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ABSTRACT Anovelmortar approach for the domain decomposition of field problems discretized in terms of
nodal variables by the cell method is here proposed. This approach allows the use of both arbitrary polyhedral
meshes and non–conforming discretizations, without limitations or complications due to the mesh type or
the model geometry. Therefore, it provides a new domain decomposition method that can be practically used
in engineering applications for coupling different parts of a model, which can be independently discretized
and then reassembled together. More precisely: 1) Any part of the computational domain is first separately
modeled in order to assess the mesh type and size that are best suited for ensuring an accurate local field
reconstruction; 2) The different discretized parts can be combined together in order to obtain an accurate
solution of a composite problem, while maintaining the local discretizations already determined. As a main
advantage over existing mortar approaches, the algebraic structure of the final matrix system—derived by
the cell method discretization—is not altered by the introduction of mortar interface conditions. As a result,
the same preconditioning and iterative solver strategy can be extended as is to the proposed mortar method.
This approach is validated by a convergence analysis on an analytical test case and its effectiveness for
practical applications is assessed on a real–sized engineering problem.

INDEX TERMS Multiscale, cell method, mortar method, domain decomposition, polyhedral mesh.

I. INTRODUCTION
The key idea of domain decomposition methods (DDMs)
is to model a field problem in a computational domain
by: 1) subdividing the domain into proper subdomains;
2) independently discretizing any subdomain; and finally
3) properly coupling the discretized model parts [1].

DDMs can be of utmost importance for many engineering
applications because the different parts of the model can be
independently discretized and then reassembled together to
simulate the entire model. Such a use of DDMs has been
proposed, e.g., in [2] for large electro–thermal analyses of
integrated circuits. DDMs are also needed, for instance, when
mesh adaptivity is desired [3]. This may occur with local
field anisotropies due to, e.g., singular sources, corner singu-
larities, or discontinuous material coefficients. As a further
advantage of DDMs, parallel computing can be applied for
large sized problems, by sharing among different processors
the discretized models of the single components [4], [5].
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Among the different types of DDMs, mortar meth-
ods (MMs) are widely adopted because they can deal with
both geometric and functional non–conformity, so that differ-
ent kinds of meshes and different numerical methods can be
chosen in different parts of the model at the same time [6].
A mortar approach was first proposed in [7] to combine
spectral element method (SEM) and finite element method
(FEM). MMs make use of separate finite element discretiza-
tions on non–overlapping subdomains. Meshes on these sub-
domains are not required to match on the interface, so that
different kind of elements (e.g., quadrilaterals or triangles for
2–D problems) can be used in each subdomain. The sub-
domain from which the interface inherits its discretization
is called slave or non–mortar side; the other one is termed
master or mortar side. The solution continuity at the inter-
face of the partial differential equation (PDE) is enforced by
Lagrange multipliers, suitably chosen to preserve the solution
accuracy.

In order to ensure numerical stability and the convergence
of MMs, basis functions of local FEM spaces (each of them
related to a different subdomain) have to fulfill additional

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 1465

https://orcid.org/0000-0002-5501-3904
https://orcid.org/0000-0002-2851-3698
https://orcid.org/0000-0002-3153-9338


F. Moro, L. Codecasa: Domain Decomposition With Non–Conforming Polyhedral Grids

constraints at boundary nodes [8]. These requirements may
lead to an unacceptable complexity, especially in the case
of 3–D problems. Moreover, MMs have significant limita-
tions which do not guarantee a full flexibility in numerical
modeling, namely MMs are typically restricted to models
with: 1) hexahedral or tetrahedral meshes; 2) subdomain
interfaces without corners [9], [10]. In particular, hexahedral
meshes can be best used for discretizing the structured parts
of the model and, after mesh refinement, they typically lead
to a propagation of degrees of freedom (DOFs). On the other
hand, tetrahedral meshes cannot be used for discretizing parts
with high aspect ratio, providing otherwise poor accuracy.

Another important limitation of classical MMs is con-
cerned with the solution of the final system of discretized
equations. Lagrange multipliers used for enforcing continuity
cannot be eliminated from the final system of equations,
which is in a saddle–point form. This class of problems in
general cannot be either easily preconditioned or efficiently
solved as thoroughly discussed in [11]. In order to get rid of
Lagrange multipliers, biorthogonal basis functions, limited to
tetrahedral meshes only, have been proposed in [12], [13].

The basic idea of this work is to introduce a new mortar
method for generic polyhedral meshes, overcoming all above
drawbacks. In this way, the use of polyhedral meshes, com-
bined to a non–conforming discretization approach, provides
a MM, which can be used without limitations in engineering
applications, for coupling discretized models, independently
derived for each part of the computational domain. More
precisely: 1) Any part of the domain can be first separately
modeled in order to assess the mesh type and size that are
best suited for ensuring an accurate local field reconstruction;
2) The different discretized models can be coupled in order
to obtain an accurate solution of a composite problem, while
maintaining the local discretizations already determined. As a
main advantage of the proposed approach, the final matrix
system, with the mortar approach, preserves the algebraic
structure of a standard CM formulation, on a undecomposed
domain, without mortar. As a result the same preconditioning
and iterative solver strategy can be applied to such a MM.

In order to make the presentation as simple as possible,
the MM is presented for a 3–D electrostatic problem formu-
lated in terms of electric potential. This presentation can how-
ever be straightforwardly adapted for any physical problem
formulated in terms of a field associated to the mesh nodes,
according to Tonti’s framework [14], such as heat transfer
problems in the temperature field, elasticity problems in the
displacement field, acoustic problems in the pressure field.

In order to introduce polyhedral elements, which are not
implemented by conventional FEM, the cell method (CM)
with piecewise–uniform polyhedral elements, proposed
in [15], is here adopted. Unlike FEM, CM provides the field
problem equations directly in algebraic form suitable for
numerical computation. A combinatorial discrete model is
thus constructed and formulated in a similar way to electric
network problems, as discussed in [16]. Piecewise–uniform
bases have these relevant features compared to other

polyhedral methods proposed in literature: 1) The Gaussian
quadrature of rational interpolants such as with polytope
finite elements [17], which can be inaccurate and compu-
tationally expensive, is not required; 2) Matrix assembly is
entirely jacobian–free with piecewise-uniform bases; 3) The
computation of multiple local matrix systems such as with
the mimetic finite difference method [18], or the virtual
element method [19], which may highly affect the compu-
tational burden when analyzing real–sized problems, is not
required. Piecewise–uniform basis functions are defined on
star–shaped polyhedra, with planar faces, and are therefore
suitable for discretizing any type of model geometry. Since
these functions are directly constructed over a polyhedron,
rather than over its tetrahedral partition, a limited number of
DOFs is required for local field interpolation. The so–called
energy approach [15] makes it possible to obtain symmet-
ric and positive mass matrices, useful for discretizing local
constitutive relationships. These algebraic properties lead to
well–behaved final matrix systems, to be treated by the same
efficient iterative solvers used with classical FEM over stan-
dard hexahedral or tetrahedral partitions.

A CM–based mortar method (MCM), based on point–wise
matching for interface gluing, was proposed for tetrahedral
meshes in [20], [21]. Accuracy of continuity constraints
was then improved in [22], for 2–D elliptic problems, and
in [23], for 3–D elliptic problems, by using dual bi-orthogonal
bases leading to a local elimination of Lagrange multipli-
ers. The CM has shown to be well suited also for coupling
different formulations or physics, since topological relation-
ships are split from constitutive ones and integral variables
are used to enforce element continuity. An unsymmetric
CM–BEM formulation was proposed in [24] for solving
eddy current problems by coupling the CM to the bound-
ary element method (BEM). A symmetric CM–BEM was
presented for magnetostatics in [25], and then extended to
eddy current problems in multiply–connected domains [26].
Recently, a CM for eddy–problems on multiply–connected
domains was proposed in [27]. A coupling between different
physics was provided in [28] for solving electro–thermal
problems. The CM based on polyhedral elements (poly–CM)
was recently extended to 3–D elastic and piezo–elastic prob-
lems for discretizing thin–layered composite structures of
energy harvesters [29]. Numerical results showed a very
good agreement with higher–order FEM, after applying a
smoothing procedure. To give an example, in [29], by con-
sidering a realistic 3–D model of a cantilevered piezoelectric
harvester—simulated in static conditions, with a relatively
coarse mesh (14 748 DOFs)—, the maximum discrepancy of
the tip displacement from second–order FEM was found to
be about 3.5%, for smoothed poly–CM, and 87.5% without
smoothing (first–order CM).

