on our proposed loss
function that evaluates the goodness of the output image in

comparison to the hairless reference image. Next, we describe
the proposed model and loss functions for this relevant
task.

A. ARCHITECTURE STRUCTURE
The first module of our model is an encoder network. The
input is of size 512 × 512 × 3 and its output is a hidden
representation of high-level features of the input image.When
looking for such features, the encoder tends to ignore noise.
In our case, our hypothesis is that the network will treat the
hair as noise and will be ignored, having as output the hairless
skin image. The second layer of the model corresponds to
the decoder, which aims to recover the missing information
from the high-level feature representation. Its output is a
512 × 512 × 3 cleaned version, without skin hair, of the
input image. Both the encoder and the decoder have two
blocks. Each block of the encoder consists of one 3 × 3
convolution, of 128 filters in the first block and 256 filters
in the second one, followed by a down-sampling operation,
which is applied by a two-strided 3 × 3 convolution to
reduce the spatial resolution. On the other side, each block
of the decoder consists of an up-sampling of the feature map
by a deconvolution of 3 × 3 with strides of two in each
dimension. A skip connection follows, which concatenates
the up-sampled output with the corresponding feature map
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from the layer of equal resolution of the encoder. This enables
the decoder to recover image details, and therefore improves
the restoration performance. Next, a 3 × 3 convolution is
applied over the merged data. Finally, in the last block,
an additional 3×3 convolution is added to reduce the feature
map to the number of output channels.

The choice of this architecture resides in the aim of
evaluating the suitability of autoencoders to tackle this task
as a denoising problem. In terms of its size, we believe that
a rather small network is more suitable to correctly learn the
task due to the amount of data we have available.

B. RECONSTRUCTION LOSS FUNCTION
The loss function guides how the network learns by serving
as a criterion that numerically reflects the errors of the
model. It is computed between the network output and
its corresponding hairless reference image, also known as
Ground Truth (GT). There are several loss functions that
have been used in image restoration tasks. Some widespread
losses are the Mean Square Error (MSE) or the Mean average
Error (MAE). These measurements exclusively depend on
the difference between the corresponding pixels of the two
images. Therefore, the results might have poor quality in
terms of human perception, since the noise of a pixel should
not be considered independently of the error of its neigh-
bouring pixels. To overcome these limitations, other loss
metrics have been proposed, such as the Structural Similarity
Metric (SSIM) or the Multiscale Structural Similarity Metric
(MSSSIM), which depend on local luminance, contrast and
structure [28].

To achieve results appealing to a human observer, and
inspired by the results obtained by Liu et al. in [29],
we propose to capture the best characteristics of the loss
functions that measure statistical features locally along with
other per-pixel losses.

Thus, our reconstruction loss is defined as follows:

Lrec = αL
foreground
1 + βLbackground1 + γLcomposed

2 + δLSSIM

+λLtv, (1)

where α, β, γ, δ and λ are the weights of each term of
the linear combination that define the reconstruction loss
function. We opted to perform a random hyperparameter
search as there are many parameters of which we have to find
the optimal value, and a grid search would require a higher
computational cost. Specifically, we performed 10 runs of
our model, assigning in each case a random value between
0 and 10 to each of the weights. Afterwards, a statistical test
indicates which are the best set of weights according to the
measurements explained in Section IV-D.

• The term Lforeground1 is the L1 distance between the
original hairless image and the prediction of the network
only between those pixels belonging to the hair areas.

• Next, Lbackground1 estimates the L1 distance between the
original hairless image and the network’s prediction

only among the background pixels, which in our context
accounts for the non-hair regions.

• Then, Lcomposed
2 computes the L2 restricted to the hair

regions, but normalizing over all pixels rather than over
the amount of hair pixels.

• The termLSSIM calculates the loss function based on the
SSIM metric over the whole image.

• Finally, we use a total variation loss,Ltv, as a regularizer
to smooth the transition of the predicted values for
the regions corresponding to hair, according to their
surrounding context. A more detailed description of this
term can be found in [30].

IV. EXPERIMENTAL FRAMEWORK AND RESULTS
In this section, we first establish the experimental framework
by describing the database used and the implementation
details of our method. Then, we analyze the results obtained
by our method and compare them, qualitative and quantita-
tively, to the six traditional hair removal methods presented
in Section II. To obtain the numerical results, we rely on
several performance measures. We determine which method
outperforms the rest by means of a statistical test. Finally,
we conducted an ablation study of the loss terms, as well as
of some aspects of the model’s architecture.

