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ABSTRACT The precise detection and tracking of multiple particles under a microscope are of significance
in the research of the individual and cluster behavior of dynamic bacteria and subcellular structures. However,
the existing detection algorithms cannot separate occluded particles from each other, andmost of the tracking
algorithms aimed to address the occlusion involve several uncertainties. In this paper, a two-step detection
algorithm based on the threshold segmentation and morphological open operation has been developed for
identify non-fluorescent labeled particles under microscope, which could separate micro-contact targets.
Moreover, we have proposed a novel correlation algorithm that can exploit the strengths of the global
shortest path algorithm and Hungarian algorithm, which updating online in real time and considering the
occlusion among particles. The proposed approach could achieve the temporal optimal match and spatial
optimal solution by utilizing the multi-frame information. Moreover, the proposed method could realize
the tracking of occluded particles tracking, and outperform the single global shortest path algorithm and
Hungarian algorithm. The proposed method was successfully applied to six real image sequences with the
maximum number of particles per frame ranging from 23 to 55, as well as a synthetic and fluorescent labeled
sequence. The results of the contrast experiments demonstrated that the proposed algorithm is practical and
can realize real-time tracking.

INDEX TERMS Microscopic image, multiple particles tracking, target occlusion, global data association.

I. INTRODUCTION
As a key branch of computer vision, object tracking has
been widely studied by scholars in recent years. The exist-
ing target tracking algorithms primarily involve two stages:
detection and data association. Considering the distinction
of targets, object tracking can be categorized into two
types: non-particle tracking involving abundant features to be
learned and particle tracking corresponding to monotonous
shapes and textures with no obvious features to be learned.
To address the former case, many types of detection algo-
rithms are available, such as those involving frame differ-
ences, background subtraction and deep learning. In recent
years, deep learning have emerged as popular detection algo-
rithms, such as R-CNNs [1]–[3], YOLOs [4]–[6], SSD [7].
The detection in the latter case is more complex due to the
nearly identical appearance of the particles. The relevant
common algorithms include threshold segmentation [8] and
spot enhanced filter (SEF) [9]–[12], which is the most widely
employed technique.
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Biological particles including bacteria, cells, viruses,
microtubules [9], [10], [13], [14], are generally observed
through a microscope. The automatic detection and track-
ing of the particles can reduce the workload of scientific
researchers, as several of these tasks cannot be accom-
plished manually. However, the precision of the detection
and tracking directly affects the accuracy of the research
results. Because of the diversities in the observation plat-
forms, the images obtained directly usually contain a consid-
erable amount of impurities and noise. A specific technique
to realize denoising is to highlight the target particles through
a fluorescent mark. And most of the existing studies are
focused on the detection and tracking of fluorescent labeled
particles. In contrast, the present study is focused on the
non-fluorescent labeled particles. In general, the nonfluores-
cent labeled particles exhibit a similar appearance. Moreover,
a considerable amount of noise, with a morphology similar to
that of the particles, is present in the background, known as
the ‘‘pseudo particle’’. In addition, other challenges to parti-
cle tracking include immeasurability of motion, appearance
and disappearance, aggregation, overlap and occlusion.

Previous particle tracking can be divided into determin-
istic and probabilistic methods. The former is composed of
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target detection and data association. As temporal and spa-
tial uncertainties are discarded, the tracking usually strug-
gles with complicated situation. The latter consists of object
detection, state forecast and data association, and the track-
ing performance is enhanced when considering the temporal
and spatial uncertainties. For approach that only considers
spatio-temporal uncertainties between two successive frames
[15], they usually encounter the challenge of limited tempo-
ral information. Furthermore, the methods that consider the
information of multiple frames often throw away the spatial
messages [10].

As mentioned previously, the algorithm that is most com-
monly applied to detect fluorescent labeled particles is the
spot enhanced filter. In [9], spot enhanced filter and speci-
fied area sampling were applied in a joint manner to detect
targets, and the probability in the PDA was considered as
the likelihood weight of the image for correlation. In [10],
to detect multi-scale particles, multiple standard deviations
of spot enhanced filter and two-step multi-frame association
were adopted.