The paper is organized as follows. The CM over polyhe-
dral meshes is first presented in Section II without domain
partition. The mortar approach derived from this poly–CM is
illustrated in Section III. Implementation details for building
the mortar projection, at the core of polyhedral MCM, are
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FIGURE 1. (a) Primal grid G�: primal nodes are indicated with black dots, primals cells are polygons (shaded in gray); (b) Barycentric
subdivision: primal cells are split into barycentric triangles (shaded in blue); (c) Augmented dual grid G̃�0 : dual polygons (shaded in
red) are obtained by aggregating triangles in blue around any primal node. Note that the boundary (black dashed line) is split on its
turn into barycentric cells (blue thick line),which are joined into 1-D dual cells (red thick line).

provided in Section IV. Numerical results are discussed in
Section V, where an analytical (with a convergence test) and
a numerical benchmark (consisting in a real–sized engineer-
ing problem) are provided. Implementation details about the
constitutive matrix assembly are also given in the Appendix.

II. CELL METHOD ON POLYHEDRAL MESHES
The CM discretization framework is presented first on the
whole computational domain, without applying a domain
decomposition. The CM variant proposed in [30], which
introduces the key idea of augmented dual grids (instead
of dual grids as in classical CM), is here used. This novel
geometric framework fixes some limitations of the original
CM approach (e.g., not enforcing properly energy conserva-
tion) and introduces new discrete operators for handling both
boundary and interface conditions. In such a way continuity
conditions, at the core of any MM, can be correctly imple-
mented in the CM in order to ensure field trace continuity.

A. GEOMETRIC SETTING
The computational domain � ⊂ R3 is discretized into a
polyhedral mesh G�, i.e., the domain primal grid, which is
made of N vertexes, E edges, F faces, and V polyhedra
or volumes. The restriction of G� to the boundary 0 is the
boundary primal grid G0 , in which vertexes are traces of
bulk primal edges of G�, edges are traces of bulk primal
faces, and faces are traces of bulk primal volumes. Polyhe-
dral and polygonal cell complexes G� and G0 are then split
into their corresponding barycentric subdivisions, which are
obtained by splitting any polyhedron or polygon into a set
of tetrahedra or triangles having as a common apex the cell

centroid. The corresponding domain dual grid G̃� (made of
Ñ vertexes, Ẽ edges, F̃ faces, and Ṽ volumes) and boundary
dual grid G̃0 (made of Ñ0 vertexes, Ẽ0 edges, F̃0 faces) are
finally obtained by joining barycentric tetrahedra or triangles.
The augmented dual grid is the union of dual domain and
boundary grids, that is G̃�0 = G̃� ∪ G̃0 according to [30].
This specific geometric construction provides a one–to–one
correspondence between primal and dual grid entities, so that
Ñ = V , Ẽ = F, F̃ = E, Ṽ = N .

For the sake of simplicity, the whole discretization pro-
cess is sketched for a 2–D domain in Fig. 1, even though
both the mathematical formulation in Section III and numer-
ical experiments in Section V refer to a more general 3–D
setting. The augmented dual grid in Fig. 1 c, discretizing
a unit square � = [0, 1]2, is obtained from the primal
grid (Fig. 1 a) by assembling triangles of the barycentric
subdivision (Fig. 1 b). G�, whose nodes are indicated by
black dots in Fig. 1 a, is made by polygons with an arbitrary
number of vertexes (e.g., the polygonal cell is shaded in gray).
The corresponding barycentric subdivision is then built by
taking as mesh vertexes primal nodes and centroids of primal
edges and polygons. G̃�0 is finally obtained by aggregating
barycentric triangles around any primal node in order to get a
one–to–one correspondence between primal nodes and dual
cells. In Fig. 1 c, a dual polygon (partitioned into barycentric
triangles) is shaded in red color. Dual nodes, which are cen-
troids of primal polygons and centroids of boundary edges,
are indicated by red (filled) squares. Note that, the other way
round, a one–to-one correspondence exists also between dual
nodes and primal cells, which can be either primal polygons
of G� or boundary edges of G0 .

B. DISCRETE FIELD VARIABLES
Primal and dual cell complexes carry a different orientation
according to [16]. Geometric entities of G� are endowed by
an inner orientation so that any vertex is oriented as a sink—
i.e., any edge incident to that vertex is pointing inward—,
any edge is oriented by a transversing direction (from one
end to the other), any face is oriented clockwise or counter-
clockwise, and any polyhedral cell is oriented by assuming
that its facets are oriented counterclockwise with respect to
the corresponding exterior normal. Similar considerations
hold for the boundary complex G0 . Geometric entities of
G̃�0 are endowed with outer orientation, which is simply
inherited from that one of primal grid entities by one–to–one
correspondence. In such a way, e.g., a dual edge is oriented
by the same orientation of its corresponding primal face, that
is a clockwise or counterclockwise rotation around it.

Orientation is useful to define properly discrete field vari-
ables (arrays of DOFs), because a local reference is required
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in order to compute physical quantities such as potentials or
line, surface, volume integrals. In such a way, any geometric
element carries its specific orientation as a local reference
frame. As an example, the case of electrostatics is here con-
sidered. Arrays of DOFs are electric potentials on primal
nodes n, i.e.,8� = (φn)n∈G� ; voltages along primal edges e,
i.e., u� = (ue)e∈G� , where ue =

∫
e E(x) · t(x) dγx is the line

integral of the electric field E and t is the unit tangent vector
related to e; fluxes of the electric displacementD through dual
faces f̃ , i.e., d̃� = (̃d̃f )̃f ∈G̃�0 , where d̃̃f =

∫̃
f D(x) · n(x) dσx

and n is the unit normal vector related to f̃ .

C. TOPOLOGICAL RELATIONS
Local reference frames are related together by connectivity
between elements. An incidence number is +1 if a pair of
connected geometric entities carries the same orientation,
−1 otherwise, and 0 if they are disconnected. Connectivity
between grid entities is established by the following incidence
matrices with {0,−1,+1} coefficients, i.e., G� (edges to
nodes on G�), D̃� = −GT

� (volumes to faces on G̃�), and
D̃�0 (volumes on G̃� to faces on G̃0) [30].
Let e be a primal edge oriented from vertex m to n.

By exploiting the gradient theorem, the electric compatibility
condition E = −∇φ provides the electric voltage along the
edge e as a potential difference between m and n, that is:

ue =
∫
e
E(x) · t(x) dγx = φm − φn, (1)

which is written for all nodes and edges of G�, as:

u� = −G� 8�. (2)

On the augmented dual grid, electric equilibrium is imposed
by applying locally Gauss’s theorem to any dual volume, that
is ∇·D = ρ, with ρ electric free charge. By integrating this
expression over any dual volume ṽ with boundary ∂ ṽ:∫

ṽ
∇·D(x) dx =

∫
∂ ṽ

D(x) · n(x) dσx

=

∑
f̃ ∈ ∂ ṽ
± d̃̃f = q̃ ṽ, (3)

where q̃ ṽ =
∫
ṽ ρ(x) dx is the total charge in the dual cell and

the sign in the sum over dual facets is positive if f̃ is endowed
with outward orientation, negative otherwise. Writing this
equation for all cells pertaining to G̃�0 and recasting inmatrix
form provide Gauss’s theorem in global form, as:

D̃� d̃� + D̃�0 d̃0 = q̃�, (4)

where d̃0 = (̃d̃f )̃f ∈G0 is the array of electric displacement
fluxes through boundary dual faces and q̃� = (̃q̃v )̃v∈G̃� is

the array of total free charges inside dual volumes. D̃�0 is a
selection matrix, made of {0, 1} coefficients, which identifies
all the dual boundary faces incident to domain dual cells.

