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ABSTRACT Clustering is one of the most important unsupervised machine learning tasks. It is widely used to
solve problems of intrusion detection, text analysis, image segmentation etc. Subspace clustering is the most
important method for high-dimensional data clustering. In order to solve the problem of parallel subspace
clustering for high-dimensional big data, this paper proposes a parallel subspace clustering algorithm based
on spark named PSubCLUS which is inspired by SubCLU, a classical subspace clustering algorithm. While
Spark is the most popular big data parallel processing platform currently, PSubCLUS uses the Resilient
Distributed Datasets (RDD) provided by Spark to store data points in a distributed way. The two main
performing stages of this algorithm, one-dimensional subspace clustering and iterative clustering, can be
executed in parallel on each worker node of cluster. PSubCLUS also uses a repartition method based on
the number of data points to achieve load balancing. Experimental results show that PSubCLUS has good
parallel speedup and ideal load balancing effect, which is suitable for solving the parallel subspace clustering

of high-dimensional big data.

INDEX TERMS Big data applications, clustering algorithms, parallel.

I. INTRODUCTION

Clustering is one of the most important unsupervised machine
learning tasks whose purpose is to divide a set of objects
into multiple groups or clusters; Objects in the same cluster
have high similarity, but are not similar to the objects in other
clusters. Clustering comes from Machine Learning, Artifi-
cial Intelligence, Data Mining, Bioinformatics, Statistics and
other research fields, and is widely used to solve the problems
of intrusion detection [1], consumer segmentation [2], text
analysis [3], image segmentation [4] etc.

Researchers have proposed many clustering algorithms
in recent decades [5]-[9], and these algorithms can be
roughly divided into five categories [10]: (1) K-means [11],
k-medoids [12] and other algorithms based on partition; (2)
BIRCH [13], CURE [14], CHAMELEON [15] and other
hierarchical-based algorithms; (3) DBSCAN [16], OPTICS
[17], DENCLUE [18] and other density-based algorithms;
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(4) Grid-based algorithms such as STRING [19], OPTIGRID
[20];(5) model-based algorithms such as EM [21], COBWEB
[22]. These algorithms mentioned above can meet the needs
of clustering small low dimensional datasets.

Datasets generated from bioinformatics, e-commerce,
wireless sensor networks, social networks and many other
fields generally have many attributes, so they are called high-
dimensional data. Traditional clustering algorithms work well
when the dimensionality of datasets is not high (datasets
have less than 10 attributes), but they are not suitable for
high-dimensional data with ten or more attributes. The main
reason is that with the increase of the number of attributes
in the datasets, the traditional clustering algorithms based
on distance or density are unable to calculate the similar-
ity between objects effectively, which makes the algorithms
invalid described as ‘“Curse of dimension’ [23].

In order to deal with curse of dimension, researchers
have proposed a series of clustering algorithms for high-
dimensional data [24], which can be divided into two cate-
gories. In the first kind of methods, dimension reduction is
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used to reduce the number of attributes by selecting or reduc-
ing the original attributes. The typical methods are Principal
Component Analysis(PCA) [25] and mRMR [26], etc. This
kind of methods selects or regulates the original attributes
from the global perspective. Although it can identify and
retain the attributes with the highest correlation and avoid
the influence of noise attributes on the clustering results, this
kind of methods clusters in a subset of the original attributes,
ignores the impact of attribute selection on the clustering
results, and results in a great loss of information. In addi-
tion, there is a serious drawback of this kind of methods:
the new attributes generated by dimension reduction are not
clear, and the results of clustering are poorly interpretable.
The second kind of methods is called subspace clustering.
This kind of methods finds clusters from all the subsets of
original attributes. The typical algorithms include CLIQUE
[27], ENCLUS [28], etc. This kind of methods can find
different clusters from different attribute subsets, reveal the
local correlation between attributes. The results of clustering
are well interpretable, which is the main method for clus-
tering high-dimensional data. SUBCLU [29] is a density-
based subspace clustering algorithm, which can find clusters
of arbitrary shape in subspace, and the meaning of subspace
is intuitive and clear. The algorithm also uses the Apriori
property to prune the subspaces that need to be checked,
which can greatly reduce the number of subspaces. It is one of
the best subspace clustering algorithms for high-dimensional
data [30].