For multiple particles tracking, the key challenge is to
address the occlusion among particles as it confuses detection
algorithms, causing the algorithms to treat multiple occluded
particles as one particle. To the best of our knowledge, none
of the existing detection algorithms can distinguish among
the occluded particles. And data association algorithms must
be used to process the occlusions. In [9], adjacent support of
each image location relative to tracked target was calculated,
and the support was used to recalculate the weights of PDA.
This methodology could accomplish object clustering but
could not process the occlusion among the targets. In [13],
the dummy particle of a vanishing or occluded particle was
simulated (this step does not need to be implemented in the
proposed approach), and the dummy particle was assigned an
extremely small probability value. The purpose was to ensure
the continuity of the trajectory until the appropriate correla-
tion occurred; however, the instance at which the appropriate
correlation occurred and the optimality of this correlation
were not clarified in the article. In [12], a tracking tree was
established and dummy particles were synthesized for each
particle in next frame. Moreover, the four closest particles in
the next frame were added to the branch of the particle such
that one particle had five particles associated with it in the
next frame. However, this approach involved a considerable
amount of uncertainties, and the calculation increased.

To detect non-fluorescent particles, we have proposed a
two-step detection method based on threshold segmenta-
tion and morphological operation to separate micro-contact
targets. First, the foreground is extracted from the back-
ground through the threshold segmentation, and subse-
quently, the morphological operation is performed to separate
targets with slight contact to ensure the accuracy of detection
and tracking. The advantage of threshold segmentation is
that the particles with different scales in the same image can
be detected without other additional operations, while spot

FIGURE 1. Algorithm flowchart.

enhanced filter is restricted to the standard deviation of the
Gaussian filter.

Moreover, we have developed a new data association
method based on global shortest path algorithm and Hungar-
ian algorithm. The Hungarian algorithm pairs in a bipartite
graph, considering the information between two successive
frames in the tracking process. However, to realize the spa-
tial optimal matching, the algorithm ignores the abundant
information in the past and future frames. In contrast, the
global shortest path algorithm realizes the optimal solution
in time and neglect the spatial optimization. In this paper,
the advantages of the both algorithms are integrated to effec-
tively address the occlusion between particles. To the best
of our knowledge, this is the first time to utilize a spa-
tially and optimally optimal solution to address the particles
occlusion problem, rather than relying on the considerable
uncertainties. The process flow of the algorithm is illustrated
in Fig. 1.

The rest of the paper is organized as follows. The sec-
ond and third sections describe the target detection algo-
rithm and novel data association algorithm, respectively. The
fourth section describes the experiments, and the fifth section
presents the concluding remarks.

II. PARTICLES DETECTION
This section describes the detection algorithm for the fluo-
rescent and non-fluorescent particles. First, we describe the
most commonly used technique, that is, the spot enhanced
filter approach, and later elaborate upon the proposed method
to detect the nonfluorescent particles.
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A. SPOT ENHANCED FILTER
Spot enhanced filter, also known as Laplace of Gaussian filter
(LoG), is the most widely used approach to detect fluorescent
labeled particles and is one of the most effective algorithms
[10]. LoG was originally employed to enhance edge infor-
mation in image processing. Due to the nature of particle
detection, the particles usually appear as a simple ‘‘spot’’
under fluorescence microscope, which can be regarded as
edge to some extent. Spot enhanced filter detect particles with
a fixed scale, and therefore, the parameters must be adjusted
to adapt to different particle sizes. Nevertheless, in [10],
multiple Gaussian standard deviations were taken to achieve
multi-scale particle detection, similar to the image pyramid.

The convolution kernel of spot enhanced filter can be
expressed as (1) [10], [14], where x and y are the horizon-
tal and vertical coordinates of image, respectively, and σ
represents the Gaussian standard deviation.