D. DISCRETE CONSTITUTIVE RELATION
The local constitutive relationships for an electrostatic prob-
lem with anisotropic media, with permittivity tensor ε, is:

D(x) = ε(x)E(x). (5)

This relationship is discretized with the CM by using edge
elementswe, i.e., edge element vector basis functions, defined
on polyhedral grids [15]. These functions enjoy the following
properties: i) They form a vector basis; ii) They enforce the
continuity of the tangential component of the electric field;
iii) They enforce a mapping property from primal to dual
grid (consistency), i.e.,

∫
v we(x) dx = f̃e, where v is a

generic primal polyhedral cell, e is a primal edge related to
the basis vector, and f̃e is the area vector related to f̃e, i.e., the
dual face in one–to–one correspondence with e; iv) They are
able to represent exactly any elementwise constant vector
field (uniformity). These edge functions require a preliminary
construction for their definition. The primal cell (polyhedron)
is first split into a barycentric subdivision made of tetrahedra
sharing as a common apex the polyhedron centroid. In Fig. 2,
tetrahedron (e1, e2, cf 1, cv) is made up by a triangular face,
obtained by joining a primal edge (e1, e2) with a primal
face centroid cf 1, and the polyhedron centroid cv. A similar
construction holds for (e1, e2, cf 2, cv), sharing the same tri-
angular face. Then, for any edge e′, tetrahedra attached to it
are assembled to form a uniformity region ve′ in which we is
constant and it is defined as:

we(x) =
f̃e

f̃e · e
δee′ +

(
I−

f̃e′ ⊗ e′

f̃e′ · e′

)
f̃e
|v|
, x ∈ ve′ , (6)

where δee′ is the Kronecker delta (δee′ = 1 if e = e′,
0 otherwise), I is the identity tensor, |v| is the cell vol-
ume, and ⊗ is the dyadic product between vectors a and b,
i.e., (a⊗ b) c = a (b · c) for any vector c. From the previous
expression, it can be easily proven that also the unity property
holds, i.e.,

∫
e we(x)·t(x) dγx = δee′ , fromwhich also property

i) can be easily derived. Note that the number of uniformity
regions equals the number of primal edges inside v and the
support of we is made up of all polyhedra attached to e.
Moreover, the area normal of any (non–planar) dual face can
be computed as f̃e =

∫̃
fe
n(x) dσx = 1/2 (cv−ce)×(cf 1−cf 2),

where ce is the edge centroid related to e (Fig. 2).
By assuming a locally constant field when the polyhedral

mesh is very refined, the following expansion holds:

E(x) =
E∑
e=1

ue we(x), x ∈ �, (7)

whereE is the total number of edges ofG� and, from the unity
property, expansion coefficient ue turns out to be the electric
voltage along e, i.e., ue =

∫
e E(x) · t(x) dγx .

By assuming a locally constant field in the support of we,
for any e, and by using the consistency property, the dielectric
displacement flux through a dual face f̃e, related to edge e,
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FIGURE 2. Uniformity region (straight line) related to an oriented
edge (e1,e2). The polyhedral cell v is in dashed line.

is computed as:

d̃̃fe =
∫
f̃e
D(x) · n(x) dσx ≈ D(x) ·

∫
f̃e
n(x) dσx

= D(x) · f̃e =
∫
�

D(x) · we(x) dx, (8)

which, by using (5) and (7), becomes:

d̃̃fe =
∫
�

we(x) · ε(x)E(x) dx

=

E∑
e′=1

∫
�

we(x) · ε(x)we′ (x) ue′ (t) dx. (9)

For non–locally constant fields encountered in general prob-
lems this relationships represents a numerical approximation,
whose accuracy increases by refining the domain discretiza-
tion. Writing (9) for any dual face of G̃�, or, correspondingly,
for any edge e, one obtains the dielectric constitutive relation-
ship in the whole domain. In matrix form, it is expressed as:

d̃� = ε� u�, (10)

where ε� = (εee′ )e,e′∈G� is dielectric constitutive matrix,
whose coefficients are:

εee′ =

∫
�

we(x) · ε(x)we′ (x) dx. (11)

Details of the algorithm used for assembling the constitutive
matrix are reported in the Appendix.

E. MATRIX SYSTEM
By combining topological relationships (2) and (4) with
the consitutive relationship (10), the final matrix system for
the electrostatic problem in � is obtained. By noting that
D̃� = −GT

�, it turns out to be:

−GT
� ε�G�8� + D̃�0 d̃0 = q̃�. (12)

This matrix system is resolved after imposing scalar
potentials on the Dirichlet boundary 0D, i.e., on a subset of
variables 8�, and/or Neumann boundary conditions on the

Neumann boundary0N , i.e., on a subset of variables d̃0 . Note
that0 = 0D∪0N provides a partition of the domain boundary
in order to ensure a unique solution of (12).

III. POLYHEDRAL MORTAR FORMULATION
The computational domain � is decomposed in K
non-overlapping connected sub–domains �k , k = 1 . . .K .
The boundary of any domain is indicated as 0k = ∂�k .
The interface 0ij between a pair of adjacent subdomains �i
and �j is defined as the intersection of their boundaries,
i.e. 0ij = 0i ∩ 0j with i, j = 1, . . . ,K . The union of all
interfaces is denoted as 0 =

⋃
0ij, with abuse of notation

with respect to Section II. Note that 0 does not include the
exterior boundary00 = ∂�. In the proposed mortar approach
each�k is discretized independently with a non–conforming
polyhedral mesh so that on the interface 0 two different
sides are defined, i.e., the slave side 0−, from which 0
inherits its discretization, and the master or mortar side 0+,
according to definitions already provided in Section I. In the
following, 0 is assumed to be a piecewise–planar surface in
order to make the use of the intersection algorithm, described
in Section IV, possible. After the decomposition of � into
subdomains, (12) has to be rephrased as follows:

−GT
� ε�G�8� + D̃�0 d̃0 = q̃� − D̃�00 d̃00 , (13)

where d̃0 , differently from (12), indicate the interface fluxes
and d̃00 the exterior boundary fluxes. (13) is solved only
after imposing continuity constraints between subdomains
and Dirichlet and/or Neumann BCs. The construction of mor-
tar continuity constraints is discussed in the following.
The continuity of the electric field tangent component and

the continuity of the electric displacement normal component
are weakly imposed by introducing novel basis functions.
According to Galerkin’s approach, test functions are chosen
in the same space of shape functions. DOFs are electric poten-
tials at the vertexes of primary boundary grids, and fluxes of
the electric displacement through the faces of dual boundary
grids. In particular, fluxes are evaluated by assuming slave
andmortar sides oriented by opposite unit normals, i.e., n− =
−n+ on 0+. With this convention, the following DOFs are
defined: 80− = (φ−n )n∈G0− , 80+ = (φ+m )m∈G0+ are the
arrays of the electric scalar potentials on the primal boundary
vertexes of slave and master sides, and d̃0− = (̃d−n )n∈G̃0− ,

d̃0+ = (̃d+m )m∈G̃0+ are the arrays of fluxes of the electric
displacement through the faces of corresponding dual grids,
respectively. Array coefficients are d̃−n =

∫̃
fn
D−(x) dσx

and d̃+n =
∫̃
fn
D+(x) dσx , for the slave and master side,

respectively, where D−(x) = D(x) · n−(x), x ∈ 0−, and
D+(x) = D(x) · n+(x), x ∈ 0+, are the normal components
of the electric displacement.
By using the same discretization approach of bulk

domains, scalar fields are assumed to be locally piecewise
constant so that accuracy increases when mesh is refined.
Novel piecewise–constant bases for the potential and the
normal component of the electric displacement on both slave
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and master sides are defined with a support on the dual mesh.
Fig. 3 shows basis function supports for nodes n, m on the
slave and master side, respectively.

