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ABSTRACT Precise partial discharge (PD) detection is a key factor in anticipating insulation failures.
The continuous efforts of researchers have led to the design of a variety of algorithms focusing on PD
pattern classification. However, the trade-off between features taken up for classification and the detection
rate continues to pose considerable challenges in terms of feature selection from acquired data, increased
computing time, and so on. In this article, a Hypergraph (HG) based improved Random Forest (RF) algorithm
by employing the Recursive Feature Elimination (RFE) algorithm (HG-RF-RFE), has been developed for PD
source classification. HG representation of data is considered for obtaining statistical features, which turn
out to be a subset of a set of all hyper edges called Hyper statistical features (Helly, Non-Helly, and Isolated
hyper edges). HG-RF-RFE takes hyper statistical features and hyper edges as features for classification. The
algorithm’s efficiency is tested against noise-free PD data obtained from SASTRA High Voltage Laboratory,
and large-sized noisy PD data obtained from High-Voltage Research and Test Laboratory at Universidad
Técnica Federico Santa Maria (LIDAT). The robustness of the proposed algorithm is tested with both time
and phase domain PD features using the Mathews Correlation Coefficient (MCC), harmonic mean-based
feature Score (F1 Score) as evaluation metrics, and by k-fold validation technique. The proposed HG-RF-
RFE achieved 98.8% accuracy with minimal features and significantly reduces computation time without
compromising accuracy. It is worth mentioning that the HG-RF-RFE technique is superior to many state of
the art algorithms in terms of feature elimination and classification accuracy.

INDEX TERMS Hypergraph, partial discharge, pattern classification, random forest, recursive feature
elimination, statistical features.

I. INTRODUCTION

Partial Discharge (PD) measurement has been identified as
a reliable insulation assessment diagnostic tool for high
voltage equipment. In the dielectric material (solid, liquid,
or gaseous), cavities, voids, cracks, and gaps are significant
defects that lead to physical as well as chemical deteriora-
tion in insulated interfaces when subjected to high voltage
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stress. Whatever type of electrical equipment affected by PD
can suffer from a series of severe insulation failures in the
long term. The classification of PD patterns is an essential
criterion for assessing and diagnosing the performance of the
insulation systems, as it provides a significant index of dis-
charge severity. The classification process aims to identify the
defect that causes the discharge (surface discharge, corona,
etc.) internally or externally. Since each defect has its typical
degradation mechanism, in order to assess the quality of the
insulation it is imperative to use this uniqueness to correlate
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the discharge patterns with the type of defect as part of the
PD diagnosis.

PD diagnosis was usually done by visual inspection in
the initial periods. Since the detection of PD is difficult,
only experts with extensive personal experience are able
to differentiate between various discharge phenomena and
assess the severity of the fault. Although this way of iden-
tifying sources allows adequate recognition of the type of
PD, in industrial environments the presence of external noise
or multiple sources of PD can make it difficult to interpret
the PRPD patterns. In the early 1990s, due to the availability
of high-speed data processors and well-developed statisti-
cal techniques, tools for automated pattern recognition and
machine-based expert systems were developed thus enabling
more effective and efficient online monitoring of HV equip-
ment. But now, in order to make the systems fully automated,
Machine Learning algorithms are to be upgraded to meet the
challenging issues in processing the different and varied data
sets.

Researchers have focused on developing different
techniques to classify PD patterns by extracting features
considering these facts. Feature extraction exhibits the most
discriminatory qualities in the raw data, enabling an accu-
rate class detection of PD signals by the classifier. The
appropriate features are selected to form the representative
vector that allows the highest accuracy in recognizing pat-
terns [1]. Numerous techniques for feature extraction, selec-
tion, and classification have been reported in the literature.
Achieving low computational complexity and efficient per-
formance with less computation time of the machine learning
algorithms have become important issues for the machine
learning community. Initial research studies have used a
phase-resolved approach because it provides a good pattern
recognition scheme [2], [3]. Various statistical measures
using the phase window approaches were extensively used
to achieve compact pulse signature characteristics of PD
sources [4], [5]. Later, some researchers have also reported
that time-solved pattern recognition methods have been
applied successfully [6], [7]. Still, the statistical method of
feature extraction offers a suitable mechanism for ageing
characterization and provides an insight into the physics of
the release process [8], [9].