LoG(x, y, σ ) =
x2 + y2 − 2σ 2

2πσ 6 e
−(x2+y2)

2σ2 (1)

A threshold is necessary for images after LoG to extract
particles and eliminate noise [9].

B. THRESHOLD SEGMENTATION AND MORPHOLOGICAL
OPERATION
To detect the non-fluorescent labeled particles, considering
the diverse target intensities and considerable amount of
background noise, we have proposed a two-step detection
algorithm based on threshold segmentation and morpho-
logical operation. As the simplest image processing opera-
tion, threshold segmentation is powerful, in accordance with
Occam’s razor law, which states that ‘‘the simpler, the more
effective’’ [24]. Compared with other algorithms, threshold
segmentation has merits of accurate positioning, small com-
putation, simple principle implementation [25], etc., which
is suitable for images with considerable differences among
foreground and background. The formula can be expressed as
(2), where g(x) and f (x) represent the image before and after
thresholding, respectively, and a is the threshold that can be
artificially assigned or automatically determined [16].

f (x) =

{
0, g(x) < a
1, g(x) > a

(2)

After thresholding, we employ corrosion or open in
morphological operation to separate micro-contact targets,
as the second step of the proposed detection to reduce the
burden of the follow-up and enhance the tracking accuracy.
The corrosion formula can be expressed as (3) [23]. In par-
ticular, for a moving structural element B, if the intersection
of B and A is all in the effective region of A (A is usually the
image to be processed), the central point is saved. The set of
all points meeting the conditions is the result of structure A
being corroded by structure B.

A� B = {x|Bx ⊆ A} (3)

FIGURE 2. Morphological operations diagram. A is the original image; B
represents the morphological structure with a kernel size of 3 × 3; C is
the result after corrosion; D is the consequence of inflation; E denotes the
image after open operation.

The inflation operation equation can be expressed as (4)
[23], and considered as the convolution operation of structure
B on structure A. If an overlap region exists between structure
B and structure A in the process of moving structure B,
the location is recorded. The set of all positions involving
the intersection of the moving structure B and structure A
is the result of inflation of structure A under the action of
structure B.

A⊕ B = {z|(B∧)z ∩ A 6= ∅} (4)

In this paper, we employ the open operation as the
post-processing operation for detection. The open opera-
tion involves first corroding and later inflating the image to
remove the noise and separate the targets with a slight contact.
The results of corrosion, expansion, and open operation are
shown in Fig. 2.

III. MULTIPLE PARTICLES TRACKING
This section describes multiple particles tracking algorithm.
We first introduce the concept of graph model and lat-
ter explain the principle of global shortest path algorithm
and Hungarian algorithm respectively. Finally, the proposed
algorithm is explained.

A. GRAPH MODEL
The graph model [17] is made up of nodes and edges, with
each node representing one or a group of variables and the
edge bearing the contact information between nodes repre-
senting the bridge between connecting nodes. In the case of
particle tracking, the object detected in successive frames can
be regarded as the nodes of the graph model. According to the
relationship between particles in different frames, we selec-
tively establish the correlation between them. A graph model
can be grouped into directed graph model and undirected
graph model. The edges of the former and latter models
are connected and not connected in a directional manner,
respectively. We consider a directed graph model to represent
our network as a certain orientation exists, stemming from the
previous image to the next.
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B. GLOBAL SHORTEST PATH ALGORITHM
From a node to another node along the edge of a graph,
the path with the minimum sum of weights on each edge is
the shortest path. In particle tracking, the weight of the edge
refers to the cost between two particles. We choose Dijkstra
[18] to obtain the shortest path between two nodes. The
Dijkstra calculates the shortest path from the starting vertex
to the specified node using a greedy strategy. Specifically,
the algorithm gradually increasing the weight of the shortest
path by selecting the vertex closest to the starting node until
all the node in the graph are covered, thereby achieving the
optimal solution between two vertices in time dimension.

