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ABSTRACT The main concern of this research is to control traffic flow and monitor highways by installing
wireless sensors. Therefore, a new multi-objective model is proposed to find the optimal location of wireless
sensors along highways. The sensors are paired and each pair of sensors communicates and interacts with
each other to receive information from passing cars. The speed estimation of the vehicles passing through
this pair of sensors must have the minimum deviation from the actual speed that is obtained by an accurate
measurement. This deviation is called measurement error, which is minimized in the first objective function.
In this research when traffic jams happens, some sensors located in proper distance with enough energy,
move into the traffic area to reduce the measurement error which is caused by traffic congestion. In fact,
for each traffic area a new location problem should be solved to relocate sensors so that the maximum
decrease in error rate happens. The second objective maximizes the error reduction resulted from sensors
movement. In this paper, movement of sensors is considered based on the amount of solar energy stored
in the sensor at that moment. Finally, the third objective function maximizes the benefits resulted from
detecting the bottlenecks in highways. Since some parameters of the objective functions such as error rates,
error reduction resulted from movement of sensors and benefits are uncertain, this research employs a multi-
objective robust optimization approach which results in a traffic control plan which is less sensitive to the
realization of uncertain parameters.

INDEX TERMS ε-constraint method, LPmetricmethod, multi objective robust optimization, sensor location
problem, wireless sensors network.

I. INTRODUCTION
Transportation system has an important role in economic
growth in our societies. It is also one of the main sources
of pollution. Therefore managing traffic system becomes
crucial. Rapid increase in the number of vehicles leads to
traffic congestion which results in delays and more fuel con-
sumption. As capacities of roads are limited, optimal use of
available infrastructures is important. To reduce accidents,
travel time and traffic congestion, roads need to be under
control. Different types of control actions can be used to
manage the traffic flow in a highway network.

Pasquale et al. [1] divided modelling framework for sus-
tainable freeway traffic control into five categories:

1. Traffic flow models: These models derive from the
need to describe the dynamic behavior of real traffic
systems through mathematical relations.
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2. Emission models: These models consider traffic sys-
tems according to harmful substance emission.

3. Consumption models: These models consider traffic
systems according to fuel consumption.

4. Dispersion models: These models consider the quantity
of pollutants produced by vehicles, wind direction, air
temperature and the presence of obstacles as inputs.

5. Safety models: These models evaluate the crash risk on
the basis of the layout of the road,

In this paper, traffic flow models are studied to describe the
behavior of traffic system.

One of the ways of controlling and monitoring highways
is direct police surveillance over highways’ length [3], [4],
which is an expensive task. Another way is to use sensor
technology [5] which is the subject matter of this paper.
Gentili and Mirchandani [14] classified all types of sensors
used in transportation into four categories: Counting sensors
which count cars on network paths, Path-ID sensors which
measure number of cars in each path, Image sensors which
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take image of moving flows and Vehicle-ID sensors which
identify a specific car on the network.

Sensors require infrastructure and maintenance costs.
On the other hand, every sensor needs energy to operate and
since the cost and energy are limited [6], [7], we need to
achieve the maximum efficiency with the minimum num-
ber of sensors. These sensors need to be located at optimal
distances to achieve maximum performance with minimum
number and cost. If the distance between two sensors is short,
the area coverage increases and the error rate reduces but it
needs more energy and more budget. Therefore, the optimal
number of sensors should be calculated.

Many techniques have been used including over the ground
sensors like video image, radars, ultrasonic sensors which
have high cost and their accuracy depends on environment’s
condition, and intrusive sensors like inductive loop detectors
which disrupt traffic during installation and repair. Many
studies suggested the use of wireless sensor network (WSN)
technology for traffic control which is cost effective, easy
to install, less maintenance and has potential for large scale
deployment.

Wireless sensors are divided into four categories [8]:
1. Fixed: where sensors are located in a fixed locations
2. Moving Sensors: where sensors are located on moving

platforms that can move everywhere
3. Combination: means a combination of moving and

fixed sensors
4. Robotics: where robots are used to move sensors.

In fact, the exclusive characteristic of WSNs includes the
mobility of sensor nodes [2]. Therefore, in this paper, moving
wireless sensor networks (WSN) are going to be studied
which are more practical in real world situations. Since WSN
are small, they can be carried easily by portable devices
suchas Robomote [9]. Robomote is a wheel equipped sensor
node designed for easy deployment.

Most articles in the field of traffic management are divided
into two main groups. The first group includes articles that
seek to find optimal traffic light changing time to reduce
delays and minimize queues. The second group, which is the
main concern of this paper, is about the location of sensors
which itself is divided into the following categories:
• Routing: information obtained by sensors helps finding

the best routs [10].
• Coverage: sensors are located to achieve maximum

coverage in an area [11].
• Infrastructure collapse: which occurs when a road col-

lapses or node failure happens [12].
• Traffic flow control: average speed of passing cars is

used in travel time estimation [13].
1. In this paper, travel time estimation is needed

which is obtained from average speed of passing
cars and used in traffic flow control. As the speed
of a specific car on the network is needed, using
vehicle-ID sensors is suggested.

In reality some parameters such as traffic signal sys-
tems [15], travel time [16], injury severity [17], traffic

condition [18], and so on are uncertain. According to cer-
tainty or uncertainty of parameters, traffic articles can be
divided into two groups. Some articles dealt with uncertainty
through stochastic programming [19] or robust optimiza-
tion [20]. In this paper a robust optimization approach is
employed to deal with uncertainties in parameters such as
error rate and the parameter which shows the amount of
decrease in error rate as a result of sensor movement. The
parameter of error rate is uncertain because of difference
between the speed of cars reported by sensors and actual
speed of cars.