With the rapid development of computer, communication,
sensor and other technologies, people and equipment are pro-
ducing massive data at an amazing speed every day. We have
entered the era of big data. The traditional centralized clus-
tering algorithms based on a single machine cannot meet
the needs of clustering big data. It is necessary to study
parallel clustering algorithms to meet the challenges brought
by big data. Spark [31] is an open source big data process-
ing framework supported by Apache Software Foundation.
It uses memory-based Resilient Distributed Datasets(RDD)
as the abstract structure of data. Compared with the tradi-
tional Hadoop[32] based on HDFS, Spark has performance
advantages of hundreds of times, and is one of the most
popular platforms for parallel processing of big data. Due
to the characteristics of memory-based execution in Spark,
it is particularly suitable for clustering analysis that requires
multiple iterations. Researchers have proposed many parallel
clustering algorithms based on Spark [33]. We can further
improve the performance of subspace clustering algorithms
for high-dimensional big data by using Spark.

In this paper, a parallel subspace clustering algorithm
named Parallel SubCLU based on Spark (PSubCLUS) is
proposed. The algorithm uses Spark RDD to store data in a
distributed manner, and uses the functions provided by Spark
to implement parallel execution of one-dimensional subspace
clustering and iterative clustering which are the two main
execution stages of PSubCLUS. The proposed algorithm is
suitable for parallel subspace clustering of high-dimensional
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big data on a cluster. The main contributions of this paper are
as follows:

« A parallel subspace clustering algorithm based on Spark
named PSubCLUS is proposed. The overall framework
of PSubCLUS and the specific design of each execution
step are included in the paper.

o A RDD repartition method based on the number of data
points is proposed to ensure that PSubCLUS achieves
load balancing effectively.

o The parallel acceleration, node scalability and load bal-
ancing performance of PSubCLUS are verified by exper-
iments.

The organization of this paper is as follows: In Section II,
we introduce the definition and related symbols of subspace
clustering problem, and briefly introduce the SubCLU and
Apache spark framework. In Section III, the proposed parallel
clustering algorithms based on Spark are summarized. The
main framework of PSubCLUS and the specific design of
each execution step are proposed in Section IV. We analyze
the experimental results in Section V. The sixth section sum-
marizes the whole paper. The Conclusion of this paper is in
Section VI.

Il. RELATED WORKS

Because Spark is especially suitable for clustering that
requires multiple iterations, researchers have proposed many
parallel clustering algorithms based on Spark. These algo-
rithms use RDD to store the set of data points, use the
functions provided by Spark to execute the key steps of clas-
sical clustering algorithms in parallel, and achieve wonderful
effect.

K-means is the most famous and commonly used partition-
based clustering algorithm. There are three key steps: the
selection of the initial centroid, the calculation of the dis-
tance between each data point and the centroid, and divid-
ing each data point into the cluster which has shortest dis-
tance between data point and centroid. Parallel algorithms
based on K-means mainly include parallel K-means cluster-
ing algorithm in MLIib [35] and parallel k-means algorithm
proposed in reference [36], [37]. Wang et al. proposed a
series of optimization strategies for parallel K-means [38]
in MLIib. A parallel intelligent K-means algorithm based
on Spark is proposed in [39]. The difference between this
algorithm and K-means algorithm is the way of initialization
centroid generation. Similar work has been done in [40],
which uses bat [41] and firefly [42] algorithms to optimize
the selection of initialization centroid. The parallel clustering
algorithm proposed by Lu et al. [43] adopted tabu search
strategy [44], [45] to optimize the centroid update mode.
Kacem et al. [46] implemented the K-Prototypes [47] based
on Spark. The difference between K-Prototypes algorithm
and classical K-means algorithm is that the distance between
data points and centroid is measured, which can support data
points with categorical attributes.
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The hierarchical-based clustering algorithms organize all
data points into a tree, which can be done by condensing a
single data point (bottom-up) or dividing the whole set of data
points(bottom-up). The machine learning algorithm library
based on Spark named MLIib [35] also contains a hierarchical
clustering algorithm; it is a parallel implementation of bisec-
tion k-means algorithm [48], which is developed based on
paper [49]. Jin et al. proposed SHAS [50] that parallelizes the
classical SHC algorithm using Spark. The algorithm includes
three stages: data point division, local clustering and merging.