FIGURE 3. Non–conforming slave ad master surfaces discretized by
polygonal meshes (in black line). Mortar basis functions related to primal
nodes n, m have the corresponding dual cells as their supports (shaded in
color). Primal nodes are depicted in red color on 0−, in blue color on 0+.
Dual mesh (overlapping primal mesh) is indicated in red line.

For any primal vertex n of G0+ or G0− , related in
one–to–one correspondence to a dual cell f̃n, its correspond-
ing primal mortar basis function is defined as:

wn(x) =

{
0, x 6∈ f̃n,
1, x ∈ f̃n,

(14)

which is a pulse function on the dual complex. In such
a way, these functions are linearly independent and are
able to reconstruct exactly an elementwise constant scalar
field. Shape functions for the normal component of the
electric displacement on dual grids G̃0+ or G̃0− , termed
dual mortar basis functions, are then defined on the same
support, as:

w̃n =
1

|̃fn|
wn, (15)

where |̃fn| indicates the dual cell area. From this defini-
tion, the unity property is automatically fulfilled, that is∫̃
fn
w̃m(x) dσx = δmn. By using piecewise–constant bases the

following expansions are obtained for slave and master scalar
potentials:

φ−(x) =
∑

n∈G0−
wn(x)φ−n , x ∈ 0−, (16)

φ+(x) =
∑

m∈G0+
wm(x)φ+m , x ∈ 0+, (17)

where φ−n , φ
+
m indicate the slave and master potentials evalu-

ated on primal nodes n, m, respectively. For the normal com-
ponents of the electric displacement the following expansions
hold:

D−(x) =
∑

n∈G0−
w̃n(x) d̃−n , x ∈ 0−, (18)

D+(x) =
∑

m∈G0+
w̃m(x) d̃+m , x ∈ 0+, (19)

where d̃−n , d̃
+
m are dielectric displacement fluxes through dual

faces f̃n and f̃m, which are in one–to–one correspondence
with nodes n and m, respectively. Note that the unity prop-
erty provides, e.g.,

∫̃
f −n
D−(x) dσx =

∑
n∈G0−

∫̃
f −n
w̃n(x)

d̃−n dσx = d̃−n , in such a way that the electric displacement
flux is exactly reconstructed.

Unlike FEM-based formulations, scalar field continuity
across the mortar interface is enforced on a pair of dual grids.
Namely, the continuity of scalar potential is weakly enforced
over the slave surface, as:∫
0−

wn(x)
(
φ−(x)− φ+(x)

)
dσx = 0, ∀n ∈ G0− . (20)

By noting that function wn has compact support, limited to
dual cell f̃ −n , and by assuming a locally constant potential,
previous equation becomes:

|̃f −n |φ
−
n −

∑
m∈G0+

|̃f −n ∩ f̃
+
m |φ

+
m = 0, (21)

where |̃f −n ∩ f̃
+
m | denotes the area of the intersection between

f̃ −n , on the slave side, and f̃ +m , on the master side.
The continuity of the normal component of the electric

displacement is weakly enforced over the master surface, as:∫
0+

w̃m(x)
(
D−(x)+ D+(x)

)
dσx = 0, ∀m ∈ G0+ , (22)

which again, by exploiting the unity property, becomes:

d̃+m +
∑

n∈G0−
|̃f +m ∩ f̃

−
n |

|̃f −n |
d̃−n = 0. (23)

mortar projection relationships for primal and dual variables
are obtained by writing (21) for any node of the slave side
and by writing (23) for any node of the master side. In matrix
form these become:

80− = P0 80+ , (24)

d̃0+ = −P
T
0 d̃0− , (25)

where P0 = S−10 M0 is the mortar projection matrix map-
ping master to slave potentials. S0 = (si)i∈G0− is the diag-

onal slave matrix, with coefficients si = |̃f
−

i |. M0 =

(mi,j)i∈G0− ,j∈G0+ is the rectangular master matrix, with coef-
ficients mi,j = |̃f

−

i ∩ f̃
+

j |. The slave matrix yields diagonal
because f̃ −i ∩ f̃

−

j = ∅, for i 6= j. Sparsity of the master
matrix is guaranteed by the compact support of primal mortar
basis functions. These properties are important for preserving
the sparsity of final matrix system, which makes it possible
to use an iterative solver. Note that, with standard mortar
FEM approaches, S0 is non–diagonal, which makes the
matrix inversion for constructing P0 unfeasible.

Let 80 = (80− , 80+)
T and d̃0 =

(̃
d0− , d̃0+

)T
be the

interface scalar potentials and fluxes, partitioned into their
slave and master terms. mortar projection relationships (24)
and (25) can be rewritten as:

80 = A0 80+ , (26)

d̃0 = BT
0 d̃0− , (27)

whereA0 =
(
PT
0, IN+

)T
is the projectionmatrix frommaster

to all interface variables, with IN+ identity matrix of size N+,
i.e., the number ofmaster nodes, andB0 = (IN− , −P0) is the
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projection matrix from slave to all interface variables, with
N− number of slave nodes.

From these definitions, it follows that B0 A0 = ON−,N+ ,
with ON−,N+ null matrix of size N− × N+ or, equivalently,
d̃T0 80 = 0 for any d̃0− , with 80+ fixed. This relationship
corresponds to assuming no free–charge stored at the inter-
face 0. In fact, by testing ∇·D = ρ with the electric scalar
potential and by taking a small volume �ε enclosing 0, with
n outward unit normal of ∂�ε, one obtains:∫
�ε

ρ(x)8(x) dx =
∫
∂�ε

8(x)D(x) · n(x) dσx

+

∫
�ε

E(x) · D(x) dx, (28)

which, by taking the limit for ε → 0, provides the electro-
static energy conservation principle:∫

0−
8(x)D(x) · n−(x) dσx

+

∫
0+
8(x)D(x) · n+(x) dσx

= d̃T
0−
80− + d̃T

0+
80+ = d̃T0 80 = 0, (29)

where are 0−, 0+ are simply the negative and positive face
of the boundary ∂�ε for ε → 0. From matrix identity
B0 A0 = ON−,N+ , it can be proven that (26) is equivalent
to the following mortar interface condition:

B0 80 = 0N− , (30)

where 0N− is the null vector of size N−. Interface poten-
tials can be obtained from 8� by using the volume–to–
face incidence matrix, as 80 = D̃T

�0 8�. By comple-
menting electrostatic matrix system (13) with (30) and by
using (27), the final matrix system in saddle–point form is
obtained:(
−GT

� ε�G� D̃�0 BT
0

B0 D̃T
�0 ON−

)(
8�
d̃0−

)
=

(
q̃� − D̃�00 d̃00

0N−

)
,

(31)

where ON− is the null matrix of size N− and slave fluxes
d̃0− can be regarded as Lagrange multipliers, which have
a genuine physical interpretation unlike those of classi-
cal mortar FEM. (31) has a unique solution after impos-
ing Dirichlet and/or Neumann conditions on the exterior
boundary ∂�.