In this research, we propose a mathematical model to find
the optimal location of sensors considering costs and energy
consumption to minimize measurement errors. One of the
functions of the sensors located along highways is to identify
the speed of passing vehicles. The average speed of passing
cars can be used in predicting the vehicles’ travel time. The
sensors must be selected in pairs and each pair of sensors
should communicate with each other to receive information
from passing cars specially their average speeds. Each of the
paired sensors determines the speeds of cars in the distance
between these two paired sensors and the average speed of
cars can be calculated by these two values. The average
speed reported by the pair of sensors is a little different
from the actual average speed. This difference is called the
speed measurement error. If the distance between the two
sensors is short, the error reported by them is lower. Since the
numbers of available sensors are limited, finding the optimal
configuration of paired sensors is essential.

The amount of measurement error increases when traffic
jam happens, because the difference between actual average
speed and measured average speed become greater. In this
research it is suggested to move some sensors into the traffic
areas to reduce the amount of errors. In fact, each traffic
area is a new location problem to find the best relocation of
sensors. Each sensor gets required energy from solar panels to
move. They can move into the traffic area if they have enough
energy at the moment of traffic jam.

In sum, the main contributions of this work are listed as
follows.

• Considering different time intervals in a day, each of
which has its own parameter.

• Considering the possibility of moving sensors.
• Optimizing a multi-objective transportation model.
• Considering enough energy and proper distance of sen-
sors for movement in the model.

• Applying robust optimization to deal with uncertainty.

The remainder of the paper is organized as follows.
Section 2 is a review of the work done in the field of wireless
sensor network particularly in transportation system. The
problem is defined and formulated in section 3 under both
deterministic and uncertain parameters. The solution method
to simultaneously deal with uncertainty and multi-objective
model, i.e. multi-objective robust optimization, is presented
in section 4. In section 5 numerical results are presented.
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Finally, conclusions and future suggestions are discussed in
section 6.

II. LITERATURE REVIEW
Nowadays, with the advancement in wireless technology,
wireless sensors can be used to control the transportation
system. These sensors do not need wires for communication
and therefore they can save money. Wireless sensors can be
used in different areas such as monitoring the water supply
system to find leakage of water pipes, as well as monitoring
oil and gas pipelines. One of the most common uses of
this technology is the remote monitoring of the environment
such asmonitoring and controlling industrial processes, smart
homes, farms and traffic areas. In Table 1 some articles related
to the wireless sensor network are presented and compared
considering their applications, their solving methods, and the
uncertainty in the model.

Application of sensors: Sensors have been employed
for different applications some of which are listed in the
followings.

Viani et al. [21] presented the problem of optimizing
energy consumption in smart buildings and analyzed the loca-
tion of wireless sensor network by game theory to help con-
sumers to manage their consumptions. Yoon et al. [22] used a
wireless sensor network system for detecting and identifying
leakage in steamflood and waterflood pipelines in oilfield.
Their system aimed to allow continuous monitoring with low
cost, short delay, flexible deployment and fine coverage while
providing high accuracy in problem detection. Mao et al. [23]
proposed an approach to monitor carbon dioxide emissions
in Wuxi, China. In their paper, the sensors network consists
of 100 sensor nodes for monitoring carbon dioxide, and
1096 other nodes for transmitting information received by
100 nodes. They presented a geometric model called the
Steiner tree to achieve maximum coverage.

Sensor location is a mathematical model which is classi-
fied into two categories of binary and probabilistic models.
In binary models, the probability of detecting an incident
in the coverage range of sensor is one (full coverage) and
outside its range is zero. Although full coverage assumption
is simpler for modelling, it is not realistic. In real world,
detection probabilities can be smaller than one. So it is better
to use probabilistic models by knowing the distribution of
errors, as what is presented in the paper of Dhillon and
Chakrabarty [24]. Full coverage means to cover all parts of
an area which is expensive and requires a lot of sensors and
makes the problem more complicated. Coverage is classified
into two categories: static coverage and dynamic coverage.
In the static coverage sensors are placed in fixed locations
with the aim of reaching the maximum coverage as done
in the paper by Liu et al. [25]. In the dynamic coverage
sensors are moved to cover different areas at different times
and therefore a wider area can be covered [26].

In the literature, mobile sensors are introduced to improve
the coverage of an area. In [26], mobile sensors were used to
move into uncovered places. The authors employed the game

theory approach to determine the appropriate time for moving
mobile sensors to achieve maximum level of coverage.

Some papers proposed optimization techniques for
dynamic models with mobile sensors, such as Particle
SwarmOptimization [27], Ant Colony Optimization [28] and
Harmony Search [29].

Location of sensors: Most articles in the literature studied
the optimal location of sensors in transportation systems.
Gentili and Mirchandani [30] surveyed some articles related
to the problem of locating counting sensors and Automatic
Vehicle Identification (AVI) readers to estimate travel times
on a freeway. Their models were classified into two main
approaches: shortest-path based approaches and clustering
based approaches. Morrison and Martonosi [31] investigated
how minimum number of sensors can be located in the trans-
portation network in order to find the distribution of vehicles
in this network. They also studied necessary conditions for
the location of sensors in a network to determine the rate of
flow everywhere in the network. As it is shown in their article
when a set of intersections is monitored, the flow on all roads
between intersection M and adjacent intersections A(M) are
known, as well as the balancing flows at each centroid in M.
They investigated a condition to verify that a proposed set
of monitored intersections uniquely determines flow function
and the balancing flows. They corrected a slight error in an
earlier theorem that addressed this issue by using incident
matrix, and presented a stronger necessary condition for this
problem that is also sufficient for any unmonitored acyclic
subgraph.