C. HUNGARIAN ALGORITHM
The Hungarian algorithm is a combinatorial optimization
algorithm used to solve linear assignment problem in polyno-
mial time. The algorithm can achieve the maximummatching
of two vertex sets in a bipartite graph and concurrently ensure
the minimum matching loss sum [15]. Two sets of vertices
are considered: V1 = {X1,X2,X3}V2 = {Y1,Y2,Y3,Y4},
with X1−X3 represents the three vertices in V1 and Y1−Y4
represents the four vertices in V2. V1,V2 connected through
E = {(X1,Y2,C1), (X1,Y4,C2), (X2,Y1,C3), (X2,Y3,
C4), (X3,Y2,C5)}, where C represents the loss between
two vertices. The objective of the Hungarian algorithm is
to minimize the total loss of the connections while ensuring
the maximum match 3 between V1 and V2. The algorithm
achieves the spatially optimal solution of the targets. As the
Hungarian algorithm only considers the temporal information
between two successive frames, which is finite [10], the algo-
rithm cannot realize accurate correlations in complex scenes
such as overlap and occlusion. As mentioned previously, this
aspect is a challenge for most data association algorithms.

D. OUR PROPOSALS
The global shortest path algorithm often neglects the spatial
optimum while achieving the global optimal solution tem-
porally. The Hungarian algorithm is the other way around.
We consider combining the two methods in a complementary
manner. The proposed tracking techniques are described in
the following text.

Euclidean distance between the object is considered as
the similarity measurement. Because the considered targets
are particles with similar appearance, with similar shapes
and scales, the cost based on physical property proposed
in [13] does not satisfy our requirements. In each frame,
we acquire several measured particles {pik} after detection,
where k denotes the k-th frame, and i represents the i-th
detected particle in the k-th frame. In order to distinguish
particles of different frames, we place the detected particles
of each frame on different layers of the graph model. Only the
particles in successive layers can be pair with each other, and
the set of particles of each layer is represented by H. Before
calculating the similarity measurement, we design a circular
tracking gate for each particle in the following frame. The
particle in the next frame can contact particles in the previous

FIGURE 3. k-2, k-1, and k are three sequential frames which represent
three successive layers in the tracking graph. k-2 can only connects with
k-1 downward, and k-1 connect with k in same way. When particles in the
next frame fall into tracking gate, they are eligible to contact with the
current particle.

frame only if it falls into the tracking gate, as shown in Fig. 3.
The function of tracking gate is to remove the particles that
are clearly unrelated. This mechanism can reduce the inter-
ference between particles and the cost of computation. As
soon as the correlation between the particles is set up, the
similarity measurement between the particles is computed.
Unlike the Hungarian algorithm, which only determines the
loss between two successive frames, we compute the loss
between multiple frames. To ensure consistent updating,
we introduce a sliding window (k − t → k) in the temporal
dimension, with the time step specified as t , to obtain fixed
number (t) of frames addressed each time. Subsequently,
the losses of continuous path of particles from the k− t frame
to the k frame are computed, and discontinuous points are
neglected. In contrast, in two-frame trackingmethod, only the
relations in two frames are considered [11]. For each pair of
particles from pik−t to p

j
k , we tentatively elect the one with

minimum consecutive loss as the path, calculated by Dijkstra
algorithm. Until now, we have completed optimal matching
between point and point from k − t to k frame. To pursue
global optimization, we comprehensively process all particles
in k − t-th and k-th frame. We regard targets of k − t-th
frame and k-th frame as the two parts in bipartite graph, and
employ the Hungarian algorithm to seek for optimal solution.
When confronted with occlusion, the occluded particles are
captured as soon as particles separate from each other because
the proposed algorithm is optimal at all times. Although the
Hungarian algorithm only pairs targets between the first and
the last frame on slidingwindow one to one, when thewindow
slides along the timeline, the overlapped and occluded parti-
cles inside can be matched twice, as shown in Fig. 4. We call
this method the ‘‘global Hungarian algorithm’’.