Several research studies using traditional statistical func-
tions as mathematical descriptors for PD patterns have been
successfully conducted. However, redundant features cause
more time consumption. Many machine learning techniques
(Fuzzy sets, decision tree, K-nearest neighbor (K-NN), Hid-
den Markov Model (HMM), Support Vector Machine (SVM),
etc.), Artificial Neural Networks (ANN) and its variants were
successfully applied to PD classifications [10].

In [11], the authors reached a maximum of 92%
classification accuracy by employing different versions of
Probabilistic Neural Network (PNN) with (¢, g, n) character-
istics (phase/time of PD occurrence (), PD pulse magnitude
(q) and number of PD counts (n)) as input features. During the
training phase, neural network-based studies showed better
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convergence. However, improvements in classification rate
at reduced computing time remain a challenging task. The
authors of [12] used the features of Principal Component
Analysis (PCA) to classify PD sources using Support Vec-
tor Machine (SVM) and achieved a classification accuracy
of 98%. However, the main drawback is that SVM train-
ing requires extensive matrix operations, which take time
and are very slow. The various other PD pattern recog-
nition techniques reported by the researchers are given in
Table 1 [12]-[21].

The accuracy of PD classification techniques depends
mainly on the features selected. Major shortcomings in the
existing methods are (i) high detection rate with a greater
number of features, and (ii) in most cases, synthetic noise was
used to represent noisy data. Hence, the trade-off between
either a high accuracy at the cost of longer computational
times by using numerous features or an acceptably mediocre
accuracy with faster computational time for continuous mon-
itoring needs a re-look into features to check whether there
exists inter-dependency (causing repetitive features). Conse-
quently, obtaining minimal yet informative features which
can classify PD pattern in less time with higher accuracy is the
main research gap. This research work aims at developing one
such classifier that can classify the PD sources with minimal
features.

Most of earlier research works focused on design of
machine learning algorithms with a wide variety of features
in order to maximize the accuracy. The Random Forest algo-
rithm was used in the recent research articles [22]-[24] to
classify noisy and noise-free PD signals, and low-frequency
band data in the frequency domain was considered as charac-
teristic feature to classify the PD defects into three groups.
The number of features selected by the research works
shows that it is computationally more expensive. Nowa-
days, researchers are more interested in designing unsuper-
vised learning-based classifiers to avoid complications in the
extraction and selection of features since in Unsupervised
learning, the algorithm itself can find patterns and associa-
tions between different data clusters. But the major drawback
in deep learning is that it requires large amount of input data
and extensive time to train the network [25].

Many works have shown that noisy input data can affect
the performance of classifiers [26], [27]. Hence, the ubiquity
of noise seems a significant issue in the practice of machine
learning. While many machine learning techniques that can
handle noisy data are reported in the literature, in most cases,
the noise in the data is synthetic noise added with laboratory-
measured data. In contrast, in this research work, the algo-
rithm’s efficiency is tested with PD data measured under
two different laboratory conditions: shielded environmental
conditions (less noise) and unshielded laboratory conditions
(similar to PD measured at onsite) are considered [16], [28].

In this article, Hypergraph (HG) based Random For-
est (HG-RF-RFE) has been proposed for classifying PD
sources with minimal features by removing the redundant
hyper edges. Using the Recursive Feature Elimination (RFE)
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TABLE 1. Related works.

Techniques Authors Features Selected Efficiency Limitations
Percentage
Support Vector Hao (2010) [13] (y,q,n) characteristics 95.1% SVM applied with wavelet co-efficient to classify
Machine (200 Features) PD sources, but generalization capability is poor
Sarathi (2013) [12] PCA Features 98.8% SVM fails, to attain an accurate classification
(7 Features) model from a small number of labelled examples
Neural Networks
K-Nearest Norasage Pattanadech Frequency Ranges Statistical 86% e For large data set classification problems, the
Neighbour (2014) [14] Features (8 Features) structure of this model is complex
RHR-PNN Venkatesh (2011) [15] (y,q,n) characteristics 92% e Computation time is high
(24 Features)
A-NN Raymond (2017) [16] 20 Statistical 97%
Hidden Markov Sathish (1993) [17] Image Features 84% Accuracy depends on the number of states and
Model number of features
Fuzzy based Abdel-Galil (2005) [18] Pulse Characteristics 82.2% Computation cost and response time increase
Classifier (5 Features) exponentially in proportion to the size of inputs.
Multi-Layer Hui Ma (2013) [19] (y,q,1) characteristics 92% Depends on the quality of the training and testing
Perceptron (24 Features) data
Radial Basis NA Al-geelani (2012) [20] Statistical Features 95% Limited to Surface Discharge detection only
Function (21 Features)
Bayesian Classifier Karthikeyan (2005) [21] (y,q,n) characteristics 96% Interactions between features cannot be learned
(108 Features)
ANFIS Raymond (2017) [16] Statistical Features 97% Size and quality of training set and the features