The two kinds of algorithms discussed above can only find
clusters with spherical shape, and the quality of clustering
results is greatly affected by outliers. The density based clus-
tering algorithm can overcome the above two shortcomings.
Density based spatial clustering of applications with noise
(DBSCAN) [16] is one of the most classic density-based clus-
tering algorithms. It can identify clusters of arbitrary shape
and efficiently identify outliers. Fang et al. proposed a par-
allel DBSCAN algorithm based on Spark named paralle]DB-
SCAN [51]. According to the analysis of DBSCAN, more
than 90% of its execution time is used to find the core points.
Therefore, paralleIDBSCAN performs this step in parallel,
which significantly improves the efficiency of clustering.
Amar et al. proposed a parallel clustering algorithm based
on shared nearest neighbor (SNN) [52] named SparkSNN
[53]. Unlike paralleIDBSCAN which uses Euclidean distance
as the basis for similarity measurement between data points,
SparkSNN uses the number of data points in the intersection
of two neighborhoods as the basis of similarity measurement,
and data points whose density is greater than the specified
threshold(MinPts) are regarded as the core points (centroid
of cluster). The overall framework of the REMOLD [54]
proposed by Liang et al. is consistent with that of paralleIDB-
SCAN, but further optimization methods are adopted in the
three stages of data point distribution, local cluster generation
and local cluster merging.

The model-based clustering algorithm assumes that the
data points come from the data sources containing multi-
ple subpopulations. The data points in each subpopulation
conform to a certain probability distribution, and the set of
data point is a mixture of multiple subpopulations, the goal
of clustering is to divide the data points into several sets
that conform to the probability distribution model. The most
commonly used probability distribution model is Gaussian
mixture models (GMM) [55], which regards the cluster in
the set of data points as Gaussian distribution with different
parameters, and the whole data point set is a mixture of
multiple Gaussian distributions. The process of clustering
is to divide each data point into a Gaussian distribution
and generate clusters directly. So the model-based cluster-
ing algorithm has more advantages than other algorithms in
running speed. The machine learning algorithm library based
on Spark MLIib [35] contains a parallel clustering algorithm
based on GMM. It uses expectation maximization (EM) [56]
to find the Gaussian distribution of one or more variables and
train the Gaussian mixture model. Through iterative training,
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TABLE 1. Symbols used in this paper.

Symbol Quantity

DB Set of data points

A Set of attributes in DB

cs All clusters in subspace S

Sk All k-dimensional subspaces containing at least one
cluster

S| Cardinality of subspace S

CandSy; Set of candidate k+1-dimensional subspaces

Ck Set of all clusters in k-dimensional subspace

€ Radius of DBSCAN algorithm

m MinPts of DBSCAN algorithm

s.attr; i-th property of subspace s

the mean and standard deviation of each Gaussian distribution
close to the real situation are obtained. The trained Gaussian
mixture model is used to classify all data points, and the pre-
defined number of clusters is directly obtained.

Ill. PROBLEM DEFINITION AND PRELIMINARIES

A. PROBLEM DEFINITION AND SYMBOLS

Let D = {01,02,...,0n} is a set of objects, A = {aj, a2,...,a,}
is a set of attributes. Dataset can be expressed as a matrix
DB =D x A. A value of attribute a is represented as X;. we
use Xo, to express the value of attribute a of object o.

If O CD is a set of objects and S CA is a set of attributes,
then S is a subspace of DB, and |S| is called cardinality
of subspace dimensions. The matrix C = O xS is called
a subspace cluster in DB. All possible subspace clusters in
DB can be represented as a set ALL = {C1,Cy,...,Cy} =
{(01%8S1), (02%82),...,(0OnxSy)}. Given that homogeneous
function H (C) is used to measure the homogeneity of C, and
u is a user-defined homogeneity threshold, then the goal of
subspace clustering problem is to find all subspace clusters
M = {C1,Cy,...,Cy|h(C;) >u}, M CALL. In a subspace
cluster C = O x S, for Yoe€O, o can also belong to other
subspace clusters oeC .

B. SubCLU

SubCLU was proposed by Kailing et al in 2004, and it is one
of the best subspace clustering algorithms up to now [10].
Its subspace search direction is bottom-up, which starts from
one-dimensional subspace and gradually extends to multi-
dimensional subspace, and finds clusters based on density in
all subspaces. The main characteristics of SubCLU algorithm
are as follows:

« In each subspace, it uses density-based algorithm called
DBSCAN for clustering, so it can find clusters with
arbitrary shape and position in the subspace.

o Unlike the grid-based algorithms such as CLUQUE,
each subspace generated by the SubCLU has a clear
meaning.