A. DATASET DESCRIPTION
In order to train the CNN and to quantitatively validate, in an
effective way, the performance of our method, we need a
dataset. It must contain pairs of images: images with hair,
used as the algorithm input, along with their corresponding
‘‘clean’’ version, in this case the same image without hair.
If we only had the image with hairs, we could only do a
qualitative evaluation.

Finding this type of data is a challenging task, the same
dermoscopic image can not be captured with and without
hair. To tackle this problem, we decided to simulate the
presence of skin hair in hairless images extracted from
five publicly available datasets, i.e. PH2 [31], dermquest,1

dermis,2 EDRA2002 [32] and from the ISIC Data Archive.3

We have avoided selecting images with other artifacts (eg.
ruler, bandages etc) that are not hairs. Three different
hair simulation methods have been used. The first is the
one, presented by Attia et al. [27], is based on generative
adversarial networks. The second one was implemented by
Mirzaalian et al. [33], whose software ‘‘HairSim’’ is publicly
available in [34]. Finally, the last approach we have used
involved extracting hair masks by an automated method,
proposed by Xie et al. [15], and superimpose them on hairless
images.

We constructed a dataset with 618 images, which consists
of 322 images from the EDRA2002 dataset, 239 images
from the PH2 dataset, 46 images from the ISIC Data

1Was deactivated on December 31, 2019
2www.dermis.net
3www.isic-archive.com
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FIGURE 2. Original images (top) and simulated hair images (bottom),
respectively by a deep neural network [27] (left), ‘‘HairSim’’ [34] (middle),
superimposing a hair mask [15] (right).

Archive, 6 images from the dermis dataset, and 5 from the
dermquest dataset. During the experimentation we divide it
into 70% for training and 30% for the test, which gives us
433 and 185 images, respectively. It is composed of images
with diverse hair that present a variety of hair thickness,
density and color, ranging from coarse to more realistic. This
diversity guarantees that we consider hairs with very different
characteristics when training the network.We also introduced
images without hair to teach the network that some images
must not be modified and their textures must be maintained.
In Figure 2, we show examples of original hairless images
from the dataset, together with the simulations obtained using
each of the hair simulation approaches. As we can see, with
the first and third method we achieve a much more natural
morphology, quantity and distribution that resembles real hair
compared to the second. We consider a reduced number of
testing images to maximize the training samples and, thus,
to help the network learn and generalize well.

B. EXPERIMENTAL SETUP
We implemented the proposed architecture using Keras [35].
The network was trained from scratch with randomly
initialized weights and using the Adam [36] optimizer with
a learning rate experimentally set to 10−4. The coefficients
for the different terms of the reconstruction loss function
with which the network has been trained were experimentally
found to be: α = 2.626, β = 3.892, γ = 0.309, δ = 0.398
and λ = 0.597. The network was trained on a single NVIDIA
GeForce GTX 1070 with a batch size of 4.

In figure 3, we can see how our model trained over
almost 25 epochs (reaching an early stopping policy based
on monitoring the validation loss), and how the Peak Signal-
to-Noise Ratio (PSNR) metric evolves satisfactory during the
training.

C. QUALITATIVE RESULTS
We conducted a qualitative and quantitative analysis of the
results obtained. In Figure 4, we can see that our pro-
posed method attains visually appealing results. In addition,
we present a visual comparison of our results with the with
the ones obtained by other hair removal methods presented in
Section II. Let us remark that we compare with these methods
as they are the ones that have been applied to dermoscopic
images.

FIGURE 3. Plots of the Loss (left), and PSNR performance measure (right),
of the training of the proposed model.

FIGURE 4. Example of the hair removal results obtained by our method.

As can be seen in Figure 5, not all the methods are
successful in both the hair removal and the subsequent
process of inpainting. For instance, Abbas et al.’s and
Toossi et al.’s methods are not capable of segment the hairs as
it seems they are not able to detect them properly. In contrast,
Huang et al.’s and Xie et al.’s methods are capable of
detecting much of the hair. However, their inpainting process
seems to leave a trail of them. Finally, our results and the ones
of Bibiloni et al.’s and Lee et al.’s methods seem to adjust to
the reference image at first sight. Although, the last two leave
traces, while the new method does not. However, it may be
the case that some of them introduce some alterations, to a
greater or lesser extent, that blur the lesion’s features, such as
streaks or reticular textures.