IV. EXPERIMENTAL RESULTS ADN DISCUSSION
In this chapter, we first describe the experiment and evalua-
tion of particle detection. Then we introduce the new tracking
algorithm used to realize the particle tracking in simulation
and real scenarios. Subsequently, we compare the common
SEF and two step SEF, and finally, we compare the two step
SEF with the proposed algorithm. All the experiments are
based on python 3.6.5.
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FIGURE 4. Particle occlusion occurs in the k-1 frame. The two particles in
k-2 are detected as only one in k-1. However, as the occluded particle
falls into two tracking gates in k-2, it establishes a correlation with both
particles. On the time sliding window (for convenience, we consider the
time step t as 2), we determine the optimal match between k-2 and k to
solve the occlusion problem.

A. PARTICLE DETECTION EXPERIMENTS AND EVALUATION
Because the fluorescent labeled particles often appear as a
spot under a microscope, the spot enhanced filter exhibits a
high detection performance. In contrast, for non-fluorescent
labeled particles, the detection effects of direct threshold
segmentation and spot enhanced filter are nearly equivalent.
Spot enhanced filter can easily detect noise in the back-
ground. Considering these aspects, we recommended the sep-
aration of the foreground and background directly through
the threshold segmentation to realize the detection in flu-
orescent labeled images. In the following analysis of both
the spot enhanced filter and direct threshold segmentation,
morphological operation could be used as the second step
of detection, i.e., post-detection, to separate targets with
slight contact. We first detected particles with spot enhanced
filter and direct threshold segmentation severally, and later
performed morphological open operation.

We performed an exploratory experiment on an image with
micro-contact between particles. For spot enhanced filter,
we smoothed the image with a Gaussian filter and enhanced
the particles through a Laplace filter. Next the threshold
segmentation and morphological open operation were per-
formed. The standard deviation of the Gaussian filter was 0;
the size of the Gaussian kernel and Laplace filter kernel were
17× 17 and 5× 5, respectively; the threshold value was 91,
and the scale of the open operation kernel was 3×3. In direct
threshold segmentation, the threshold value was 91, and the
kernel size of open operation was 3 × 3. The experimental
results are shown in Fig. 5. Both spot enhanced filter and
direct threshold segmentation can achieve the separation of
slight contact targets after open operation. In addition, open
operation eliminates certain noise in the original image after
thresholding. Therefore, it is desirable to employ open oper-
ation for post-detection in particles detection.

We collected two sequences of non-fluorescent labeled
bacteria under microscope, called Scenario 1 and Scenario 2,
with the maximum number of particles per frame being
23 and 55, respectively. For Scenario 1 and Scenario 2,
we harnessed the common spot enhanced filter, spot enhanced
filter with open operation and the proposed detection algo-
rithm based on threshold segmentation to detect the particles.

FIGURE 5. Detection comparison. a is the raw image; b is the
consequence of LoG after thresholding, including a certain amount of
noise; c is the result of spot enhanced filter after open operation; d is the
result of direct threshold segmentation, e is the open operation
consequence of d.

FIGURE 6. Average number of false particles per frame.

We calculated the corresponding average error detection per
frame (AEDF), accuracy rate and recall rate. The accuracy
rate and recall rate were calculated using the expressions
shown as (5) and (6), respectively [19].

P =
TP

TP+ FP
(5)

R =
TP

TP+ FN
(6)

where TP is the total number of correctly detected particles,
FP represents the number of false particles, and FN is the
count of undetected particles that are mistaken as noise or
background. The statistical results are shown in Fig. 6, 7 and
8. It can be seen that the proposed detection is superior to the
other two methods under the same recall rate.

B. NON-FLUORESCENT LABELED PARTICLE TRACKING
EXPERIMENTS AND EVALUATION
To verify the feasibility of the proposed algorithm, parti-
cle tracking was conducted in synthetic and real scenarios.
In the synthetic, the number of particles was restrained to
six, and the particles moved randomly. Severe occlusions
occurred between the particles, which was the objective for
developing this scene. Because the simulation scenario was
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FIGURE 7. Statistics of the detection accuracy rate.

FIGURE 8. Statistics of the detection recall rate.