« For each subspace, the cluster generated by the SubCLU
algorithm is stable.
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In addition to the above three characteristics, the perfor-
mance of SubCLU is optimized by using the monotonicity
of the density-connected set. On the one hand, according to
the monotonicity of the subspace, we do not have to examine
any subspace S if at least one T; CS contains no cluster.
On the other hand, according to the monotonicity of density-
connected data points, there must be C 1 C Ck in the process
of searching Cxy; in k+1-th iteration. Therefore, we only
need to check 0€Cy instead of o€DB. The pseudocode of
SubCLU is shown in algorithm 1.

Algorithm 1 Pseudocode of SubCLU
Input: DB, &, m
Output: ALL Subspace clusters in DB

1: Sl =0

2: C =90

3: FOREACH a; €A

4: Clat = DBSCAN(DB,{a;}, &,m)

5: IF Clalt £ ¢

6: S1 = S1U{aj}

7 C; = Cyuctlad

8: End IF

9: End For

10: k=1

11: WHILE Cx # ¢

12: CandSy4| = GenerateCandidateSubspaces(Sk)
13: FOREACH candeCandSg |

14: bestSubspaceSGSkrAnSlgcand =D cecs lcil
15: ceand — g

16: FOREACH cleCPestSubspace

17: ceand — ceand DBSCAN(cl,cand, &,m)
18: IF ceand £ g

19: Sk+1 = Sk+1Ucand

20: Ck+1 = Ck+1UC0and

21: END IF

22: END FOR

23: END FOR
24: Sk = Sk+1
25: Cx = Cx41
26: k=k+1

END WHILE

From Algorithm 1, we can see that the SubCLU algorithm
is divided into two main stages. In the first stage, all one-
dimensional subspaces are clustered to generate S1 and Cl1
(lines 1-9). The second stage is iterative clustering, which
searches for Cx4 and Sk 1 from the discovered Cx and Sk
(lines 10-27). In the k-th iteration, the set of k+1-dimensional
candidate subspace CandSy,;; is generated according to
Sk(line 12). In the process of generation, the Apriori property
can be used to prune CandSi | to reduce the size of candidate
subspace to be checked. For each subspace cand in CandS 1,
the subspace with the least data points in Cy is selected as
the best subspace (line 14), and the C* is found from each
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subspace cluster of the best subspace (line 17). If the C*2 js
not empty, it indicates that there are still subspace clusters in
the subspace cand. Then, cand is taken as an element in Sk 1,
and cand is added to Ci 1 (lines 18-20). The algorithm iterates
continuously according to the above process until Sk = .

C. APACHE SPARK

Spark [24] is a general distributed computing framework and
one of the most popular big data parallel processing plat-
forms. Because it uses a memory-based Resilient Distributed
Datasets(RDD) to store input and intermediate results, Spark
reduces a lot of I/O cost compared with Hadoop, and is
especially suitable for computing tasks requiring multiple
iterations [34]. A Spark cluster consists of a master node
and many worker nodes. The master node is responsible for
managing the resources of work nodes and assigning tasks to
worker nodes, while worker nodes execute distributed tasks.
The working model of Spark is shown in Figure 1.

Spark can distribute RDD to worker nodes in the cluster
automatically or manually. At the same time, Spark provides
a number of functions to implement parallel operations on
RDD stored across worker nodes. The functions used in this
paper are as follows:

« mapToPair(func): Return a new RDD by applying a

function to all elements of this RDD.

« flatMapToPair(func): Return a new RDD by first apply-
ing a function func to all elements of this RDD, and then
flattening the results.

« groupByKey(nums): Group the values for each key in
the RDD into a single sequence and repartition.

« partitionBy(Partitioner): Return a copy of the RDD par-
titioned using the specified partitioner.

o filter(func): Return a new RDD containing only the
elements that satisfy a predicate.

o collect (): Return an array that contains all of the ele-
ments in this RDD.