(20 Features)

chosen to train affect the classification

performance

process, the minimum informative hyper features for the
Random Forest (RF) classifier are selected. It is necessary to
select handcrafted features that are descriptive, discrimina-
tory, and non-redundant to create an accurate and computa-
tionally efficient PD classifier. HG representation of raw PD
data is chosen for this purpose since it is well suited for mod-
elling complex relationships in the raw data. HG mathemat-
ical frameworks have been used in recent years as the basis
for modelling networks, data structures, process scheduling,
computations, and a variety of other systems where complex
relations between the objects in the system play a dominant
role.

In the proposed work, the Helly property of HG has been
used to remove the redundant features from the measured
PD data. After redundancy removal, statistical features in
time and phase domain are extracted from the hyper features,
and RF-RFE classifies the PD data with minimal statistical
features by eliminating the unimportant features. Precisely,
the HG introduction captures the pattern in a structured way
through the neighborhood Hypergraph. The boosted novelty
in the improved version of the classifier is the capture of the
structural patterns through Helly hypergraph and the elim-
ination of ill-structured and uninformative features through
RFE. The performance of the proposed HG RF-RFE classi-
fier over the existing classifiers’ such as Naive Bayes (NB),
Multi-Layer PNN (MLPNN), KNN, SVM (by using WEKA
Tool), NGboost, XGboost, and LightGBM was evaluated
with respect to the various performance metrics (Mathews
Correlation Coefficient (MCC), Harmonic Mean based Fea-
ture Score (F1 Score), classifiers accuracy, precision, and
recall), and by k-fold cross-validation technique [29]—[31].
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Il. PROBLEM FORMULATION
The main objective of this article is to design a recur-
sive feature elimination algorithm and investigate the per-
formance of RF classifiers with a reduced feature subset.
A research study shows that, if features are extracted from
signal data, the features may contain redundant attributes in
the signals [10]. Hence, selecting the smallest, best feature
subset for classification becomes a prime concern, while
building the machine learning model would improve the
performance and reduce the computation time. Although
PCA is intended for feature reduction, its use poses a sig-
nificant disadvantage since it does not consider class infor-
mation [28]. In this article, HG has been applied first to
extract Helly features. These Helly features help in removing
the redundant features with less computing time and leads
to an incremental accuracy at the end. The block diagram
of the proposed feature elimination-based classifier is given
in Fig. 1.

Hypergraph representation of data was implemented here

for:
« Maintaining non-redundant hyper features

« Removing redundant features
o Extracting all hyper statistical
classification.

features  for

Next, the RFE approach considers all statistical feature
subsets and suggests the best feature subset for classification.
This not only promises good performance but also shows
the main features required for good classification. A set of
statistical features in time and phase domain of different PD
sources have been used as input feature vector for the design
of RF classifier [8].
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FIGURE 1. Block diagram of the proposed RF-RFE classification technique.
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lIl. EXPERIMENTAL SETUP

PD signals measured at two different high voltage labo-
ratories have been considered in this work to analyze the
efficiency of the classifier. In case study I, PD signals were
measured in a shielded environment at SASTRA High Volt-
age laboratory. In case study II, PD signals were measured
in an unshielded environment that is prone to noise, in order
to depict the PD signals measured in the industrial envi-
ronment. Although the instrumentation used for each study
case was completely different, the equipment, methods, and
procedures used in each measurement were completely nor-
malized [29].

A. CASE STUDY I: PD SIGNALS MEASURED AT SASTRA
HIGH VOLTAGE LABORATORY

Three benchmark models related to single-source discharge
patterns (i.e., surface discharge, air corona, and oil corona)
were used to ensure the performance of the proposed algo-
rithm for detailed studies. The arrangement of the PD test
circuit and the diverse testing requirements comply with stan-
dard IEC 60270 [32].