Geetla et al. [32] employed sensors to detect and prevent
accidents and tried to optimize these sensors’ locations so
that maximum detection capability is achieved and the best
route to be serviced after crashes is determined. Although
acoustic sensors havemore cost but show less error especially
in bad weather conditions. The main goal of their paper is to
maximize coverage based on budget constraints.

Fei et al. [33] examined the uncertainty condition in the
transportation system by proposing a two-stage model. In the
first stage uncertainty is ignored and only sensor locationwith
the goal of maximum coverage is considered. In the second
stage, uncertainty is added to the model and the expected
cost of the flow of transportation in uncertain condition is
examined. The resulted bi-objective model is solved by a
greedy and iterative hybrid algorithm.

Danczyk et al. [34] proposed a model considering prob-
abilistic sensors errors and found the optimal configuration
of sensors in the highway to minimize measurement errors
which measure the difference between the average travel time
of direct observation and the average travel time reported
by two sensors. In their paper, the failures of sensors along
the highway were considered as uncertain parameters and
when a sensor failure happens, two other sensors are paired
to measure the error.

Fu et al. [35] proposed a scenario based two-stage stochas-
tic programming, which considers the uncertainty of the link-
paths matrix. In fact, uncertainty exists in different paths
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TABLE 1. A review of studies on the wireless sensor network.

6228 VOLUME 9, 2021



A. A. Fakhouri, R. Soltani: Multi-Objective Robust Optimization for the Traffic Sensors Location Problem

and the combination of these paths is considered as a sce-
nario. In the first stage, the cost of installing sensors and the
expected penalty for uncovered paths areminimized. The sec-
ond stage attempts to minimize uncovered paths considering
a given sensor location and a specific scenario. They used the
branch and bound based integer L-shape method to solve the
model.

Zhan and et al. [36] considered the allocation of additional
sensors to improve the coverage of existing deployed sensors
considering budget constraint. Their article aims to find the
best location of new sensors and the model is solved by a
genetic-algorithm.

Olia et al. [37]. proposed a multi-objective model and
solved it by a genetic algorithm to optimize the number and
position of road sensors to estimate travel time. They defined
two types of communications; the first type is the relationship
between two cars and the second is communication between
cars and the road infrastructure. In a case study the authors
mentioned that in traffic areas, more numbers of sensors
should be used.

Park and Haghani [38] determined the optimal location of
sensors in uncertain condition. Because of the uncertainty in
travel time error, different scenarios were considered and a
stochastic model was presented. The main purpose of their
paper was to show where to locate portable sensors on road
networks.

Salari et al. [39] investigated the effect of node failure over
the link flow and aimed to recognize the minimum set of links
to be instrumented with counting sensors to reach full flow
observability in a traffic network. The authors also studied
the location of redundant sensors to maintain the link flow of
unobserved links in the event of sensor failure.

Traffic flow control: There are some other studies in
literature about traffic flow control in transportation system
as follows.

Losilla et al. [40] did a survey about application of wire-
less sensor networks for intelligent transportation systems.
According to their paper WSNs can be used to process infor-
mation, reducing data distribution costs and offering a fast
response to critical events.

Gil Jimenez and Fernandez-Getino Garcia [41] com-
pared the use of wireless sensor network with other traf-
fic control methods and the low cost of wireless sensor
network is pointed out. They also introduced a variety of
sensors used in the traffic area. In their paper, a novel
design of a wireless sensor network system for the detec-
tion and avoidance of traffic jams is described and ana-
lyzed. The systemcan also be used for traffic monitoring and
surveillance.

Chow and Li [42] formulated a robust optimization as a
minimax problem in an uncertain traffic condition to mini-
mize vehicle delays. In this article traffic demand is uncertain.
This model is solved by a two stage algorithm. The first stage
tries to minimize the amount of delays, and in the next stage
for the desired area, the fundamental diagram is created to
show the traffic flow.

Jha et al. [43] proposed a model for connectivity
restoration for the WSN which consists of two phases:
(1) intra-partition, and (2) inter-partition. In the intra-partition
phase, the coverage of each partition of a WSN is enhanced
by spreading the redundant nodes toward the boundary of
the respective partitions they belong. The redundant nodes
and the relay nodes situated between partitions are used
to make coalition within a cooperative game. The authors
proposed a heuristic method to place relay nodes, because
finding minimum number of relay nodes is known as an
NP-hard problem. In the inter-partition phase a cooperative
game theoretic approach has been proposed that keeps the
connectivity between different partitions. In this game theory
approach residual energy of each node plays important role
in making game decisions.

Mehrabipour et al. [44] presented a decomposition scheme
to find near-optimal solutions for a cell transmission model-
based system for an optimal dynamic traffic assignment prob-
lem with multiple origin-destination pairs. This technique
decomposes the original problem into a set of subproblems.
They employed Dantzig-Wolfe technique, which constructs
a master problem and a set of subproblems, where each
subproblem shows a single origin-destination pair. In their
proposed scheme the single origin-destination level solutions
are pushed toward the global optimality, that is, the main
objective of a dynamic traffic assignment problem with mul-
tiple origin-destinations.