Both in Figure 4 and 5, we have seen that our method
reaches good visual results when evaluated on synthetic
images. In Figure 6, we show its effectiveness and its
generalization ability in dermoscopic images with real hair.
We show images from the 5 databases, to demonstrate that
although the data is not balanced, the network has not suffered
database-specific overfitting.

D. QUANTITATIVE RESULTS
It is worth noting that once the hairs are removed there are
many possible solutions as to what is the expected inpainting
result, always with the aim of preserving the texture of
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FIGURE 5. Given a sample image (a), we simulate hair on it (b), and
present the results obtained by several state-of-the-art methods (c)-(h)
against our proposed method (i).

the area involved. Therefore, a qualitative evaluation is not
enough to evaluate the quality of the different methods
introduced. In the following, we introduce an automatic,
objective and comparable performance evaluation system.

We used a set of nine objective error metrics to quantita-
tively assess the quality of the results obtained by the pro-
posed CNN-based hair removal approach, with respect to the
original hairless image. We cluster these measures into three
different groups. The first one are the Mean Squared Error
(MSE) [37], the Peak Signal-to-Noise Ratio (PSNR) [38],
the Root Mean Squared Error (RMSE) [39], and the
Structural Similarity Index (SSIM) [38], which are per-pixel
metrics.Within the second groupwe consider theMulti-Scale

FIGURE 6. Example of hair removal results obtained by our method in
dermoscopic images with real hair from (a) PH2 dataset,
(b) EDRA2002 dataset, (c) Dermis and Dermquest datasets, and (d) ISIC
Data Archive. In the first row of each subfigure we find the test sample
image, while in the second row we find their corresponding output of our
model.

Structural Similarity Index (MSSSIM) [40] and the Universal
Quality Image Index (UQI) [41], which measure statistical
features locally and then combine them. Finally, the Visual
Information Fidelity (VIF) [42], the PSNR-HVS-M [43] and
PSNR-HVS [43], conforming the third group, have been
designed to obtain more similar results to those perceived
by the Human Visual System (HVS). This set of metrics
constitutes a representative selection of the state-of-the-art
performance metrics for restoration quality. We must recall
that largest values of PSNR, SSIM, MSSSIM, UQI, VIF,
PSNR-HVS-M, and PSNR-HVS are indicators of a better
quality of reconstructed images. On the other hand, lowest
values of MSE and RMSE are indicators of higher similarity.

In Table 2, we show the mean and standard deviation
of the results obtained for the 185 images of the test set,
and for each of the nine performance measures. In addition,
wemake a comparison of our results against the ones obtained
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TABLE 2. Mean (µ) and standard deviation (σ ) of the similarity measures obtained to compare our method with six state of the art hair removal
algorithms.

TABLE 3. Classification of algorithms according to objective similarity measures. The results are as follows: 33 if the population mean of the first
algorithm is better than that of the second algorithm; 3 if the mean of the first algorithm is better but statistically comparable to that of the second
algorithm; 7 if the mean of the first algorithm is worse but statistically comparable to that of the second algorithm; 77 if the population mean of the first
algorithm is worse than that of the second algorithm.

by applying the six state of-the-art hair removal methods,
detailed in Section II, to the same 185 images.

The next step in our work, is to study if one algo-
rithm outperforms another one significantly. Given a fixed
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FIGURE 7. Hair removal results for two samples (left column), when using skip-connections (middle
column), and without using them (right column).

TABLE 4. Mean of the similarity measures obtained on the test set images for the ablation study on our model. The second and third row correspond to
the skip-connections and pooling layers’ ablation study. Then, from the fourth to the last row correspond to the ablation study of the loss terms.

similarity measure, we decided to use a statistical test to
contrast the means of all pairs of algorithms. Specifically,
we have used the t-test if the samples pass the Shapiro-Wilk
normality test, or the Wilcoxon signed-rank test, otherwise,
both considering a significance level of 0.05. According to
the statistical test we can determine which method surpasses
the others. Table 3 summarizes the results obtained. In it,
rows represent all the pairs of algorithms in which the
statistical test was applied, and the columns correspond
to the measures of similarity. As an example, let us
interpret the test comparing Abbas vs. Huang. According
to the SSIM and VIF performance measures, Abbas’
algorithm significantly outperforms Huang’s algorithm.
While according to the PSNR, MSSIM, PSNR-HVS-M
and PSNR-HVS measures, Huang’s algorithm significantly
outperforms Abbas’ algorithm. For the rest of measures, both
methods obtain statistically comparable results. Let us remark
that Abbas’ algorithm is non-statistically superior in all of
them.