An equivalent (explicit) formulation of (31) can be
obtained by observing that only master potentials are inde-
pendent according to (26). By grouping interface potentials
80 and non–interface potentials8�\0 , the following change
of variables is obtained:

8� = P�8′�, (32)

with:

8� =

(
8�\0
80

)
,

P� =
(

IM OM ,N+

ON ,M A0

)
,

8′� =

(
8�\0
80+

)
, (33)

where IM is the identity matrix of sizeM , i.e., the number of
non–interface nodes of G�, OM ,N+ is the null matrix of size
M × N+, and ON ,M is the null matrix of size N × M , with
N = N− +N+ number of interface nodes. From the identity
B0 A0 = ON−,N+ and by observing that incidence matrix
D̃�0 has non–zero rows only in correspondence of interface
nodes, it turns out that PT

� D̃�0 BT
0 = ON ′,N− , with N ′ size

of the array 8′�. In such a way, after inserting (32) in (13),
the reduced electrostatic matrix system obtained from mortar
projection becomes:

G′T� ε�G
′
�8
′
� = −P

T
� q̃� + PT

� D̃�00 d̃00 , (34)

where G′� = G� P� is the reduced gradient matrix. Again
the reduced system can be solved after imposing Dirichlet
and/or Neumann conditions on the exterior boundary. It is
worth noticing that algebraic properties and sparsity of the
original system (13) are preserved in (34), after applyingmor-
tar projection. Therefore, very efficient iterative solvers for
standard Poisson’s problems such as algebraic multigrid, e.g.,
AGgregation-based algebraic MultiGrid (AGMG) proposed
in [31], can be used. Note that classical mortar FEM implies
a matrix system in saddle–point form, which can be neither
easily preconditioned nor efficiently solved.

IV. MORTAR PROJECTION
The specific choice of the nodal basis (14) for the mor-
tar interface, which have a support on the barycentric dual
mesh (made of triangles), makes it possible to compute
in linear time the master matrix M0 = (mi,j)i∈G0− ,j∈G0+ ,
defined in Section III. For any pair of nodes i, j on the
slave and master mesh, the intersection f̃ −i ∩ f̃ +j needs
to be computed when evaluating the coefficient mi,j. For
dual faces of generic shape (e.g., irregular polygons) this
generally requires quadratic–time complexity since, for any
face f̃ −i , all master faces are spanned, and the intersection
between polygons may lead to additional overhead. In the
present mortar projection algorithm, polygon intersections
can be reduced to triangle intersections since f̃ −i , f̃ +j , being
dual polygons, can be split into barycentric triangles and
have a typical star–shaped topology, as it can be noted
in Fig. 1. This makes it possible to exploit the intersec-
tion algorithm (PANG) proposed by Gander in [32], [33],
which provides linear time–complexity for the intersection of
non–matching triangle meshes. In such a way, an algorithm
with the same complexity for matching polygonal grids can
be obtained as well. This is a key feature in order to use
poly–MCM for modeling problems of interest in real–life
applications.

The PANG algorithm is an advancing front technique
which exploits the information of neighboring triangles and
assume that any slave triangle intersects an almost constant
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Algorithm 1 Triangle Mesh Intersection
1: τs ∩ τm 6= ∅ F Start from any intersecting pair of slave and master triangles
2: Ls← {τs} F Initialize list of slave triangles to be intersected
3: L ′m← {τm} F Initialize list of master triangle candidates for intersection
4: while Ls 6= ∅ do
5: τs← Ls[1]
6: Ls← Ls \ Ls[1]
7: Lm← L ′m[1] F Initialize list of master triangles to be intersected
8: L ′m← L ′m \ L

′
m[1]

9: while Lm 6= ∅ do
10: τm← Lm[1]
11: Lm← Lm \ Lm[1]
12: if τs ∩ τm 6= ∅ then F Compute intersection between triangles
13: mτi,j← |τs ∩ τm| F Fill matrix with intersection areas
14: Lm← Lm ∪ neigh(τm) F Add all triangle neighbors
15: end if
16: end while
17: Ls← Ls ∪ intneigh(τs) F Add only intersecting neighbors
18: L ′m← L ′m ∪ intneigh(τm)
19: end while

number of master triangles. This ensures the linear complex-
ity of the algorithm, which in this context is used for finding
the intersection area matrix Mτ

0 = (mτi,j)i∈G0− ,j∈G0+ . Any
entry of this matrix is the intersection area between the i–
th slave triangle and the j–th master triangle so that size of
Mτ
0 is Ts× Tm, where Ts and Tm are the number of slave and

master triangles of the barycentric subdivisions, respectively.
The procedure, which is schematized in Algorithm 1, starts
from any pair of intersecting slave τs and master τm triangles,
which is found after direct search. The list of slave triangles
to be projected Ls on the master mesh is initialized by τs,
whereas the list of master triangles that are candidates for the
first intersection, L ′m, is initialized by τm. The list of master
triangles to be intersected Lm is initialized by L ′m[1], i.e., the
first element of the master candidate list. Let τs be now the
current triangle to be projected and τm the fist element in
the master list, Lm[1]. These elements are initially deleted
from lists Ls and Lm. For a given τs, the intersection process
stops when Lm is empty. If an intersection is found, i.e., τs ∩
τm 6= ∅, the area of intersection polygon mτi,j is computed
and triangles neighboring to τm are added to Lm by operator
neigh(·). Indeed these are natural candidates for intersecting
again τs. If τm does not intersect τs, its neighbors are not
added to Lm. This ensures that the procedure will end and
that search is locally confined. master triangles intersecting
τs are added as new candidates for L ′m and neighbors of τs,
which have not been yet treated and intersect master triangles,
are added to Ls (operator intneigh(·)). The PANG algorithm
terminates when the list Ls is empty, i.e., there are no further
triangles to be projected. The algorithm is implemented in
MATLAB R© software starting from the code developed and
freely distributed by Gander [34]. Particular effort has been
spent in making the code more robust and less prone to

intersection errors in the case of very fine meshes. Suitable
geometric constraints, depending on the mesh size, have been
introduced at this purpose.

The master matrix M0 for polygonal meshes, with coeffi-
cients mi,j = f̃i ∩ f̃j and of size N−×N+, is constructed from
the intersection matrix Mτ

0 as follows. Polygonal slave and
master mesh G0− , G0+ are decomposed into their correspond-
ing barycentric subdivisions. As described in Algorithm 2,
any polygonal cell polygon of the cell–array poly (input
mesh) is first ordered counterclockwise (operator sort(·))
and then spit into barycentric triangles, which are assembled
around any primal vertex of mesh poly.

The list of barycentric subdivision nodes duanod is made
by primal nodes of the original polygonal mesh nod2d,
by the polygon centroids, and by the edge centroids of the
original mesh. Edges of any cell are spanned in order to
fill the barycentric node matrix. If a new edge is found the
corresponding centroid (operator centre(·)) is computed and
new dual node is added to duanod. The new node index n
is stored in array iedgcentres, which is suitable for the dual
triangle construction. If the edge is already passed, the entry
of iedgcentres is the dual node index in the list duanod.
For any polygon vertex i, a pair of triangles τ−i (last) and
τ+i (next), with apex the polygon centroid, is constructed.
These are the barycentric triangles in which the dual face f̃i,
related to primal node i, is split. The whole construction is
schematized in Fig. 4.
Any vertex i is thus attached to a number of barycentric

triangles that form the dual face f̃i. Two incidence matrices
E0 = (ei,j), connecting slave nodes and barycentric trian-
gles of the slave mesh, and F0 = (fi,j), connecting master
nodes and barycentric triangles of the master mesh, are build
for mapping the intersection matrix to the master matrix as

1472 VOLUME 9, 2021



F. Moro, L. Codecasa: Domain Decomposition With Non–Conforming Polyhedral Grids

Algorithm 2 Barycentric Dual Mesh
1: nodua← nod2d F Initialize the list of barycentric dual mesh nodes with polygon mesh nodes
2: tridua← ∅
3: isnewedg← 0 F Flag to check if an edge has been already visited
4: n← size(nod2d, 1)
5: for k = 1→ length(poly) do
6: polygon← poly[k]
7: polygon← sort(polygon) F Sort cell vertexes counterclockwise
8: N ← length(poly)
9: edges← [polygon(1→ N ),polygon(1→ N (mod N )+ 1)]