FIGURE 9. 1-4 are four consecutive frames. Occlusion occurs
in 2-3 frames, and in the fourth frame, the two occluded particles are
separated and tracked.

aimed at demonstrating the feasibility of the proposed track-
ing algorithm, we did not compare the proposed tracking
algorithmwith the existing tracking algorithms. Trackingwas
performed based on the result of direct threshold segmen-
tation and open operation. In the experiment, we observed
the particle tracking and determined the tracking accuracy.
The tracking results and tracking accuracy are shown in the
Fig. 9 and Table 1, respectively.

The consequences of the synthetic scene show that the
proposed tracking algorithm is feasible. Next, we applied the
algorithm in real scenarios to examine the tracking perfor-
mance. The real scenarios were image sequences observed

TABLE 1. Comparison of the tracking accuracy.

under microscope with non-fluorescent mark. In addition to
Scenario 1 and Scenario 2, we collected another four real
scenarios numbered Scenario 3,4,5,6. We performed track-
ing in Scenario 1-6 with the maximum number of particles
per frame were 23 to 55. To the best of our knowledge,
the number of particles per frame targeted by most particle
tracking algorithms is less than 30. Likewise, the motions
of particles could not be measured. The proposed method
was compared with the global shortest path algorithm and
Hungarian algorithm. Neither the global shortest path nor
Hungarian algorithm could process the occluded particles,
and the algorithms failed to comprehensively consider the
temporally and spatially global information. Our algorithm
effectively processed the particle occlusion. Consequently,
the algorithm could effectively address complex situations
and outperformed the single global shortest path algorithm
and Hungarian algorithm. In this paper, the similarity mea-
surements of global shortest path algorithm and Hungarian
algorithm were based on the Euclidean distance. For the
global shortest path algorithm, we set the step size of the
sliding window as 10, and then searched out the shortest dis-
tance between frames to accomplish tracking. The Hungarian
algorithm only calculated the loss between two successive
frames and later determined the maximummatching between
particles in the two frames, while ensuring the minimum sum
of losses. We quantitatively analyzed of these three methods
and calculated their correct tracking rates. The correct track-
ing rate was calculated using (7) [10], whereNerror represents
the number of errors in tracking, andNtotal is the total number
of particles.

Pcorrect = 1−
Nerror
Ntotal

(7)

For the six real scenarios, we first utilized the two-step
detection algorithm based on threshold segmentation and
open operation to extract particles from background and
obtained the coordinate of particles. The threshold value for
Scenario 1 to Scenario 6 were 80, 93, 60, 53, 56 and 60,
respectively. Next, the Hungarian algorithm, global shortest
path algorithm and the proposedmethodwere applied to track
the particles. The cost of theHungarian algorithmwas the loss
between predicted states of the current frame particles and the
measured states. Kalman filter [19], [20] was used to estimate
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FIGURE 10. Tracking consequence of the proposed algorithm applied to
Scenario 1.

the states. For the proposed and global shortest path algo-
rithm, the states were not estimated. The comparison results
of the three tracking algorithms are presented in Table 1. The
tracking accuracies of the three methods are nearly more than
70%, which can satisfy the requirements of multiple object
tracking basically. However, the performance of Hungarian
algorithm is unstable, hovering between 68.85% and 82.68%.
The accuracy of global shortest path algorithm is higher
than 80%, which corresponds to a satisfactory performance.
Nevertheless, the performance of our proposals is better than
the previous two algorithms, and the tracking accuracy is
more than 90%.

Four successive frames from the results of the proposed
tracking algorithm applied to Scenario1 and Scenario 2 are
show in Fig. 10 and Fig. 11 respectively. In Fig. 10, the parti-
cles in the first two frames approach gradually, and occlusion
occurs in the third frame. Although occlusion is not processed
in the third frame, in the fourth frame, the algorithm is
updated online, the particles are detected as soon as they
separate from each other, and the occluded particles are re-
associated. In Fig. 11, continuous occlusion occurs in the sec-
ond and the third frame, and in fourth frame, the occluded
particles are successfully identified. The particles in the red
rectangle in Fig. 10 and Fig. 11 depict our tracking process
from gradual approach to occlusion to separation.

