
Received December 11, 2020, accepted December 16, 2020, date of publication December 24, 2020,
date of current version January 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3047191

An Improved Algorithm GVSPM-F for
Electrical Impedance Tomography
XI HE , YU ZHANG , JIANPING LI , ZHENZHONG SONG, JIANMING WEN ,
JIJIE MA , AND YILI HU
Key Laboratory of Intelligent Operation and Maintenance Technology & Equipment for Urban Rail Transit of Zhejiang Province, College of Engineering,
Institute of Precision Machinery and Smart Structure, Zhejiang Normal University, Jinhua 321004, China

Corresponding authors: Yu Zhang (zjnuzy@zjnu.cn) and Jianping Li (lijp@zjnu.cn)

This work was supported in part by the Natural Science Foundation of Zhejiang Province under Grant LY19E050010, Grant
LY20E050009, and Grant LGF20E050001; and in part by the General Research Projects of Zhejiang Provincial Department
of Education under Grant Y201943038.

ABSTRACT The generalized vector sampled pattern matching (GVSPM) algorithm is widely utilized in the
EIT (electrical impedance tomography) reconstruction to solve the ill-posed inverse problem. An improved
algorithm, which is called the generalized vector sampled pattern matching-fast (GVSPM-F), is proposed
to improve the spatial resolution and reduce the iteration time based on the conventional GVSPM. The
GVSPM merely applied the orthogonal projections to approximate the weights in the coordinate directions.
The iteration of the proposed GVSPM-F algorithm is calculated in the projection direction of the space
constructed by nonlinear correlated column vectors in the column space of the original sensitive matrix.
Hence, the proposed GVSPM-F algorithm could achieve stable convergence without an empirical value to
preserve the shape information and reduce the time consumption of GVSPM. In the experimental results,
GVSPM-F is compared with the traditional GVSPM method in terms of voltage error, iteration time, and
image error. The voltage error decreases by approximately 35%, and the number of iteration decreases from
thousands to fewer than 100. The image error of GVSPM-F is 6% less than that of GVSPM. The proposed
GVSPM-F algorithm is confirmed to be effective for the reconstruction of EIT images.

INDEX TERMS EIT, image reconstruction, GVSPM, inverse problem.

I. INTRODUCTION
Electric impedance tomography (EIT) is reconstructing the
conductivity distribution by the measured surface electrical
potential distribution around the target when injecting a cur-
rent into the object. The surface electrical potential distri-
bution generated by the injected current could be obtained
as a solution of Laplace equation, which leads EIT to a
functional tomography depending on the medium parameter
and boundary condition. Thus, it is necessary to solve an
inverse parameter problem to realize EIT, which is difficult
due to the ill-posed inverse problem.

Compared to CT (computed tomography) and MRI
(magnetic resonance imaging), EIT has its unique advan-
tages of non-invasive, simple structures, fast imaging
speed, no radiation, portable and low price. EIT has been
applied in many fields such as industrial process monitor-
ing [1]–[3], geophysical exploration [4]–[6], and biomedical
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diagnosis [7]–[12]. However, the image spatial resolution of
EIT is limited by the complex manner in which the probing
field interacts with the measured field (‘soft-field’ effects).
The inverse model is utilized to reconstruct EIT images, and
it is difficult to obtain the exact conductivity distribution for
image reconstruction due to the ill-posed inverse problem.
Hence, it is necessary to solve the ill-posed inverse problem
to realize EIT. If the external boundary voltage conditions
have a small change, the ill-posed question may make the
internal conductivity data change because the electric field
has low energy at the centre. The electric field is insensitive
to changes in internal conductivity if the electric field has a
large change at the centre, and the boundary voltage condition
barely changes.