10: nodua← nodua ∪ centre(polygon) F Insert polygon centre in list of nodes
11: icentre← n
12: iedgcentres← 0
13: for e = 1→ N do
14: edge← edges(e, ·)
15: indglo← find(edgs, edge)
16: edgcentre← centre(edge)
17: if isnewedg(indglo) = 0 then F Insert edge centroid in the list of nodes
18: nodua← nodua ∪ centre(edge)
19: n← n+ 1
20: iedgcentres(e)← n
21: isnewedg(indglo)← 1
22: else
23: iedgcentres(e)← find(nodua, edgcentre)
24: end if
25: end for
26: for i = 1→ N do
27: e−← i− 2(mod N )+ 1, e+← i F Last and next edge indexes
28: τ−i ← [iedgcentres(e−), polygon(i), icentre] F Barycentric triangles for i–th node
29: τ+i ← [polygon(i), iedgcentres(e+), icentre]
30: tridua← tridua ∪ τ−i ∪ τ

+

i F Insert triangles in the mesh
31: end for
32: end for

FIGURE 4. Barycentric subdivision: for any vertex i of a polygonal cell a pair of triangles τ−i , τ+i is generated.

M0 = E0Mτ
0 F

T
0 . For instance, coefficient ei,j = 1 if the

slave node i is attached to the barycentric triangle j, and 0
otherwise. Similar considerations hold for fi,j, which define
the same kind of connectivity on the master mesh.

The entries of the (diagonal) slavematrix S0 are the areas f̃i
of the dual polygons on the slavemesh, which can be obtained
again from the barycentric dual mesh. The area matrix Sτ =
(sτi ), where coefficient sτi is the area of the i–th barycentric
triangle of the slave mesh, is first defined. By using the same

incidence matrix as above, it turns out to be S0 = E0 Sτ0 E
T
0 .

The mortar projection matrix is finally obtained by inverting
the slave matrix, i.e., P0 = S−10 M0 .

V. NUMERICAL RESULTS
The mortar cell method was implemented in MATLAB R©

software environment for matrix computations. Thanks to the
CM, the numerical formulation can be written directly in a
matrix–oriented style, which is suitable for this environment.
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The main advantage is that algebraic operations for sparse
matrices in MATLAB R© are very efficient, being based on a
highly–optimized parallel code.

For generating the polyhedral mesh, sweeping and subgrid-
ding algorithms were implemented. The first one is useful for
extruding a polygonal mesh along the vertical direction, thus
generating a layered structure made of true polyhedrons [29].
The latter consists in a local mesh refinement technique for
hexahedral meshes, which can be useful in practical applica-
tions to improve the local accuracy of solution while limiting
the increase in the number of DOFs.

In order to speed up assembly time, a Fortran mex–file was
implemented for building the poly–CM constitutive matrix,
whereas a vectorized MATLAB R© code was implemented
for building incidence matrices. In contrast, the code for
the construction of the mortar projection was implemented
in non–vectorized MATLAB R© language in order to reduce
code complexity and improve code readability although at
the expense of computing efficiency. This code consists of
three–different steps: generation of the barycentric subdivi-
sion with Algorithm 2, mesh intersection with Algorithm 1,
and slave and master matrix assembly.

The MCM was validated by considering both analytical
and numerical benchmarks. In Section V-A, a 3–D electro-
static problem with closed–form solution is considered in
order to assess theMCM convergence and stability properties
for the most general case of a master (tetrahedral) mesh
and a slave (polyhedral) mesh. In Section V-B, a numerical
benchmark consisting in a realistic engineering problem is
considered. In that case, the accuracy of MCM analysis (with
piecewise–constant basis functions) was verified by consid-
ering an equivalent (undecomposed) model solved by a com-
mercial FEM code, implementing second–order tetrahedral
elements. Note that eventually all simulations carried out for
both benchmarks were run on a standard laptop with 2,9 GHz
Intel Core i7 processor, 16 GB RAM memory.

A. UNIT CUBE SPLIT INTO TWO REGIONS
To validate the polyhedral MCM, the analytical benchmark
proposed in [35] was adopted. It consists in a unit cube
� = [0, 1]3 with unit relative permittivity and no internal
charge. Dirichlet boundary conditions are applied over the
whole boundary ∂�. On the top face z = 1 a time–harmonic
potential is applied, i.e., φ(x, y, z) = 10 sin(π x) sin(π y),
whereas on the rest of ∂� homogeneous Dirichlet boundary
conditions are imposed. By solving Laplace’s equation after
imposing Dirichlet boundary conditions, the following poten-
tial distribution in � is obtained:

φ(x, y, z) =
10 sin(π x) sin(π y) sinh(

√
2π z)

sinh(
√
2π )

. (35)

The same Laplace’s problem was numerically solved for
several polyhedral mesheswith differentmesh sizes.� is split
into two halves, i.e., the slave domain�s = [0, 1/2]× [0, 1]2

(lower half) and the master domain �m = [1/2, 1] × [0, 1]2

(upper half), which are contacting at the interface 0 on

z = 0.5 horizontal plane. For the sake of comparison,
the same problem was also solved by discretizing the whole
undecomposed domain � with hexahedral or tetrahedral
meshes of comparable mesh size. Matrix ε� was obtained in
that case by using first–order edge element functions (see,
e.g., [36] for the implementation of hexahedral elements).
Relative errors were estimated by using both energy and
L2 norms over �:

eK (�) =

√
(u− uh)TK� (u− uh)√

uTK� u
, (36)

eL2 (�) =

√∫
� (u(x)− uh(x))

2 dx√∫
�
u(x)2 dx

, (37)

where K� = G′T� ε�G� is the stiffness matrix, u = (u(xi))
is the array of analytical solution values computed at mesh
nodes xi, and uh = (uh(xi)) is the numerical solution, com-
puted at the same nodes and obtained from (34) by using a
mesh grain h. This parameter, which provides a measure of
the discretization size for polyhedral, hexahedral, and tetra-
hedral meshes, was obtained by taking the maximum edge
length over the whole mesh of �. Note that function uh was
evaluated at a generic point x by interpolating the numerical
solution at mesh nodes. Integral in (37) was computed by a
Gaussian quadrature 1–point rule, which is enough accurate
for a fine mesh, in order to get a reasonable computing cost.

In convergence plots, polyhedral MCM is denoted by the
acronym poly–MCM, whereas CM with first–order hexahe-
dral and tetrahedral elements is denoted by hexa–CM and
tet–CM, respectively. To assess the optimality of MCM con-
vergence behavior, both linearO(h), for the energy norm, and
quadratic O(h2), for the L2 norm, convergence trends were
plotted in dashed line together with convergence curves. The
computing complexity of the mortar projection (including
barycentric subdivision, Algorithm 1, and matrix assembly)
and the computing complexity of the matrix system (34)
solution by AGMGwere assessed by evaluating the CPU time
for different mesh sizes. The number of DOFs for the case of
the projection algorithm is given byN−+N+, i.e., the overall
number of slave and master nodes, whereas for the system
solution it indicates the number of free variables in (34). Note
that in all the numerical tests considered, discretizations were
treated as generic polyhedral meshes. In such a way, the same
data structures (cell–arrays) and numerical algorithms could
be used, proving the generality of the proposed approach.