C. TWO-STEP SPOT ENHANCED FILTER IN TRACKING
Since the traditional spot enhanced filter did not involve an
open operation, we incorporated the open operation after spot
enhanced filter to examine the corresponding tracking perfor-
mance. We first applied the general spot enhanced filter, later
implemented the two-step spot enhanced filter, and finally
compared the tracking performance of the two algorithms.
Two groups of experiments were carried out for fluorescent
labeled and non-fluorescent labeled scenarios. In the fluores-
cent labeling scene, the microtubule snr 7 density data set in
Particle Tracking Challenge 2012, were considered, termed
as Scenario 7. Scenario 2 was selected for non-fluorescent

FIGURE 11. Tracking consequence of the proposed algorithm applied to
Scenario 2.

TABLE 2. Comparison of the tracking accuracy between two spot
enhanced filters.

labeled environment. We first considered Scenario 7, and the
global Hungarian algorithm we proposed was used for the
tracking algorithm. The Gaussian kernel was sized 15 × 15,
the standard deviation of Gaussianwas zero, the Laplace filter
kernel was sized 5×5, and the final threshold was 65. To eval-
uate the contribution of the morphological operation in spot
enhanced filter, open and no-open operation were employed
after thresholding, and the kernel size of open operation was
set as 3 × 3. Since the particles existed only briefly in this
dataset, the step size of the sliding window was set as 5.
In Scenario 2, kernel of Gaussian filter was 15 × 15, the
standard deviation was 0, the kernel size of Laplace filter was
5×5, the kernel size of the open operation was 3×3, and the
final threshold was 90. The sliding window size was 10. The
final consequences of tracking accuracy are shown in Table 2.
In the fluorescent labeled scene, the effect of the open and
no-open operation for the spot enhanced filter is only slightly
different, and the tracking accuracy is more than 96%. But
in scenario 2, the difference value reaches 1.58%. Therefore,
when using the spot enhanced filter to detect particles in
non-fluorescent labeled scenario, it is advisable to add an
open operation to filter out noise and separate micro-contact
targets.

D. COMPARED WITH OUR PROPOSAL
This section compared the open-operation spot enhanced
filter with the proposed two-step detection algorithm; both
of the approaches are all two-step detection algorithms.
The experiments were conducted under Scenario 2 and
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TABLE 3. Comparison of the tracking accuracy with our proposed
algorithm.

Scenario 7. The parameters of the two-step spot enhanced
filter were the same as those mentioned previously. For the
proposed approach, in Scenario 7, the threshold value was
25, the open operation kernel size was 3 × 3, and the step
size of sliding window was 5. In Scenario 2, the threshold
value of the proposed was 93, the length of sliding window
was 10, and the open core size was 3 × 3. The results are
shown in Table 3. The tracking performance of the proposed
algorithm is a little bit better than the two-step spot enhanced
filter, which proves that the proposed detection algorithm is
comparable to the current mainstream algorithm.

V. CONCLUSION
In this paper, a two-step detection algorithm based on thresh-
old segmentation and morphological operation was proposed
for non-fluorescent labeled particles, providing a solid foun-
dation for the follow-up particle tracking and improving the
tracking accuracy. Moreover, we developed a new tracking
algorithm, which combined the advantages of global shortest
path algorithm and the Hungarian algorithm, thereby effec-
tively solving the problem of particles occlusion and pro-
viding a novel train of thought for intricate scenarios. How-
ever, The Hungarian algorithm and the global shortest path
algorithm are only two media to realize the combination of
more time information and space optimal solution, and are not
the ultimate goal. We expect that more effective algorithms
will be developed in the future. In addition, the proposed
‘‘Global Hungarian algorithm’’ can only handle occlusion
between two or three particles. The situation of occlusion of
more particles cannot be solved at present and requires further
research.
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