Because of the ill-posed inverse problem, it is very diffi-
cult to obtain a proper solution. Many algorithms have been
proposed to solve this problem. For example. regularization
techniques are used to mitigate the instability of the solutions
of EIT images. One of the most widely utilized algorithms for
regularization techniques is the one-step Gauss-Newton (GN)
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reconstruction algorithm [13], which enables the sophisti-
cated regularized models to describe the EIT inverse problem
through a heuristically determined prior [14], [15]. Landwe-
ber iteration algorithm is based on the steepest gradient
descent method and is also widely applied in EIT [16], [17].
The algebraic reconstruction technique (ART) algorithm is a
simple and effective image reconstruction method for com-
puterized tomography and EIT [18], [19]. Other important
methods include regularization via the total variation (TV)
functional [20]–[22], which enables image reconstruction
with edge preservation.

The generalized vector sampled pattern matching
(GVSPM) algorithm [23] is an iterative algorithm, where the
objective function is the angle between the normalized known
vector and the normalized estimated solution of the corre-
sponding system of equations. The key idea of the GVSPM is
that the objective function is the angle obtained from the inner
product between the input vector and the solution of a system
of equations. GVSPM has been widely utilized to solve the
ill-posed inverse problem, and it has many applications such
as the images of yeast cell sedimentary distribution in a mul-
tilayered microchannel [24], solid–air two-phase flow [25],
and 3D images for Perspex [26]. The recently proposed EIT
research is used tomonitor patients with COVID-19 [27], [28]
and measure the postoperative lung volumes [29]. However,
the spatial resolution of GVSPM strongly depends on the
image type and iteration number. It takes thousands of itera-
tions to obtain the ideal results, which is too much computa-
tion time. Additionally, the reconstruction image of GVSPM
often cannot achieve the ideal result. To overcome some
drawbacks of GVSPM, an improved algorithm GVSPM-F
is proposed. GVSPM-F lets the inner product approach 1.
In other words, the new algorithm lets the angle between the
normalized known vector and the normalized estimated solu-
tion extremely approximate to zero. Thus, the reconstruction
result will be much closer to the ideal solution.

The purpose of this study is to present a novel GVSPM-F
algorithm method to achieve better spatial resolution and
location accuracy. In addition, much fewer iterations are
required in the reconstruction of GVSPM-F. The proof uti-
lized the reciprocal principle to prove the linear dependence
of the column space vector of a sensitive matrix. The effec-
tiveness of the proposed algorithm is validated through com-
parisons with the finite element model (FEM) from Comsol
and experiment results. This paper is organized as follows.
In Section II, the GVSPM algorithm is introduced, and we
first propose GVSPM-F. In Section III, the numerical and real
data experiments are designed to simulate the situation where
a disturbance is placed in the middle of a circular container.
Finally, the conclusion of this paper is shown in section IV.

II. METHODS
A. GVSPM
EIT image reconstruction is based on conductivity e.
However, conductivity e cannot be directly measured because

boundary voltage v is the measured value. Conductivity e
is obtained by (1). Sensitive matrix s is calculated from
Comsol. Because s is not a full rankmatrix, another method to
solve this problem is required, but the closest solution is also
required. This is the inverse problem of EIT reconstruction.
GVSPM is commonly applied to solve this problem:

se = v (1)

v =
∑m

i=1
eisi (2)

e =
[
e1 e2 e3 · en

]T (3)

s =
[
s1 s2 s3 · sn

]
(4)

Equation (1) illustrates the relationship between voltage
and conductivity. Input vector v is represented by a linear
combination of column vector si, i = 1,2,3,. . . n, in sensi-
tive matrix s. The sensitive matrix is a linear mapping of
the boundary voltage and internal conductivity distribution.
An m×1 column vector v is the measured boundary voltage,
and an n×1 column vector e is the conductivity of each
triangle element inside; s is a regularized sensitive m × n
rectangular matrix.