The case of a pure polyhedral mesh contacting with a tetra-
hedral mesh was considered. Fig. 5 shows the mesh generated
in the coarsest case (h = 0.15), where 1 152 polyhedra were
used to discretize �s and 5 342 tetrahedra were used for �m.
Note that in the master domain a subgridding scheme was
used for mesh generation, so that cubes of bigger size at the
interface x = 1/2 in Fig. 5 are indeed 9–face polyhedra.
Fig. 6 shows more clearly the non–uniform element spacing
in the slave domain. At the mortar interface, for the coarsest
mesh, 160 polygons (including 5–node quadrilaterals) were
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FIGURE 5. Non–conforming tet–poly meshes.

used at the slave side, whereas 278 triangles were used at
the master side. Note that for building the mortar projection,
the corresponding barycentric subdivisions were considered:
1 296 triangles were used for the slave side, whereas 1 668
triangles were used for the master side. CPU time for building
the mortar projection over barycentric meshes was 4.48 s,
whereas 10 ms were required by the AGMG solver (with
1 661 DOFs). Fig. 7 shows that the convergence rate is linear
in the energy norm and quadratic in the L2 norm. Therefore,

optimality is retained in the most general case of a mixed
tet–poly grid. For the finest mesh case (h = 0.0586, 18 000
polyhedra for �s, and 89,201 tetrahedra for �m) calculation
timings are: 67.72 s for the mortar projection, 0.165 s for
the AGMG solver (with 30 363 DOFs). Note that in this case
1 000 slave polygons (corresponding to 8 040 barycentric
triangles) were projected on 1 780 master triangles (split into
10 680 barycentric triangles). The stiffness matrix assembly
needs 12.26 s CPU time for ameshwith 107 201 polyhedrons.
Fig. 8 shows that, by increasing the number of DOFs, a linear
time complexity can be observed for the assembly of both
stiffness and projectionmatrices, and for the iterative solution
with AGMG.

B. PARALLEL PLATE CAPACITOR WITH AN AIR VOID
As an example of application, derived from the 2–D problem
benchmark proposed in [37], the case of a capacitor with
an air bubble in the dielectric was considered. Due to the
presence of the void with smaller permittivity, the electric
field strength locally increases, so that a mesh refinement
technique needs to be used in order to capture the electric
potential variation around the void. The 3–D model consists
in a parallel–plate capacitor (10 V source voltage, square
metal plates with 10 mm side, located 7 mm apart) with a
spherical inclusion �1 (air with ε1 = 1 relative permittivity)
located at the center of the capacitor. The dielectric (insulat-
ing oil) is non–uniform: a 2mm side cube�2 is with ε2 = 1.5

FIGURE 6. Slave and master tet–poly meshes on the mortar interface 0 (a zoom near the square
center x = 0.5, y = 0.5 shows the intersection between master triangles and slave polygons,
consisting of both 4-node and 5-node squares).
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FIGURE 7. Relative energy eK (�) norm and L2–norm eL2 (�) errors vs.
mesh size h (unit cube � discretized by a polyhedral mesh in �s and a
tetrahedral mesh in �m).

relative permittivity, whereas the rest of the insulating domain
�3 is with ε3 = 2.3 relative permittivity. The effect of the
void radius (with R = 0.25, 0.5, 0.75 mm) on the local
electric field distribution is examined with the poly–MCM.

ACartesian reference frame (x, y, z) is located at the center
of the capacitor; however, due to symmetry, only one eight of
the model is considered, i.e., a parallelepiped � = [0, 5]2 ×
[0, 3.5]. In such a way, the void�1 is an octant centered at the
origin,�2 = [0, 2]3\�1, and�3 = �\�2. The top electrode
(at 5 V potential) is located at z = 3.5 mm, whereas the
symmetry plane (at z = 0) is at ground potential. Neumann
BCs are applied to the other boundary sides of �.
According to the modeling scheme proposed in the Intro-

duction: 1) Any domain was first simulated independently
in order to identify the element type and the mesh size best
suited for ensuring a local field reconstruction; 2) Different
parts of the model were then reassembled and simulated by
using the poly–MCM.

Fig. 9 provides a conceptual sketch of the modeling
strategy which can adopted thanks to the poly–mortar
approach. It is clearly shown that only the master domain,
which include the void domain of varying radius, has to be
remeshed. Modeling steps are discussed in detail as follows:

1) A model of the capacitor without air void, in which
the computational domain is made up of �∗2 = [0, 2]3

FIGURE 8. CPU time for the assembly of mortar projection and stiffness
matrices and for the matrix system solution by AGMG solver vs. number
of DOFs (tet–poly meshes).

(with permittivity ε2) and �3 (with the same permittivity
as above, ε3), was first simulated. The model is fully 3–D
because of the dielectric inhomogeneity. In order to reduce
the number of DOFs, a structured grid was used for both
subdomains. Because ε2 < ε3 the electric field strength
locally increases. Therefore, a refinement of the hexahedral
mesh was carried out via subgridding (mesh size in �∗2 is a
half of that one in �3). The resulting mesh turned out to be a
genuine polyhedralmesh because of transition elements inter-
facing these subdomains. The polyhedral mesh refinement
criterion was based on the discrepancy between a reference
capacitance value (obtained with 2nd ord. FEM) and that
one extracted from the electrostatic energy computed with
poly–CM, i.e.,

E� =
1
2
8T
� GT

�ε�G� 8�. (38)

Table. 1 shows the computational requirements for assem-
bling the constitutive matrix and the relative discrepancy
eC = |Cpoly − CFEM |/CFEM of the poly–CM capacitance
value Cpoly from 2nd ord. FEM capacitance value CFEM .
Mesh sizes were chosen in order to generate a cubical mesh:
e.g., with h = 0.5 mm, cubes of 0.5 mm side discretize �3.
The mesh refinement h = 0.1 mm, with 143 500 polyhe-
drons, was finally adopted for discretizing the capacitor with
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FIGURE 9. Modeling steps of the polyhedral mortar method (poly–MCM): 1) the capacitor without void is meshed with subgridding
(no–remeshing needed); 2) the master domain �m is meshed with tetrahedrons (remeshing required because void radius varies); 3) �m is
inserted in the mesh of subproblem 1) to solve the original problem, poly–tet meshes are glued together.
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TABLE 1. CPU time for the constitutive matrix assembly and discrepancy
value eC for any polyhedral mesh size h.

void model. Such a test was useful in order to asses the
performance of poly–MCM software when facing real–sized
problems typical of the engineering practice.

2) Three different values of the void radius were considered
in the benchmark. Therefore, by using a standard discretiza-
tion approach such as FEM or CM, one needs a remeshing of
the whole domain� every time that a geometric parameter is
changed. The structured mesh cannot be, however, extended
to the void domain �1, which is spherical. In order to avoid
remeshing a master domain �m = [0, 1]3, enclosing region
�1, was thus defined. �m was discretized by tetrahedral ele-
ments to cope with the curved boundary. A local electrostatic
problem was then considered in�m, i.e., a arbitrary potential
(e.g., unit) was applied on the top of �m and a ground
potential on the bottom, whereas homogeneous Neumann
BCs were applied on the rest of the boundary. In such a
way, the electric field locally approximates the true field
distribution, i.e, that one computed on the full problem (with
the presence of the void). This time themesh was refined until
a good agreement with 2nd ord. FEM. electric field strength
distribution was achieved. The final mesh refinement (with
size h = 0.07mm) consisted of 398 744 tets, 69 227 vertexes,
e.g., for the model with void radius R = 0.25 mm. Similar
meshes were obtained for the other models (R = 0.50, 0.75
mm). Solution accuracy on a local scale was verified by con-
sidering the electric field distribution along the vertical axis
(segment x = y = 0, z = [0, 1] mm). Fig. 10 shows that the
electric field strength, reconstructed by piecewise–constant
bases defined on polyhedrons, is in very good agreement with
2nd ord. FEM.

3) The structured mesh defined at step 1) was finally
glued together with the tetrahedral mesh defined at step 2).
Part of the cubical mesh was carved out from �∗2, i.e., the
subgridding region, in order to insert the master domain �m.
This merging process could be carried out without need of
remeshing the entire slave domain�s = �\�m, simplifying
the model pre–processing. �s was discretized with 135 500
hexahedra. The same tetrahedral meshes defined in 2) were
used for �m.
Unlike previous test cases, the capacitor model discretiza-

tion shows a mortar interface 0—i.e., the inner boundary
of the smaller cube in Fig. 9, made by three plane faces—
which is fully 3–D and is with corners. The intersection

FIGURE 10. Electric field magnitude for poly–MCM and 2nd ord. FEM
along the z–axis for different values of the void radius R (master domain
only).