Traffic lights control:There are also someworks in the lit-
erature which study the traffic flow control problem from the
traffic lights control perspective. Since it is not the main con-
cern of this paper we just name a few. Liberati [45] proposed a
predictive control approach for optimalmanagement of traffic
light signals to minimize and as well to balance the queues.
Their proposed model is nonlinear and they linearized it by
introducing additional auxiliary variables. Han et al. [46]
investigated the appropriate time for changing traffic lights
in order to achieve the lowest total delays in passing cars.
They employed the robust optimization approach proposed
by Bertsimas and Sim for a signal optimization problem with
emission consideration to minimize expected vehicle delays
and maximize network throughput. There is a relationship
between the aggregate emission rate and the vehicle occu-
pancy on the same link. This relationship is approximated
with certain functional forms and the associated uncertainties
in approximation errors are handled by using robust optimiza-
tion techniques.

Bianchin and Pasqualetti [47] studied the problem of opti-
mizing the traffic network overall efficiency by controlling
the signalized intersections to optimize vehicle evacuation
by designing and controlling the durations of green lights at
intersections under congestion conditions.

Liu et al. [48] presented a model-based and switching-
based control formulation for multi-intersection and multi-
phase traffic signal operation. Based on their model, appro-
priate adaptive dynamic programming methods were used
to seek the optimal traffic light policy. They presented a
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macroscopic traffic flow modeling approach which is useful
for development of a model-based and switching-based opti-
mization.

Wu et al. [49] proposed a distributed event-triggered strat-
egy for traffic light control in urban traffic networks. In their
work, the system is capable to update control signals when
triggered by designing the event conditions which are verified
by each agent.

In this research the problem of sensor location is con-
sidered. Review of the abovementioned literature shows
that movement of sensors has less been paid attention in
traffic area. While movement of sensors causes less error
rate resulted from traffic congestion. Uncertainty is another
important parameter which is considered in some papers and
in most cases it is dealt with stochastic programming. Some
related papers employed robust optimization approach but
for a single objective model. In the current research a multi
objective model is proposed with uncertain parameters and
a multi-objective robust optimization approach is employed
to simultaneously deal with multi-objective and uncertainty
nature of the problem.

Considering the research gap, the following questions are
going to be addressed in this paper.

• Would errors be reduced by moving the sensors to the
traffic area?

• Do the sensors move to the traffic area at the time of
traffic congestion based on the proposed model?

• What is the suitable mathematical model to locate sen-
sors along highway to minimize reported errors?

• How can uncertain parameters be considered and exam-
ined in the proposed multi-objective model?

• Are the results of the robust model less sensitive to
uncertainty comparing to the deterministic model

III. PROBLEM DEFINITION AND FORMULATION
The studying problem of this paper is to locate traffic sensors
in highways to measure speed of cars and use it to control
traffic flows. Sensors are located along highway and are
paired to each other to cover highway path (corridor). Each
pair reports cars’ speeds between two sensors and this report
contains error. The main goal of this research is minimizing
the total error reported by sensors which is obtained by two
methods. The first method is by placing sensors in suitable
nodes and connecting them so that they report the minimum
error and the second method is to move some sensors into
the traffic area to reduce the error rate in traffic congestion
time. It is necessary to initially define the error reported
by sensors. As it is shown in Fig.1 there are some nodes
along the highway which can be selected to locate sensors.
In Fig.1 there are six nodes two of which have sensors.
When a car traverses a sensor, its speed is reported by that
sensor. The average car’s speed between two paired sensors
is obtained by calculating the average of two speeds reported
by these two sensors. This reported speed is a little different
from the real speed which is calculated by the speed formula

FIGURE 1. Speed of a car reported by two sensors.

which is equal to the distance traveled divided by the traverse
time. For example, in Fig.1 a car traverses distance (d) in time
interval [t0, t1]. Therefore, the real speed is equal to d

t1−t0
.

In this research, the difference between the real speed and
reported speed by two connected sensors is called ‘‘error’’
which we try to minimize it by connecting sensors in the best
way.

Since the traffic behavior of routes in different periods of
time can change, it is necessary to consider different time
periods in modelling and propose a dynamic model. When
traffic congestion occurs in a part of route, the reported error
by paired sensors around that area increases. Therefore, this
study suggests moving one or more sensors into the traffic
area to reduce the error rate. In fact, by movement of some
sensors and relocate them into suitable nodes of traffic area,
the error decreases. Considering movement of sensors makes
a dynamic model by which error resulted from traffic in each
time period, decreases.

In Fig.2 sensors are connected according to sequence
1-2-3-6-8, respectively. As it is shown in Fig. 2 there are
eight nodes for allocating sensors five of which are chosen to
have sensors. The nodes are selected to have sensors and the
sensors are paired so that the total reported error isminimized.

FIGURE 2. Connection of nodes before traffic congestion.

Then traffic congestion happens in nodes 4 and 5. There-
fore, the error reported by the pair of sensors located in
nodes 3 and 6 increases and it is necessary to move some
sensors to the traffic area.

When traffic congestion occurs we facewith a new location
problem and must decide which sensors should move to the
traffic area to reduce error rate, and which node in traffic area
should be selected to yield maximum reduction in error rate
which is added as a result of traffic congestion happening.
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It should be noted that the energy of each sensor is stored
by solar panels. If a sensor does not have enough energy to
move into the traffic area at the moment of traffic congestion,
other sensors located in proper distances with enough energy
will be selected.