Normalizing by the vector 2-norm |v| yields the following
relationship:

v
|v|
=

∑m

i=1
ei
|si|
|v|

si
|si|
= v′ = s′e′ (5)

where the prime (′) denotes the normalized quantities.
Equation (5) implies that normalized input vector v′ is

obtained as a linear combination of the weighted solutions
ei|si|/|v| with normalized column vectors si/|si|.
The iteration of GVSPM has the following steps:

e0 = s′T v′ (6)

v′k+1 =
(s′e′k )
|s′e′k |

(7)

1v′k+1 = v′ − v′k+1 (8)

Modification by deviation vector1v′k+1 yields the k+1th
iterative solution vector e′k+1 as follows:

e′k+1 = e′k + s
′T1v′k (9)

Exact vector v′ from 1v′k. We deform equations (6-9)
to (10):

ek+1 = ek + s
′T
(
E − s

′

sT
)
v′ (10)

where E is an m× m unit matrix.
When the inner product between v′ and s′e′ is 1, the angle

between s′e′ and v′ is zero, so solution e could be obtained as:

f
(
ek
)
=

v
|v|
·
sek∣∣sek ∣∣ = v′ · s′e′k → 1 (11)

If vector v′ and s′e′ are identical, the real solution is not
necessarily solved because the solution is the conductivity.
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B. GVSPM-F
The principal difference between GVSPM and GVSPM-F is
illustrated in (12) and (13).

GVSPM : ek+1 = ek + s
′T
(
E − s′sT

)
v′ (12)

GVSPM− F : ek+1 = ek + Js′T
(
E − s

′

sT
)
v′ (13)

where J is equal to pinv(s′Ts′) s′T, which is a self-designed
matrix to simplify the equation. The reason for introducing
matrix J will be explained below.
GVSPM merely applies the orthogonal projections to

approximate the weights in coordinate directions C1, C2. . . ,
Cm and iteratively finds the final solution. The iteration of
the proposed GVSPM-F algorithm is calculated in the projec-
tion direction of the space construct by nonlinear correlated
column vectors in the column space of the original sensitive
matrix. Thus, GVSPM-F could more quickly converge, and
the inner product of GVSPM-F is closer to 1. Therefore,
GVSPM-F could achieve better spatial resolution and less
iteration time.

Equation (14) is deduced from (1) and (5).

s′e′ = v′ (14)

Both sides of this equation produce the transpose of the
sensitive matrix, which is described as follows:

s′T s′e′ = s
′T v′ (15)

Assuming that the sensitive matrix is full-rank, vector e′ is
written as:

e′ =
(
s′T s′

)−1
s
′T v′ (16)

In (16), if the inverse of matrix s′Ts′ exists, the solution
(s′Ts’)−1s′Tv′ is not the real solution to e but the projection
of vector v′ onto the column space of matrix s′.

The SVD is utilized for sensitive matrix s, and the result is
shown in (17)-(20).

s = U
∑

V T (17)

where matrix U is the characteristic matrix obtained by the
eigenvalue decomposition of matrix ssT; V is the charac-
teristic matrix obtained by the eigenvalue decomposition of
sTs;

∑
is a nonnegative diagonal matrix.

The pseudo-inverse of sensitive matrix s is written as:

s = V
∑−1

UT (18)

∑
=

 δ1 · · · 0
...

. . .
...

0 · · · δm

. . .

0
0
0

 (19)

∑−1
=


δ−11 · · · 0
...

. . .
...

0 · · · δ−1m
...

0 0 0

 (20)

We construct a function pinv to solve (17) and (20), which
could be obtained as pinv(sT s).
In this study, sensitive matrix s is not full-rank; the rank

of sensitive matrix s is less than the number of rows m.
From the reciprocity theorem (which only applies to the linear
resistive circuit without a controlled source), if the distance
between current and sensing electrodes is similar, the differ-
ence in electrode numbers is identical, and the observation
impedance is similar [30].
Because the sensitive matrix is a linear mapping of the

boundary voltage to the internal potential of the field,
the non-linear field is treated approximately as linear in the
process of solving the forward problem. m/2 rows of the
sensitive matrix are linearly independent, and the rank of
the sensitive matrix is m/2. Therefore, in matrix