FIGURE 11. Convergence path of the AGMG solver for poly–MCM.

algorithm, outlined in Section IV, was applied in this more
general context first to any side of the cube (by using a local
reference frame projection to workwith 2–D coordinates) and
slave and master matrices S0 , M0 , defined in Section III,
were assembled over the whole interface 0. The particularly
simple definition of primal and dual mortar basis functions,
which is based on purely geometrical consideration, made
it possible to handle also manifold with corners, which is
not common for standard mortar FEM formulations. For the
case R = 0.25 mm, the generation of the mortar projection
required 17.60 s with a slave mesh on 0 (piecewise planar)
with 15 916 triangles and a master mesh on 0 with 1 200
squares. Similar results were found with other radius values.

The constitutive matrix, e.g., for the case with R = 0.25
mm, turned out to be of size 826 479 and it was assembled
in 295 s. The resulting matrix system (34), with 195 819
DOFs, was solved by AGMG iterative solver in 1.36 s.
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FIGURE 12. Electric field magnitude for poly–MCM and 2nd ord. FEM
along the z–axis for different values of the void radius R (full capacitor
model with void).

Comparable constitutive matrix sizes and timings were found
for the other cases with R = 0.50, 0.70 mm. This shows
that solution time is negligible even for a large–size problem,
proving that the proposed formulation leads to a linear system
which can be solved very efficiently. Fig. 11 shows that solver
iterations are very few and the convergence path at the fixed
tolerance of 10−12 is linear. Fig. 12 shows the electric field
strength profile along a vertical segment as above for the
original problem, i.e., the capacitor with void. It can be noted
that the same plot behaviors of Fig. 10 are found and the
agreement with 2nd ord. FEM profiles is still very good.

VI. CONCLUSION
In this work a mortar method over general polyhedral dis-
cretizations has been presented. The poly–MCM is based
on a cell method variant, based on augmented dual grids,
which enjoys many appealing properties: i) Matrix assembly
is completely Jacobian-free and does not require Gaussian
integration; ii) Novel mortar basis functions are defined at
the interface by exploiting dual grids, which are at the core
of the CM framework. The key feature is that mortar basis
functions have their supports defined on dual mesh polygonal
faces, which makes it possible to provide a diagonal slave
matrix and a sparse master matrix. In such a way, the mortar
projection operator can be explicitly obtained and Lagrange
multipliers can be eliminated from the final saddle–point sys-
tem. Moreover, the use of dual mortar bases make it possible
to highly reduce the complexity of the intersection between
slave and mortar interfaces, even though these are discretized
with general polygonal grids. The integration over intersec-
tion elements—which are of complex polygonal shape and
need to be mapped to the master element—are not required.
This is very important in order to reduce the complexity of
the assembly procedure of the mortar map and is again due to
the peculiar shape of the support chosen for basis functions.

By using a barycentric subdivision, which enjoys a natural
splitting into a simplicial mesh, it has been possible to use
a linear–time algorithm for finding intersections of triangle
meshes. Numerical experiments show that the convergence
properties of poly–MCM are the same of classical CM for
hexahedral and tetrahedral meshes without domain partition.

An example of application, a real–size model discretized
into hundred thousands polyhedral cells has been simulated
by poly–MCM. It is shown that re-meshing can be avoided
when different subproblems are to be simulated and the
mortar coupling between slave and master domains can be
realized in reasonable computing time even in the complex
case of a fully 3–D mortar interface with corners.

APPENDIX
CONSTITUTIVE MATRIX ASSEMBLY
The construction of the constitutive matrix mat, obtained by
using CM discretization, with piecewise–constant basis func-
tions, is described in Algorithm 3. Data structures passed to
the MATLAB R© function implementing the assembly process
are the coordinate matrix nod3d, the edge matrix edgs (in
which any row is a pair of vertex indexes), and cell–arrays
of faces facs and polyhedra cells. Last data structures are
stored in a particular sparse format which is suitable for
polygonal and polyhedral meshes. For instance, facs is stored
by using a pointer matrix ifacmat of size Nf × 2, with Nf
number of faces, and the edge index array vfacs. Any row
of ifacmat is made up by a pointer, which provides the
polygonal face location inside vfacs, and by the face length,
i.e., the number of polygon edges. Faces, i.e., any face is a
list of edge indexes, are stored column–wise inside the array
vfacs. The cell–array cells is stored in a similar way, by using
a pair of data structures. For any polyhedron the local mass
matrix, to be assembled in mat, is constructed as follows.
For any face f of the polyhedron cell, it is checked if any
edge e of f has already been spanned. If the edge is passed
for the first time then it is inserted in the local edge matrix
edges, and local and global edge indices are stored in arrays
iedgloc, iedgs, respectively. The matrix iedgfac of size n×2,
where n is the number of edges for the polyhedron, provides
the pair of incident faces for any edge. The first entry of
any row is thus filled when the edge is spanned for the first
time. Geometric data structures for building edge vector bases
according to expression (6) are obtained by using operators
vol(·) and centre(·) which provide the area / volume and
the centroid of a polygon or a polyhedron according to the
algorithms proposed in [38]. These are useful for reducing the
computing complexity since volume calculation are reduced
to surface ones by exploiting the divergence theorem. In order
to calculate basis functions, for any edge the corresponding
edge vector e, dual face area vector f̃e, and the volume of its
uniformity region supp, as shown in Fig. 2, are calculated.
Edge functions we are computed by function basis(·), which
implements (6), and are stored as n×3 size matrices, in which
for any k–th row a constant vector (related uniformity region
of k–th edge) is allocated. Local mass matrix coefficient
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Algorithm 3 Constitutive Matrix for Poly–MCM
1: for c = 1→ length(cells) do
2: ε← parameters(c) FMaterial parameter (constant inside the cell)
3: cell← cells[c] F Any polyhedron is a list of faces
4: for f = 1→ length(cell) do
5: face← cell[f ]
6: n← 0, iedgloloc← 0
7: for e = 1→ length(face) do F Find the pair of faces incident to any polyhedron edge
8: edge← edgs[face(e)]
9: if iedgloc(face(e)) = 0 then F Check if the edge is not already in the list

10: n← n+ 1
11: iedgloc(face(e))← n F Local edge indexing
12: iedgs(n)← face(e) F Global edge indexing
13: iedgfac(1, n)← f F First incident face added
14: edges(n, ·)← edge F Add the new edge to the list
15: else
16: iedgfac(2, iedgloc(face(e)))← f F Second incident face added
17: end if
18: end for
19: end for
20: cv← centre(cell)
21: for e = 1→ n do F Geometric data structures for basis functions
22: edge← edges(e, ·)
23: {face(1), face(2)} ← iedgfac(·, e)
24: cf 1← centre(face(1))
25: cf 2← centre(face(2))
26: ce← centre(edge)
27: e[e]← nod3d(edge(2), ·)− nod3d(edge(1), ·)
28: f̃e[e]← 1

2 (cv − ce)× (cf 1 − cf 2)
29: supp(e)← 1

3e · f̃e
30: end for
31: for e, e′ = 1→ n do
32: we← basis(e, f̃e, vol(cell)) F Build edge basis functions according to (6)
33: we′ ← basis(e′, f̃e′ , vol(cell))
34: ie← iedgs(e)
35: ie′← iedgs(e′)
36: mat(ie, ie′)← mat(ie, ie′)+

∑n
k=1 ε supp(k)we(k, ·) · we′ (k, ·) FMatrix assembly for any edge pair

37: end for
38: end for

are evaluated according to (11), without need of evaluating
Jacobian, i.e., no isoparametric mapping like FEM, and then
assembled intomat.
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