By moving sensors to the traffic area, the amount of error
will reduce owing to the new location and new configuration
of sensors.

In this research, three objective functions are considered as
follows:

1. The first objective function seeks to minimize the over-
all error reported by paired sensor

2. The second objective function attempts to maximize
the reduction of errors by moving sensors into the
traffic congestion are

3. The third objective function seeks to maximize the total
benefit resulted from detecting bottlenecks

The optimal decision variables of the first objective function
give a configurationwhich is not changeable during the traffic
period.While traffic congestion happens the second objective
function is suggested to reduce the error rate by moving some
sensors into the traffic congestion area. The proposed model
not only seeks to find the optimal configuration of sensors for
minimizing the error rate but also to find bottlenecks by this
configuration at the shortest time.

To solve the proposed multi-objective model, the present
study employs the ε-constraint method. And as the errors
reported by the sensors are uncertain values, this research
proposes a robust optimization approach to deal with this
uncertainty.

At first the proposed model is formulated with certain
parameters, then uncertainty is considered in parameters and
finally a robust optimization approach is presented to deal
with uncertainty.

A. DETERMINISTIC MODEL
Indices
i, j, k: Sensor nodes
t: Time periods
i′: Start node
j′: End node
Parameters
Eijt : The error reported by two sensors located in nodes i

and j at time t
aijt : The amount of decrease in total error by moving the

sensor from node i to node j at time t
bijt : The benefit of detecting the bottleneck by two sensors

located in nodes i and j at time t
R: maximum number of sensors allotted to model
lij: The distance between node i and node j
L: The maximum distance that a sensor can move
T : Total number of time periods in a day
N : Total number of nodes
Variables
xijt : A binary variable which takes 1 when two sensors in

nodes i and j are connected at time t

yit : A binary variable which takes 1 when a sensor is
located in node i at time t
zijt : A binary variable which takes 1 when the sensor moves

from node i to node j at time t
Mathematical model

Min
N∑
i=1

N∑
j=1

T∑
t=1

Eijt × xijt (1)

Max
N∑
i=1

N∑
j=1

T∑
t=1

aijt × zijt (2)

Max
N∑
i=1

N∑
j=1

T∑
t=1

bijt × xijt (3)

Subject to
j′∑

j=i+1

xijt − yit = 0 ∀i, t (4)

j∑
i=i′

xijt =
j′∑
k=j

xjkt ∀j, t (5)

N∑
i=i′

xij′t = 1 ∀t (6)

j′∑
j=1

xi′jt = 1 ∀t (7)

N∑
j=1

zijt ≤ yit−1 ∀i, t (8)

N∑
i=1

zijt ≤ yjt ∀j, t (9)

N∑
j=1

zijt × yit = 0 ∀i, t (10)

N∑
i=1

zijt ≤ 1 ∀j, t (11)

N∑
j=1

zijt ≤ 1 ∀i, t (12)

N∑
j=1

yjt ≤ R ∀t (13)

xijt = 0 ∀i ≥ j,∀t (14)

zijt = 0 ∀i = j, ∀t (15)

zijt ≤ LFij × EFijt ∀i, j, t (16)

zijt ∈ {0, 1} ∀i, j, t (17)

xijt ∈ {0, 1} ∀i, j, t (18)

yit ∈ {0, 1} ∀i, t (19)

The first objective function defined in (1) seeks to mini-
mize the overall error with a given configuration of sensors.
The second objective function defined in (2) maximizes the
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overall reduction in total error bymoving sensors into the traf-
fic area. The third objective function defined in (3)maximizes
the total benefit resulted from bottlenecks detection, based
on allocation of sensors [50]. In the third objective function a
parameter (bij) is defined as a benefit of detecting bottlenecks.
This benefit takes greater values if bottlenecks are detected in
closer nodes (see denominator of Eq. (20)).

bij = max(0,

T∑
t=0

(vtj − v
t
i )

sj − si
) (20)

In (20) vtj shows the average speed of cars reported by sensor
in node j at time t , and sj − si is the distance between node i
and node j. Relation (20) shows when the difference between
reported speeds by two sensors in nodes i and j is greater,
there is a bottleneck between them and it is better to locate
two sensors in nodes i and j to reduce total error.
Constraint (4) ensures that at time t, sensors located in

nodes i and j can be connected as long as a sensor is allocated
to i. Constraint (5) declares that at time t , if a link is available
between node j and one of the previous nodes, another link
will be available between node j and one of the next nodes.
Constraint (6) guarantees that one link starts at the corridor’s
start node (i′) while constraint (7) guarantees that one link
terminates at the corridor’s end node (j′). According to (8) a
sensor can move from node i to node j at time t (i.e. zijt = 1),
if and only if a sensor be available in node i at time (t-1).
Constraint (9) states if a sensor moves to j from one of the
other nodes, node j has a sensor at time t . Constraint (10)
ensures if a sensor moves from i to j at time t ( i.e. zijt = 1)
there won’t be any sensor at node i. Constraint (11) states that
in each period only one sensor can move to node j and (12)
declares that the sensor located in node i can only move
to one of the other nodes in each period. Constraint (13)
limits the number of sensors to R. Constraint (14) allows
for only links traveling in downstream direction to receive
coverage by setting all other possible links to a value of zero.
Constraint (15) prevents a movement from a node to itself.
Constraint (16) forces two conditions of sufficient energy and
proper distance onmovement. In this constraintEFijt and LFij
are two parameters defined as follows.
EFijt is a parameter which takes value of 1 when the needed

energy to move a sensor is enough as it is shown in (21).