∑
, the last

m/2 singular values are close to zero. Because the inverse of
matrix

∑
is
∑
−1, the last m/2 singular values of matrix

∑
−1

will become infinity. As a result, the last m/2 singular values
of matrix

∑
must be deleted. In [31], if the last m/2 singular

values to stabilize the inversion process were deleted, and all
m sets of voltage data were not utilized. The point of view in
our study is that the last m/2 data must be deleted due to the
reciprocity theorem because m/2 rows of the sensitive matrix
are linearly independent. The addition of a regularization
parameter will cause errors.
We set the initial solution vector e′0 to be the orthogonal

projections of known normalized vector v in the coordinate
direction as (6), the iterative process of GVSPM-F is shown
in (21):

e′k+1 = e′k + pinv
(
sT s
)
s
′T (v′ − v′k+1) (21)

Here, v′ is the measure boundary voltage, and v′k+1 is the
boundary voltage calculated after each iteration.
The sensitive matrix of GVSPM-F lets the last m/2 sin-

gular values approach the zero. Therefore, the result of the
pseudo-inversion to the sensitive matrix is:

J = pinv
(
S
′T S ′

)
s
′T (22)

The difference between GVSPM and GVSPM-F is matrix
pinv(s′Ts′), which implies that after the linear transforma-
tion of pinv(s′Ts′), the angle < e′k, 1e′k > is no longer
almost vertical. Therefore, after the iterative convergence, the
inner product between se′k and v′ will be extremely close
to 1. Matrix s′pinv(s′Ts′)−1s′T is the projection matrix of
column vector v in the column space of sensitive matrix s,
and matrix pinv(s′Ts′)s′T is the nonlinear correlation column
vector’s projection in the nonlinear correlation column space
of the sensitive matrix. Therefore, the linear transformation
of pinv(s′Ts′) will substantially decrease the angle < e′k,
1e′k >. As a result, GVSPM-F has much fewer iterations
than GVSPM, and the inner product between se′k and v′ is
closer to 1, i.e., GVSPM-F consumes less time. In addition,
the spatial resolution and location accuracy will improve.

After hundreds of thousands of iterations, the inner prod-
uct of GVSPM still fails to approach 1. The reason is that
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GVSPM assumes that C1, C2,. . . , Cm are orthogonal at the
beginning, but this assumption is not correct, so the angle
between se′k and v′ will remain relatively low as shown
in Fig. 2 but cannot converge to zero. Therefore, the angle
between e′k and 1e′k is almost vertical as shown in Fig. 1.

FIGURE 1. Angle between e’k and 1 e’k.

FIGURE 2. Angle between se’k and v.

III. RESULTS
In the simulation data, there are four types of prototypes:
first, a NaCl solution with a conductivity of 0.8 S/m was
added to the circular area with a diameter of 90 mm, and the
disturbance with a diameter of 20 mm was added to the cen-
tre; second, a 20-mm disturbance is placed in the lower-left
portion of a 90-mm-diameter circle filled with NaCl solution;
third, a 20-mm-diameter disturbance was placed in the mid-
dle, and two 10-mm-diameter disturbances were placed on
each side of the 45-degree inclination; fourth, three circular
disturbances with diameters of 20 mm were placed at three
locations in a triangular shape. For each current injection,

the voltages were obtained by solving the Poisson equation
using the finite-element method.

A. SIMULATION RESULTS
To objectively evaluate the image quality in the simulation
results and experiment result, image error Ie is a common
coefficient to evaluate the image quality, which is calculated
as:

Ie =

√∑N
j=1

(
σ kj − σ

ori
j

)
√∑N

j=1 σ
ori
j

(23)

where σ k
j is the jth element after k iterations of the recon-

structed image; σ ori
j is the jth element of the original image

conductivity; N is the pixel number of the image. A lower
value of Ie indicates better image quality.