IV. PROPOSED PSubCLUS ALGORITHM

A. MAIN STRATEGY OF PSubCLUS

Inspired by SubCLU, PSubCLUS proposed in this paper is
a parallel subspace clustering algorithm based on Spark. Its
main design strategies are as follows:
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« Distributed data storage: the set of data points can be
stored in a general distributed file system (such as
HDEFES). RDD is used to load the set of data points
in HDFS to achieve the distributed storage of dataset
among cluster nodes.

o The parallel execution of main steps: PSubCLUS mainly
includes two execution steps. In the one-dimensional
subspace clustering stage, the main execution step is to
find subspace clusters in each one-dimensional subspace
{a;}. In the iterative clustering stage, the main execution
step is to find the subspace clusters in each subspace
cluster of the best subspace of cand eCandSk . All one-
dimensional subspaces or cand and their corresponding
data points can be distributed to multiple worker nodes
(divided into multiple partitions), and the parallel execu-
tion on multiple nodes can be realized by using functions
provided by Spark.

o Load balancing: Load balancing is one of the most
critical factors to achieve good performance for parallel
algorithm. Because the space or time complexity of
clustering algorithm is directly proportional to the size
of the data points, we can achieve the load balance of
PSubCLUS by balancing the distribution of data points
among nodes.

B. FLOWCHART AND PSEUDO CODE OF PSubCLUS
Similar to SubCLU, PSubCLUS contains two main stages: in
the one-dimensional subspace clustering stage, PSubCLUS
detects the subspace clusters in each one-dimensional sub-
space {a; }€A. Since each one-dimensional subspace is inde-
pendent of each other, this stage can be executed in parallel
on multiple nodes. The second stage is iterative clustering
stage. In each iteration, the candidate subspace CandSk
is generated according to the discovered subspace set Sk,
and Cy is detected in the best subspace of each candidate
subspace candeCandSk 1. Because subspace clusters in the
best subspace of each cand are independent of each other, the
subspace clusters in the best subspace of each cand can be
distributed to multiple nodes for parallel execution.

The flowchart of PSubCLUS is shown in Figure 2.

Pseudo code of PSubCLUS is shown in algorithm 2.

From Figure 2 and Algorithm 2, we can see that PSub-
CLUS sets the task name, cluster and other running con-
ditions firstly, and creates the spark running environment
SparkContext (line 1) in the driver program. Then, PSub-
CLUS reads the set of data points from the distributed file
system HDFS, and uses the funcKV to convert the set of
data points into Key-Value PairRDD in the form of <aj,List
<datapoint > (line 2). In order to improve the parallelism
of the following steps furtherly, this algorithm redistributes
rddDB among worker nodes in cluster (line 3), and nums
is the number of nodes (partitions). In the one-dimensional
subspace clustering stage, PSubCLUS detects subspace clus-
ters in each one-dimensional subspace {a;}€A (line 4), and
uses the func1DClustering to generate Key-Value PairRDD
named rddS1andC; in the form of <Subspace,List <Clusters
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FIGURE 2. Flowchart of PSubCLUS.

>> with mapToPair() provided by Spark. Then, rddSandC;
is redistributed among the worker nodes in the cluster in
order to achieve Load Balance (line 5). In each iteration,
the candidate subspace CandSy is generated according to
the discovered subspaces Sy (line 9). The best subspace of
each candidate subspace candeCandSk+1 is selected from
Ck (line 10). Then, Cy4 is found in the clusters from every
best subspace (line 11). The filter () and flatMapToPair ()
provided by Spark are used to select the best subspace and
detect cluster respectively.
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Algorithm 2 Pseudocode of PSubCLUS

Algorithm 4 Pseudocode of GenerateCanddidates

Input: DB, ¢, m
Output: ALL Subspace clusters in DB

Input: Sy
Output: S|

1: sc = SparkContext(conf)
2: rddDB = sc.readFromHDFS(file).flatMapToPair
(funcKV)
3: rddDB.repartition(nums)
4: rddS;andC; = rddDB.mapToPair(func1DClustering)
5:  rddS;andC;.partitionBy(balancePartitioner)
6: Sg =rddS;andCj.keyscollect()
7: Cg =rddS;andC;
8: WHILE S # ¢
9 Sk+1 = GenerateCandidates(Sk)
10: rddBest = Cy.filter(funcSelectBestSubspace)
11 rddSx+1andCy 41 = rddBest.flatMapToPair
(funcClustring)
12: rddSk+1andCy 1 .partitionBy
(balancePartitioner)
13: Sk = rddSk+1andCy1.keyscollect()
14: Cx = rddSk+1andCy4
15: END WHILE

1: CandSyxy; =9
2: FOREACH sy €S DO
3: FOREACH s; S DO
4 IFs;.attr; = sp.attry™...Asj.attr_1 = sp.attrg_1
S1. attrg< sp.attrg
5: Insert {sj.attry,..., sj.attry, Sp.attry }
into CandSy |
6 END IF
7 END FOR
8: END FOR
9: FOREACHcandeCandSg, DO
10: FOREACHT Ccand with |T| =k DO
11: IFT¢ S\ THEN
12: delete cand from CandSy
13: END IF
14: ENDFOR

ENDFOR

In order to achieve load balancing, the algorithm redis-
tributes rddSg 4 1andCy 4| among worker nodes in cluster (line
12). PSubCLUS ends until Sk is empty (line 8).