EFijt = 1 if Uijt ≤ Fit and EFijt = 0 otherwise (21)

where, Fit represents the amount of energy stored in node i
at the beginning of the period t and Uijt represents the energy
needed to move the sensor from node i to node j at time t .
The energy is stored by solar panels and used to move sensors
to the traffic congestion areas. When a sensor is selected to
move, it must have enough energy needed formovement. This
condition is shown in Eq. (22).

Uijt ≤ Fit (22)

Furthermore, LFij is another parameter, which takes value
of 1 when the distance between two nodes (lij) is not greater

than the maximum distance that a sensor can move (i.e. L)
and this condition is shown in (23).

lij ≤ L (23)

By defining the above mentioned parameters, the con-
straint (16) is defined, which denotes for moving sensors
into the traffic congestion areas, enough energy and proper
distance are necessary. Constraints (17)-(19) are structural
constraints which declare zijt , xijt , yit are binary variables.

IV. SOLUTION METHODS
A. ROBUST OPTIMIZATION APPROACH
As the values of parameters used in objective functions of
this research are uncertain, two approaches can be consid-
ered to deal with this uncertainty. The first approach is the
probabilistic approach that considers the mean of parameters
and the second approach is the robust optimization approach
which regards the worst value of parameters. In this research
a robust optimization approach is employed to deal with
uncertainty.

Soyster [51] presented the initial idea of robust optimiza-
tion, considering the worst possible value of uncertain param-
eters. His proposed approach was too conservative. Later,
Bertsimas and Sim [52] proposed a less conservative robust
approach in which violations of constraints are considered
in the objective function. The robust approach proposed by
Bertsimas and Sim [52] allows us to determine the degree
of conservatism by defining a protection parameter denoted
by 0. Keeping the model linear is another advantage of
this approach. Therefore, the Bertsimas and Sim [52] robust
approach is used in this research to deal with uncertainties
of the objective functions’ parameters, i.e. Êijt , ˆaijt and ˆbijt ,
where

Ẽijt ∈ [Êijt − E ′ijt , Êijt + E
′
ijt ]

˜aijt ∈ [ ˆaijt − a′ijt , ˆaijt + a
′
ijt ]

˜bijt ∈ [ ˆbijt − b′ijt , ˆbijt + b
′
ijt ]

Defining normalized perturbation vector ξ , results in Ẽijt =
Êijt + ξ × E ′ijt , ˆaijt = ˆaijt + ξ × a

′
ijt and ˜bijt = ˆbijt + ξ × b

′
ijt

where ξ ∈ [−1, 1] which in this research is a box-polyhedral
(budgeted) uncertainty set. Accordingly, the robust counter-
part of the proposed model is formulated as follows.

Min
N∑
i=1

N∑
j=1

T∑
t=1

Êijt × xijt + ω1 × 01 +

N∑
i=1

N∑
j=1

T∑
t=1

P1
ijt

(24)

Max
N∑
i=1

N∑
j=1

T∑
t=1

ˆaijt × zijt − ω2 × 02 −

N∑
i=1

N∑
j=1

T∑
t=1

P2
ijt

(25)

Max
N∑
i=1

N∑
j=1

T∑
t=1

ˆbijt × xijt − ω3 × 03 −

N∑
i=1

N∑
j=1

T∑
t=1

P3
ijt

(26)

6232 VOLUME 9, 2021



A. A. Fakhouri, R. Soltani: Multi-Objective Robust Optimization for the Traffic Sensors Location Problem

−W 1
ijt
≤ zijt ≤ W 1

ijt
∀i, j, t (27)

−W 2
ijt
≤ xijt ≤ W 2

ijt
∀i, j, t (28)

ω1 + P1ijt ≥ E
′
ijt ×W

2
ijt

(29)

ω2 + P2ijt ≥ a
′
ijt ×W

1
ijt

(30)

ω3 + P3ijt ≥ b
′
ijt ×W

2
ijt

(31)

ω1, ω2, ω3,P1ijt ,P
2
ijt
,P3

ijt
,W 1

ijt
,W 2

ijt
≥ 0 (32)

Other constraints of the deterministic model, i.e. con-
straints (4) to (17), hold for this robust model.

In the constraint (29), E ′ijt denotes the amount of deviation
from the nominal value of Êijt , and in the constraints (30)
and (31), a′ijt and b

′
ijtare deviations from the nominal values

of âijt and b̂ijt , respectively. As it was mentioned, 0k is a
parameter that controls the level of conservatism of objective
function k . If 0k takes 0, the values of the parameters are
nominal values and the robust model is the same as the
deterministic model. By increasing the amount of 0k the
model becomes more conservative and results will be close to
the Soyster approach’s results. Finally,ωk and pkijt are positive
variables of the dual problem of the protection function of
objective function k . Other variables and parameters are the
same as the deterministic model.

B. ε-CONSTRAINT METHOD
In this research the ε-constraint method is used to solve the
three objective functions simultaneously [54]. Since in this
method one of the objective functions must be considered as
the main objective function, in this research the first objective
function which minimizes overall error is regarded as the
main objective function and two other objective functions are
added to the model as constraints according to (33).