Fig. 3(a) shows the simulation prototype with a circle
distribution at the centre of the circular tank. Figs. 3(b-d)
show the GVSPM reconstruction results after 10, 100, and
1000 iterations. Figs. 3(e-g) show the GVSPM-F reconstruc-
tion results after 10, 100, and 1000 iterations.

FIGURE 3. Result of the disturbance at the centre and different Iteration
results of GVSPM and GVSPM-F: (a) Original conductivity distribution;
(b-d) GVSPM result (with 10, 100, 1000 iterations); (e-g) GVSPM-F result.
(with 10, 100, 1000 iterations).

Considering the GVSPM and GVSPM-F results in Fig. 3,
GVSPM-F has a better spatial resolution and location accu-
racy with the most significant difference in the result
of 10 iterations. After 10 iterations, the reconstruction results
of GVSPM-F converged. Therefore, there is almost no change
from Fig. 3(e) to Fig. 3(g). The reconstruction results of
GVSPM-F obtain better location accuracy when the number
of iterations increases.

In Table 1, the image error of GVSPM widely fluctu-
ates between 0.983-0.972 with the lowest point of 0.972 at
30 iterations. The image error of GVSPM-F begins at
0.974 and dramatically decreases to approximately 0.952;
then, the image value of GVSPM-F remains steady.

Based on Fig. 3, the reconstruction results of GVSPM-F
have better location accuracy and spatial resolution. Further-
more, GVSPM-F could converge in only eight iterations.
Based on Table 1, GVSPM-F has a lower image error than
GVSPM, so the results of GVSPM-F reconstruction are more
stable and accurate.
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TABLE 1. Image error with the disturbance at the centre.

TABLE 2. Image error with the disturbance at the lower left centre of the
circle.

The simulation prototype with a circle distribution in the
north-west side of the circular tank is shown in Fig. 4(a).
Figs. 4(b-d) show the GVSPM reconstruction results after 10,
100, and 1000 iterations. Figs. 4(e-g) show the GVSPM-F
reconstruction results after 10, 100, and 1000 iterations.

FIGURE 4. Result of the disturbance moving towards the lower left centre
of the circle and different Iteration results of GVSPM and GVSPM-F:
(a) Original conductivity distribution; (b-d) GVSPM result (10, 100,
1000 iterations); (e-g) GVSPM-F result.

From Fig. 4(b) to Fig. 4(d), the images become clearer and
approach the shape of the original simulation result. However,
the reconstruction image of GVSPM after 1000 iterations is
still worse than the reconstruction image of GVSPM-F after
10 iterations.

The image errors of GVSPM and GVSPM-F follow sim-
ilar trends: they begin at 0.985 and 0.988, respectively, and
decrease. GVSPM-F remains steady after 10 iterations. The
image error of GVSPM-F decreases throughout the entire
period.

Overall, the image of GVSPM-F has better spatial res-
olution and location accuracy than GVSPM. In addition,
GVSPM-F could converge faster.

Fig. 5 (a) illustrates the third prototype, where a distur-
bance with a diameter of 20 mm is placed in the middle, and
two smaller disturbanceswith diameters of 10mmare on each
side of the 45-degree inclination.

FIGURE 5. Result of the disturbance at the centre and two smaller
disturbances at the top of the slope on either side. Different Iteration
results of GVSPM and GVSPM-F: (a) Original conductivity distribution;
(b-d) GVSPM result (10, 100, 1000 iterations); (e-g) GVSPM-F result.

TABLE 3. Image error with the disturbance at the centre and smaller
disturbances at the top of the slope on either side.

In Fig. 5, the original simulation result has three circular
disturbances. The result of GVSP-F has a clear image of
approximately three circles after only 10 iterations. However,
the result of GVSPM appears similar to a rectangle distur-
bance. After the iteration, the results of GVSPM are clearer
with the increase in the number of iterations, but the results
of GVSPM-F are clearer and more accurate.