C. CLUSTERING IN ONE-DIMENSIONAL SUBSPACE USING
funciDclustering

PSubCLUS algorithm uses funclDclustering to cluster in
one-dimensional subspace, and uses mapToPair() provided
by Spark to execute funclDclustering in parallel among
worker nodes in cluster. The pseudo code of func1Dclustering
is shown in Algorithm 3.

Algorithm 3 Pseudo Code of func1Dclustering
Input: <a;,List<datapoints>> rddDBEle, ¢, m
Output: <subspace,List<Cluster >C;Ele
1: listClusters = DBSCAN(rddDBEle._2, rddDBEle._1,
£, m)
2: [F listClusters #
3: RETURN < rddDBEle._1, listClusters> C;Ele

Based on this goal, balancePartitioner first sums up the total
number of data points in List<Cluster> corresponding to
each subspace, and then sorts all subspaces according to the
total number of data points in descending. Finally, elements
in form of <subspace, List<Cluster>> in rddSjandC; and
rddSg41andCy 4 jare reallocated to new partition by using
Round-Bin.

E. GENERATE Sy, USING GenerateCanddidates
PSubCLUS uses GenerateCanddidates to generate Sk from
Sx which has been discovered, and prunes Sxi; by Apri-
ori property, that is, every k-dimensional subspace T in
cand((TCcand)(|T| = k)(candeSk4+1)) must exist in Sk,
otherwise cand can be pruned from Sy, . The pseudo code
of GenerateCanddidates is shown in Algorithm 4.

Algorithm 5 Pseudocode of funcSelectBestSubspace
Input: Sx11,Cx
Output: rddBest

func1Dclustering uses the classic DBSCAN to find the
subspace clusters in the one-dimensional subspace {a;} (line
1), rddDBEle. _1 is {a;}, rddDBEle. _2 is List<datapoints>
corresponding to {a; }. If there is subspace cluster in subspace,
the subspace and the set of clusters are regarded as elements
in rddSandC;.

D. RDD PARTITIONER balancePartitioner

In order to achieve load balancing, PairRDD such as
rddS;andC; and rddSk4;andCy in the form of <subspace,
List<Cluster>> should be redistributed among worker nodes
in the cluster. The goal of repartition is to make the number
of data points processed by each worker node basically equal.

2540

1: FOREACH seSx1 DO

2: FOREACHsbCs *sb| =k

3 IFsbeCy "minsum(count(sb.List<Cluster>))
4: bestSubspace = sb

5 RETURN <sb, List<Cluster>>

6 END FOR

7 END FOR

In Algorithm 4, GenerateCanddidates first generates
CandSy4; according to Sk (lines 2-8). The method of
CandSy4; generation is to join two subspaces in Sk that
meet the conditions in line 4. After joining, the elements in
CandSg4; are pruned according to Apriori property to get
Sk+1 (lines 9-15).
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F. SELECT BEST SUBSPACE USING
funcSelectBestSubspace

PSubCLUS uses funcSelectBestSubspace to select best sub-
space of each seSg from Cy based on the least number of
data points in clusters which correspond to the subspace. The
pseudo code of this method is described in algorithm 5.

Algorithm 6 Pseudocode of funcClustring

Input: <bestSubspace,List<Cluster>rddBestElement
Output: <Subspace, List<Cluster>> rddSy 4 1andCy 1 1Ele
1: FOREACH clerddBestElement._1 DO

2: listClusters = DBSCAN(rddBestEle._2, cl, &, m)
3:  TIFlistClusters# @

4: RETURN< Subspace, listClusters> Ele

5: END IF

6: END FOR

In Algorithm 5, for each seSk;;, we first find all
k-dimensional subspaces of s in Cg, and select the
k-dimensional subspace with the least number of data points
in its corresponding subspace cluster as the best subspace of s.

G. CLUSTERING IN SUBSPACE USING funcClustring

For rddBest, parallel clustering in each subspace using
funcClustring is similar to clustering in one-dimensional
subspace. Both of them use classic DBSCAN. The main
difference is that funcClustring needs to cluster all subspace
clusters corresponding to a best subspace. The pseudo code
of this method is described in Algorithm 6.