Min:
N∑
i=1

N∑
j=1

T∑
t=1

Eijt × xijt

St:
N∑
i=1

N∑
j=1

T∑
t=1

aijt × zijt ≥ ε2

N∑
i=1

N∑
j=1

T∑
t=1

bijt × xijt ≥ ε3

Other constraints hold (33)

Initially, a payoff table must be constructed as follows.
At first, the individual optimal value of each objective func-
tionmust be calculated andwritten in themain diagonal of the
payoff table. As the proposed model of this paper includes
three objective functions, the payoff table has three rows
and columns. Next, to calculate off-diagonal values of each
row, the diagonal value which is the optimal value of the
corresponding objective function is considered as a constraint
and accordingly the values of other functions are calculated.
The jth column of the payoff table includes the obtained val-
ues for the objective function fj among which the minimum

and maximum values indicate the range of the objective
function fj for the ε-constraint method.
The best value of each column, which corresponds to

objective function k , is called Utopia point (f uk ) and the worst
value is called Nadir point (f nk ) and the difference between
these two values represents the range. Then, the value of εk
for objective function k is calculated by the Equation (34).

εk = f nk +
(f uk − f

n
k )

6
× nk k = 2, 3 (34)

The calculated values of ε2 and ε3 are inserted into
model (33). For different values of ε2 and ε3, model (33)
is solved and the Pareto solutions are obtained in which
dominated solutions are eliminated.

C. MULTI OBJECTIVE ROBUST OPTIMIZATION
In order to calculate the multi-objective robust solutions,
multi-objective robust model (35) along with other con-
straints of the proposed robust model i.e. (27)-(32) and also
constraints (4)-(17), are solved.

Min
N∑
i=1

N∑
j=1

T∑
t=1

Êijt × xijt + ω1 × 01 +

N∑
i=1

N∑
j=1

T∑
t=1

P1
ijt

St:
N∑
i=1

N∑
j=1

T∑
t=1

ˆaijt × zijt−ω2 × 02−

N∑
i=1

N∑
j=1

T∑
t=1

P2
ijt
≥ε2

N∑
i=1

N∑
j=1

T∑
t=1

ˆbijt × xijt−ω3 × 03−

N∑
i=1

N∑
j=1

T∑
t=1

P3
ijt
≥ε3

Other constraints hold (35)

V. NUMERICAL RESULT
In this section, the performance of the proposed deterministic
and robust models for traffic sensors location is investigated
and all the optimal solutions are obtained by COUENNE
solver of GAMS software. For this purpose, a highway with
10 nodes is considered for which 5 sensors are available to be
allocated to suitable nodes. It is assumed that there are three
traffic periods and the traffic congestion happens in second
period, in nodes 4, 5 and 6.

A. RESULTS OF THE DETERMINISTIC MODEL
To solve the proposed multi-objective deterministic model,
the ε-constraint method, which was fully described in the
previous section, is applied. Initially, the payoff table is cal-
culated and presented in Table 2.

TABLE 2. Payoff table.

Then, for each range the values of ε1, ε2 and ε3 are calcu-
lated by Equations (34) and presented in Table 3.
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TABLE 3. ε values for deterministic model.

Afterwards, for different values of ε2 and ε3, model (33) is
solved and the results are presented in Table 4. For example,
in the first row of Table 4 for ε2 = 0 and ε3 = 60, the values
of the first, second, and third objective functions are 45, 0
and 60, respectively.

In Fig. 3, all the solutions of the deterministic model are
drawn by MATLAB software.

FIGURE 3. Solutions of the deterministic model.

Among these solutions, there are a number of domi-
nated solutions that must be deleted in order to have only
non-dominated solutions which are shown in Table 5.

In order to help decision makers to choose a suitable
solution, LP metric method is applied to nondominated
results [54]. For this purpose, all the objective functions
are converted into the minimization form by multiplying
the second and third objectives’ results by (−1). The objective
functions are normalized through relation (36), where, f min

k
and f max

k are the minimum and maximum values for objective
function fk .

fk − f min
k

f max
k − f min

k

(36)

Table 6 shows the results of Table 5 after normalization. In the
last column of Table 6, the values obtained by using the
LP metric method for p = 2 are shown which are achieved
through relation (37).√

f 21 + f
2
2 + f

2
3 (37)

The results show that solution 12 is the best solution with
the lowest L2 norm value equal to 0.639. For this solution

TABLE 4. ε-constraints results for deterministic model.

and for the first period (before traffic congestion) sensors are
connected according to Figure 4, that is x1−2 = x2−3 =
x3−8 = x8−10 = 1.

FIGURE 4. Sensors arrangement before traffic congestion period (period
1) resulted from the proposed deterministic model.

In the second period when the traffic congestion in nodes 4,
5 and 6 occurs, the sensors start to move according to Fig. 5.
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TABLE 5. Non-dominated solutions for deterministic model.

TABLE 6. Results of using LP metric method for deterministic model.

FIGURE 5. Movement of sensors in traffic congestion time (period 2)
resulted from the proposed deterministic model.

The sensor located in node 2 moves to node 4 (z2−4 = 1),
and the sensor in node 3 moves to node 6 (z3−6 = 1).
Therefore, in the traffic congestion period, sensors are

connected according to sequence 1-4-6-8-10 respectively.

B. RESULTS OF THE ROBUST MODEL
To solve the multi-objective robust model, first the robus-
tification method proposed by Bertsimas and Sim [52] is
employed and model (35) is obtained. Then the ε-constraints
method is applied to solve the resulted multi-objective robust
model. By setting the 0 value equal to zero (0 = 0),
the results are the same as the results of the determinis-
tic model. This verifies the proposed multi-objective robust

model. By increasing 0, conservatism level increases as
well. The resulted non-dominated solutions are presented
in Table 7.