The image error of GVSPM-F consistently decreases to
0.963 in 8 iterations and remains stable over the remaining
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period. Similarly, GVSPM begins at approximately 0.992,
after which GVSPM begins to decline to 0.976 and then
slightly increase to 0.980 at 1000 iterations. The lowest image
errors of GVSPMandGVSPM-F are 0.976 and 0.963, respec-
tively, so GVSPM-F has a better reconstruction image than
GVSPM.

In Fig. 6(a), there are three disturbances. We place three
circle disturbances at 120 degrees.

FIGURE 6. Three disturbances in the circuit; different Iteration results of
GVSPM and GVSPM-F: (a) Original conductivity distribution; (b-d) GVSPM
result (10, 100, 1000 iterations); (e-g) GVSPM-F result.

TABLE 4. Image error with three disturbances in the circuit.

Figs. 6(b-d) show the results of GVSPM; there is no distur-
bance at the centre of the circle. However, the reconstruction
image of GVSPM looks similar to a triangle.

The image errors of GVSPM and GVSPM-F begin at
0.988 and 0.966, respectively; then, both continue to decrease
to 0.979 and 0.958. The image error of GVSPM is approxi-
mately 0.3 higher than that of GVSPM-F.

In conclusion, from all simulation results, the reconstruc-
tion results of GVSPM-F could use much less time to con-
verge, and the inner product is much closer to 1 than GVSPM.
Larger inner products imply that the reconstruction result is
closer to the ideal solution. Furthermore, using GVSPM-F
to reconstruct the image could greatly improve the location
accuracy and spatial resolution with very few iterations.

As the number of higher conductivity circular area
increases, the results become worse for both methods. The
reason for that is because the reconstruction accuracy of
EIT will naturally decrease as the complexity of the probing
field increases. Because that more complex probing field

means that there are more errors in the inverse problem. The
reconstruction accuracy of EIT is limited by the complex
manner. This is known as ‘soft-field’ effects (the probing field
interacts with the measurand) [1].

B. EXPERIMENTAL RESULT
The measurement object of experiments is the glass rod. The
applied alternate current is ic = 0.1 mA. The frequencies
of applied current are f = 50 kHz. The resolution of the
reconstructed image N is 2042.

1) EXPERIMENTAL SETUP
As shown in Fig. 7, the experimental setup is based on
Red-Pitaya platform, which integrates a System-on-Chip
(SoC) Zynq-7010 (Xilinx, Inc., San Jose, CA). The SoC com-
bines an ARM dual-core Cortex-A9 MPCore processor with
an FPGA. The system consists of a signal generator (RIGOL
DG4162), a power amplifier (Tabor Electronic FCHVWA
9400), a power supply, a gating switch, a red pitaya, and a
laptop computer.

FIGURE 7. EIT instrument; cables connect the data acquisition system to
a laptop computer.

2) EXPERIMENTAL RESULTS
Another coefficient to evaluate the image quality is voltage
error Ue,, which is calculated as:

Ue =

√∑M
i=1

(
uki − u

ori
i

)√∑N
j=1 u

ori
j

(24)

where i is the ith measurement number; M is the total number
of measurements; ukj is the j th element of the final iterative
potential, which is calculated from the final k = K iterative
reconstructed image; uorij is the ith measured voltage from
experiments;Ue quantifies the difference between ukj and u

ori
j .

A smaller value of Ue implies better image quality.
Figs. 8(a-d) show the experiment results of GVSPM with

10, 100, 1000, and 5000 iterations. Figs. 8(e-g) illustrates the
experiment results of GVSPM-Fwith 10, 100, and 1000 itera-
tions. The reconstruction image of GVSPM-F achieves better
image quality, and the artefacts of eight electrodes become
increasingly clearer with more iterations. However, the arte-
fact of eight electrodes does not reflect that the imageworsens

VOLUME 9, 2021 12597



X. He et al.: Improved Algorithm GVSPM-F for Electrical Impedance Tomography

FIGURE 8. Different Iteration results of GVSPM: (a-d) GVSPM-F (a-d)
GVSPM results (Iterate 10, 100, 1000, 5000 times) and (e-g) GVSPM-F
results. A glass rod is placed in a circular tank.

after more iterations because the image with artefacts is the
real situation.