As it can be seen in Table 3, taking into account all
the considered performance measures, the proposed method
out-stands according to the majority of similarity measures.
It is only significantly outperformed on the VIF performance
measure compared to Abbas et al.’ and Lee et al.’s
algorithms. Among the rest of methods, we can see that
Lee et al.’s algorithm surpasses statistically Huang et al.’

and Toossi et al.’s algorithms. However, when comparing
Lee et al.’s algorithm with Bibiloni et al.’s, the former
is statistically better in very specific settings, namely the
SSIM, VIF and MSSSIM measures. It is Xie et al.’s
algorithm that outperforms Lee et al.’s in all performance
measures. In the comparison between the algorithms of
Bibiloni with Huang and Toossi, it is the first that outperforms
statistically the other two in the majority of measures. Finally,
the Toossi et al.’s algorithm is statistically superior to the
Abbas et al.’s, except in the SSIM and VIF performance
measures. These two algorithms are the ones that provide
statistically worse results compared to the rest of the
algorithms.

E. ABLATION STUDY
Some works [24], [29] defend the fact that using skip
connections, or convolutions/deconvolutions instead of
pooling/unpooling layers may decrease the amount of detail
loss and deteriorate the restoration performance. We study
how these layers can affect the learning of our model
by replacing the pooling layers with convolutions, and
introducing skip-connection layers. In Table 4, we can see
that the introduction of skip-connections does improve the
results numerically, in terms of the similarity measures pre-
viously presented. However, these do not vary significantly
when pooling layers are used instead of convolutional ones
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FIGURE 8. (a) Original hairless image, (b) Input image with simulated hair, (c) result of our model
trained with the complete loss, (d)-(h) results of our model trained by removing (d) Lforeground

1 ,

(e) Lbackground
1 , (f) Lcomposed

2 , (g) LSSIM, and (h) Ltv.

in our model. In this case, we can visualize its effects
in Figure 7, where we compare the results of using or
not skip-connections. As can be seen, the network is able
to create a more detailed prediction with them, especially
when it comes to dermoscopic structures such as streaks or
globules.

Another study that we believe is of great importance is the
evaluation of the relevance of each term of the loss function.
As in the previous case, we show in Table 4 and Figure 8
the quantitative and qualitative results, respectively, of our
model trained by removing in each case one of the terms
that compose the loss function. As can be seen, most of the
performance measures and resulting images are worsen by
deleting some of the terms. This is not the case when we stop
computing the L1 distance between the GT and the network’s
prediction only among the background pixels (Lbackground1 ).
By comparing Figures 8c and 8e, we can see that when we
do not use this term, the structures tend to be more blurrier.
Such blurrier regions may not be penalized as much when
calculating performance measures.

V. DISCUSSION AND CONCLUSION
In this work, we have presented a novel CNN-based method
to the task of hair removal in dermoscopic images. We have
built an encoder-decoder architecture, which has shown
good results in reconstruction tasks like the one at hand.
We highlight an architectural aspect of the network: the use
of skip connections helps to retrieve details. The benefits
of its use have been demonstrated with an ablation study.
In addition, we have analyzed the performance of our method
and compared it with six state-of-the-art approaches. To carry
out the experiments we created a dataset using different hair
simulating strategies over images from publicly available
dermoscopic datasets. For the validation of the algorithms,
we calculated nine measures of similarity between the
hairless reference images and their corresponding image with
simulated hair. Finally, we performed a statistical test to
objectively study and compare their performance.

The results obtained by means of the statistical tests
applied to these measures lead to the conclusion that for
eight of the performance measures, our method is statistically
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the best algorithm. Except for the VIF measure and when
we compare it with Abbas’ et al. and Lee et al.’s methods.
As reflected in Figure 5 and in Table 3, Abbas’ and
Toossi’s algorithms produce the least suitable results. This
bad behavior may be due to the fact that these algorithms
do not seem to distinguish well hairs of greater thickness or
dark colors. It is worth mentioning that we have evaluated our
model in dermoscopic images with real hair, obtaining good
visual results and demonstrating, thus, its effectiveness.

As future work, we aim to use our approach on a
more complete skin lesion analysis system, leveraging the
knowledge to extract other characteristics. Also, increasing
the number of images used in the dataset to train the network
might enhance the network’s generalization capabilities.
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