TABLE 7. Non-dominated solutions for robust model.

To decide about a suitable robust solution for sensor loca-
tion problem, LP metric method is applied and results are
presented in Table 8.

TABLE 8. Results of using LP metric method for robust model.

As it is shown, solution 4 is the best solutionwith the lowest
L2 norm value (0.727). For this solution the first, second
and third objective functions have 80, 31 and 44 values,
respectively. For this solution at the first period (before traffic
congestion), sensors are connected according to sequence
1-2-3-8-10, respectively. As traffic congestion happens at
the second period some sensors move into the traffic conges-
tion area according to Fig. 6.

FIGURE 6. Movement of sensors in traffic congestion period resulted
from the proposed robust model.

The sensor in node 2 moves to node 5, sensor in
node 3 moves to node 4, and sensor in node 8 moves to
node 6. Therefore, the sensors are connected according to
sequence 1-4-5-6-10.

Table 9 summarizes the results and compares both deter-
ministic and robust models with and without movement.
In general before traffic the measurement error is lower than
after traffic and movement is applicable after traffic. To test
the effect of movement, first the single objective model with
minimizing measurement error as objective is run once with-
out considering movement (row 2) and once with considering
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TABLE 9. Comparing models with and without movement.

movement (row 3). As can be seen, movement of sensors after
traffic decreases measurement error. This result is also true
for multi-objective model with movement (row 4). However,
for multi-objective model the measurement error is more
than the single objective model (see row 4) due to making
a compromise amongst objectives. In both cases, i.e. models
with and without movements, the objective functions of the
robust model is not better than those of the deterministic
model due to protection functions considered in the objective
functions of the robust model (compare rows 4 and 6).

Considering movement of sensors, to compare the effect of
having multiple objectives simultaneously, the single objec-
tive model with minimization of error is run and the resulted
solution is put into second and third objective functions.
As shown in rows 3 and 4, in the multi-objective model
the objectives become worse due to making a compromise
amongst objectives.

C. VALIDATION OF THE PROPOSED ROBUST MODEL
In this paper, Monte Carlo simulation method is used to
generate random realization of uncertain parameters and test
validation of the proposed robust model. Since the probability
distribution of parameters is unknown, 1000 random numbers
with two normal and uniform distributions are generated for
the uncertain parameters.

For example for parameter Ẽijt ∈ [Êijt − E ′ijt , Êijt + E
′
ijt ],

first it is supposed that Ẽijt is uniformly distributed in the
considered interval. Therefore, considering lower and upper
bounds of interval, uniform random numbers are generated.
In case of uniform distribution the expected value (EV) and
variance (Var) are equal to EV (Ẽijt ) = Êijt and Var(Ẽijt ) =
(2×E ′ijt )

2

12 =
(E ′ijt )

2

3 , respectively. Then it is supposed that Ẽijt is
normally distributed. Therefore, random numbers from nor-
mal distribution are generated with the same mean EV (Ẽijt )
and variance Var(Ẽijt ). The same processes are done for
uncertain parameters ˜aijt and ˜bijt .
Considering the decision variables values specified by the

LP metric method for both multi-objective deterministic and
robust models (shown in Table 10), and generated random
values for Ẽijt , ˜aijt and ˜bijt , the objective functions of both
deterministic and robust models are calculated.

TABLE 10. Optimal values of decision variables for robust and
deterministic models.

After generating a thousand values for uncertain parame-
ters of the objective functions in both robust and deterministic
models by two uniform and normal distributions, the mean
and standard deviation of these objective functions are calcu-
lated and shown in Table 11 and Table 12.

TABLE 11. Mean of objective functions in both robust and deterministic
models.

TABLE 12. Standard deviation of objective functions in both robust and
deterministic models.

As shown in Table 12, the summation of the standard
deviations in the robust model is less than the summation
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of standard deviation in the deterministic model for both
normal and uniform distributions. These results validate the
proposed robust model which has less standard deviation for
any realization of uncertain parameters.

VI. CONCLUSION
In this paper, a model was proposed to find the optimal
location of sensors along highways to minimize the total error
reported by them and also to find the best way of connecting
sensors to find bottlenecks. As the error rate increases when
traffic congestion happens, this research suggests movement
of sensors with enough energy and locating in a proper
distance from traffic congestion areas to reduce the total
errors. Since the parameters of the objective functions of
the proposed model are not known with certainty, a robust
approach was used to deal with this uncertainty. The robust
approach proposed by Bertsimas and Sim [52] was used in
this paper because the level of conservatism can be adjusted
by this approach. To test the validity of the proposed robust
model, the Mont Carlo simulation was used. The results
showed the total deviations in the robust model are less than
the total deviations in the deterministic model and validity of
the robust model is proved.

For the future study, the idea of sensor movement can
be expanded to the case that one of the sensors is bro-
ken, and another sensor can move to replace with the bro-
ken sensor so that the error caused by the broken sensor
is reduced. In some special situations such as earthquake,
flood, accidents, road icing or road damage, the effect of
movement of sensors on traffic flow can be investigated
too. Furthermore, in this study, the coverage of the area
where the sensor is located is assumed to be complete, i.e.
100% which is not compatible with many real world situ-
ations. In fact, the coverage follows a probability distribu-
tion which can also be considered in the model. Finally, in
this research, we used an uncertainty set, i.e. box-polyhedral
set, for uncertain parameters. In some cases, one can con-
sider some scenarios for uncertain parameters and apply
a scenario-based robust optimization approach for sensor
location problem.
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