Table 5 clearly shows that the image errors of GVSPM
and GVSPM-F begin at almost identical recorded values. The
image error of GVSPM slightly fluctuates and remains rela-
tively high throughout the entire period, while the image error
of GVSPM-F dramatically drops to 0.922 at 10 iterations and
remains steady.

TABLE 5. Image error of experiment results.

In Fig. 9, figures (1-4) are the voltage error of 4 different
simulations, and figure (5) is the experiment result. Minimum
voltage error Ue of these reconstruction results is 0.4936,
0.5029, 0.4982, 0.4951, and 0.5386. GVSPM-F converges
after the 8th iteration, and the minimum voltage error Ue of
GVSPM-F is 0.1449, 0.2364, 0.2357, 0.2350, and 0.2618.
Compared to the results of GVSPM and GVSPM-F, the volt-
age errors of GVSPM-F results are 35% lower than the results
of GVSPM on average, which implies that the reconstruction
image of GVSPM-F has better image quality.

In the experiment result, the inner product of GVSPM-F
between s′e′k and v converges to 0.9835 after only 9 iter-
ations. After 1000 iterations, the inner product of GVSPM
reaches 0.9567. Finally, the GVSPM inner product results
converge to 0.9635. The inner product of this experiment
result could not more closely approach 1 because this method
utilizes all voltage data, but the voltage data have a nose error.
The voltage data do not satisfy the reciprocity theorem, so all
voltage data are linearly independent. Thus, not all voltage
data will converge in the iteration because the eigenvalue of

FIGURE 9. The minimum value of Ue, which is calculated by GVSPM and
GVSPM-F. (1-4) The contrast between GVSPM and GVSPM-F in the first of
four simulation results. (5) The contrast between GVSPM and GVSPM-F in
the experimental result.

transfer matrix λ is not always less than 1, and it will not
converge at the end of every iteration of the measurement.

In conclusion, GVSPM is a powerful iterative solver
for any ill-posed linear system equations. It enables us to
obtain reliable and stable solutions for EIT reconstruction.
to improve the resolution of EIT images. Most of the cal-
culation time of GVSPM-F is spent on the pseudo-inverse
calculation of matrix s′, which can be calculated before the
iterative algorithm, and then the calculation time gap between
GVSPM and GVSPM-F will be huge.

IV. CONCLUSION
The objective of this paper is to develop a novel algorithm
based on the GVSPM algorithm to enhance the EIT image
reconstruction by linear dependence column space vectors of
a sensitive matrix during iteration. Compared to the GVSPM
algorithm, the proposed method achieves a higher spatial res-
olution and less iteration time. The image error of GVSPM-F
is 6% less than that of GVSPM. The voltage error decreases
by approximately 35% and the number of iterations decreases
from thousands to fewer than 100. We established the rela-
tionship between the reciprocal theorem and the EIT inverse
problem. In addition, there is only half of the independent
measure data. Hence, the acquisition time could be reduced
by half.

The major advantage of GVSPM-F is that GVSPM-F con-
verges much faster than GVSPM. Because the inner product
of GVSPM-F is much closer to 1 after convergence. As a
result, GVSPM-F could achieve better location accuracy and
spatial resolution. However, GVSPM-F still has a problem
that the change of inner product is much larger than GVSPM
for each step. Therefore, some inner product results may be
missed. In most situations, the closer the inner product gets
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to 1, the better the image result could get, and GVSPM-F
could obtain the inner product which is closer to 1 than the
result of GVSPM.
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