In algorithm 6, rddBestElement. _2 is a best subspace of
s€Sk+1; rddBestEle. _1 is the set of all subspace clusters
corresponding to the best subspace. The method funcClus-
tring uses DBSCAN to find new subspace clusters in sub-
space clusters of the best subspace (line 2). If there is at
least a new subspace cluster (line 3), subspace s and newly
discovered subspace cluster is regarded as an element in
rddSk1andCyy 1.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In order to verify the performance of the proposed PSub-
CLUS in terms of speedup, scalability of nodes and load bal-
ancing, three groups of experiments are designed as follow:

o The first group of experiments aim to analyze the
hotspots of the Non-Parallel version of PSubCLUS and
verify the possibility of the performance improvement
of the parallel version PSubCLUS.

o The second group of experiments aim to analyze the
Parallel Acceleration (or scalability of nodes) of PSub-
CLUS. We adjust parallelism of PSubCLUS by chang-
ing the number of partitions, and observe the change of
time spent.

o The third group of experiments aim to verify the effec-
tiveness of the proposed balancePartitioner of RDD,
and observe the number of data points processed by
each node (or contained in each partition) in different
condition of parallelism.

VOLUME 9, 2021

TABLE 2. The basic characteristics of datasets and parameters used by
DBSCAN.

Number Number
NO Name of of m €
Instances  Attributes
D1 Anuran Calls 7195 22 300 0.05
Asian
D2 Religion Data 590 8265 280 0.5
py  JeswrePhase g5, 50 500 0.1
Segmentation
Sales
Transactions
D4 Dataset 811 53 300 2
Weekly
Tarvel
D5 Review 5456 25 85 0.1
Ratings
pe  MiceProtein 40, 82 125 0.05
Expression

%108

T
I Custering in 1-D Subspace
[ Custering in Iteration
[ Others of SubCLU

Time Spent(ms)

D1 D2 D3 D4 D5 D6
DataSet

FIGURE 3. Hotspots of non-parallel version of PSubCLUS.

TABLE 3. The number of data points in each partition when number of
partitions is 4.

The number of data points in each partition

NO of
Partition  p, D2 D3 D4 D5 D6
0 362467 19423 350382 43953 70632 95796
1 358076 19464 350987 43638 71338 94719
2 355784 19151 338948 43363 70806 94300
3 357483 19257 340577 43397 72284 95093

The datasets used in experiments are all from UC machine
learning repository [57]. The basic attributes of the datasets
and the parameters used by DBSCAN are shown in Table 2.

Experiments use Dell PowerEdge T430 server as the test
machine, and its CPU is Intel Xeon e5-2620 V4@2.10GHz
(8 cores, 16 threads), size of RAM is 64GB, OS is Windows
Server 2008. PSubCLUS proposed in this paper is program-
ming in Java. The version of JDK is jdk-8u191-windows-x64,
and the version of Spark is 2.47.

A. HOTSPOTS OF NON-PARALLEL VERSION OF PSubCLUS
PSubCLUS proposed in this paper includes two main
execution stages: one-dimensional subspace clustering and
clustering in iteration. If the main execution stages of the
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number of partitions

A) DATASET D1-D3

[—e—bpa

Time Spent(ms)

ol . . "
1 2 4 8 16

number of partitions

B) DATASET D4-D6

FIGURE 4. Experimental results of parallel speedup of PSubCLUS.

algorithm are able to execute in parallel, the performance of
the algorithm can be obviously improved. In this group of
experiments, we use Non-Parallel version of PSubCLUS to
clustering datasets in Table 2, and verify the hotspots of this
algorithm. The experimental results are shown in Figure 3.

From Figure 3, we can see that there is an obvious hotspot
of Non-Parallel version of PSubCLUS, that is, clustering
in iteration. This stage accounts for about 80% of all the
time spent by the algorithm. Therefore, parallel execution
of this stage can significantly improve the performance of
PSubCLUS. From Figure 3, we can also see that although
the one-dimensional subspace clustering stage accounts for
about 10% of all the time spent by the algorithm, the parallel
execution of this stage is very easy to achieve. Therefore,
PSubCLUS proposed in this paper will also execute the one-
dimensional subspace clustering stage in parallel, which fur-
ther improves the efficiency.

B. PARALLEL SPEEDUP

In this group of experiments, we adjust the parallelism of
PSubCLUS by setting different numbers of partitions of RDD
to verify the parallel speedup of the proposed algorithm.
When the number of partitions of RDD is one, PSubCLS
becomes a Non-Parallel version. The DBSCAN algorithm
used in PSubCLUS uses the values of m and ¢ in Table 2
respectively. The experiment uses different parallelism of
PSubCLUS to cluster the datasets in Table 2, and the time
spent is shown in Figure 4.
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TABLE 4. The number of data points in each partition when number of
partitions is 8.

The number of data points in each partition

NO of
Partition D2 D3 D4 D5 D6
0 180314 9636 179713 21551 41514 48423
1 180049 9655 180015 21565 41658 47670
2 181139 9682 168614 21582 41230 46962
3 182217 9728 169699 21561 41238 47311
4 182206 9771 170296 21250 41229 47056
5 178090 9794 171265 20944 41823 46630
6 174704 9820 172481 20959 42370 46986
7 175355 9507 173370 20632 41964 47366

TABLE 5. The number of data points in each partition when number of
partitions is 16.

The number of data points in each partition

NO of

Partition D2 D3 D4 D5 D6
0 92051 4928 92538 10921 21296 24833
1 93280 4936 93033 10949 24264 23853
2 93888 4957 83149 10955 21459 24000
3 94545 4991 83645 10934 21514 23407
4 94991 5020 84450 10609 20579 23595
5 90882 5034 84978 10613 21062 23748
6 87265 5053 85584 10624 20784 23952
7 87599 4698 85116 10627 21134 24204
8 88257 4708 87310 10621 19304 23811
9 86766 4719 86973 10288 19373 23998
10 87250 4725 85535 10294 19424 23157
1 87671 4737 85179 10298 19487 23304
12 87212 4751 84659 10298 19868 23474
13 87194 4760 84958 10308 19964 23585
14 87426 4767 85593 10311 20187 23773
15 87730 4809 86575 10316 20375 23988

From Figure 4, we can see that with the continuous increase
of parallelism (the number of partitions), the time spent by
PSubCLUS on the six datasets is reduced correspondingly,
and the time spent on the algorithm is basically inversely
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proportional to the parallelism. This shows that the algorithm
has good parallel speedup, and it will have better performance
when executed on a cluster with more worker nodes.

C. LOAD BALANCING

Load balancing is one of the most important factors affect-
ing the performance of parallel algorithms, which requires
that tasks undertaken by each worker node are basically
equal. PSubCLUS uses the RDD partitioner named balan-
cepartitioner described in part D in Section IV to repartition
rddS1andC; and rddSk1andCi to ensure that each parti-
tion (worker node) processes the almost same number of data
points. In this group of experiments, the total number of data
points in each partition under different parallelism (number
of partitions) was counted. When the number of partitions is
4, 8 and 16, the total number of data points in each partition
is shown in table 3-5.

From Table 3-5, we can see that balancePartitioner pro-
posed in part D in Section IV achieves very good load bal-
ancing effect. Under the condition of different parallelism
(the number of partitions), the number of data points in each
partition is basically the same, which enables PSubCLUS to
execute in parallel on each worker node in the cluster evenly,
showing good performance.

VI. CONCLUSION AND FUTURE WORK

In order to solve the problem of high-dimensional big
data clustering, this paper has proposed a parallel sub-
space clustering algorithm based on Spark named PSub-
CLUS. Inspired by the classic subspace clustering algorithm
named SubCLU, PSubCLUS implements parallel execution
of one-dimensional subspace clustering and iterative cluster-
ing using the functions provided by Spark. In order to achieve
the effect of load balancing, this paper has proposed a method
of RDD repartition based on the number of data points, which
ensures that the number of data points in each partition is
almost equal, so that each worker nodes can perform balanced
when PSubCLUS is running on a cluster which contains many
worker nodes.

In the future, we will carry out further research on handling
complex data and improving clustering results. Firstly,in
addition to the traditional 2D dataset, people or machines in
many fields also produce complex high-dimensional dataset
such as 3D data with timestamp, categorical data, stream data
and so on, which brings new challenges to high-dimensional
data clustering. Secondly,subspace clustering needs to find
clusters in each subspace. Although subspaces need to be
checked can be pruned by monotonicity, the number of them
is still huge. We need to find special subspaces based on
entropy or interesting in all subspaces, which are called sig-
nificant subspace, to further improving clustering results.
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