Fig. 2 shows the test arrangement utilized to measure
PD. The experiments were performed using a DTM-D
Model- W. S. Test Systems system, consisting of the inte-
grated oscilloscope (Tektronix-TDS 2002B), which has a
tunable filter insert in the center-frequency range (0.6 MHz
to 2.4 MHz) with a 9 kHz bandwidth for pulse acquisition
of 2-5000 pC PD pulses. In this equipment the tunable filter
acts as a variable selective filter for the selection of center
frequency and to facilitate narrow band PD measurement with
bandwidth of 9 kHz. The integrated oscilloscope displays PD
pulses acquired from the analog output terminal, and the PD
intensity is shown in terms of pico-coulomb (pC). HV Solu-
tion UK’s PD Gold software was interfaced with the PD mea-
suring system to obtain the PD patterns. The measurement
test setup of a straight detection type was used for the test.
The experimental analysis was carried out using 300 kV A;
300 kV; 50 Hz test transformer. A 1000 pF coupling capacitor
and 1000 pF measurement impedance is attached to the test
circuit in order to ensure enhanced pulse signal detection
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FIGURE 2. Case study I: Laboratory PD measurement setup with oil
corona benchmark model.

and measurement. Here, the 1000 pF capacitor serves as a
voltage divider to measure the output voltage from the test
transformer.

The coupling quadrupole connected between the coupling
capacitor and PD meter separates PD pulses superimposed
on power frequency test voltage. With the help of a 5 mm
thick dielectric sheet, one category of external discharge
(surface discharge) was simulated, as shown in Fig. 3c. The
air-corona discharge was replicated by an electrode of an apex
angle 85 degrees attached to the high voltage (HV) bus shown
in Fig. 3b. As shown in Fig. 3a, oil corona discharge was
produced with a sharp point in transformer oil. The voltage
across the needle-plane electrode was slowly increased until
the PD was observed. The pulses were obtained at around
15-16 kV. The data is acquired at a sampling rate of 1 sample
per 2.5 nanoseconds. PD data for each defect is recorded for
5 minutes, which provides 100 sinusoidal cycles with PD
pulses on positive and negative half-cycles from the labora-
tory. The details are given in Table 2.

B. CASE STUDY II: PD SIGNALS MEASURED AT HIGH
VOLTAGE LABORATORY OF UNIVERSIDAD TECNICA
FEDERICO SANTA MARIA

The experimental setup proposed in [28] for analyzing the
separation of different types of PD sources is utilized here
as case study II. The PD pulses are measured by indirect
detection method given in standard IEC 60270 [32]. The
experimental setup contains a high voltage source, a 1 nF
capacitive divider of high voltage capacitor with measuring
impedance (connected in series). The sensor used for the
pulse’s measurement was a high frequency current trans-
former (HFCT) with a bandwidth of 80 MHz. This inductive
sensor has a ferromagnetic core and does not require galvanic
contact with the electrical circuit during the measurement
process. A NI-PXI-5124 digitizer with 200 MS/s of sampling
rate, 12 bits of vertical resolution, and 150 MHz of bandwidth
was programmed in LabVIEW to capture the PD pulses
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FIGURE 3. Laboratory benchmark model indicating a) Oil corona, b) Air
corona and c) Surface discharge.
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FIGURE 4. Case study II: Laboratory PD measurement setup.

during the experiment. Three PD sources, namely, corona
defect, surface defect, and internal defect, were artificially
created inside the unshielded environment. This ensures the
electrical noise (impulsive noise of high-levels of amplitude
and low-spectral variability) coupled with PD measurement.
During the measurement process each signal was stored in
time windows of 1us or 4us (200 or 800 samples), depending
on the duration of the PD pulses. The experimental setup is
depicted in Fig. 4. The measured PD pulses details are given
in Table 2.

IV. CLASSIFICATION TECHNIQUE FOR PARTIAL
DISCHARGE PATTERNS

In this article, the HG RF-RFE method is proposed to clas-
sify the PD patterns with minimum features. Also, well-
known algorithms such as Neural Network (NN), SVM, NB,
MLPNN, J48, OneR, NGBoost, XGBoost, and LightGBM
have been used for PD source classification in order to com-
pare them with the proposed method. As these classifiers
were available in the Waikato Environment for Knowledge
Analysis (WEKA) software, they have not been implemented
separately [22].
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TABLE 2. PD dataset acquired from benchmark laboratory models.

PD Category PD Inception Voltage (kV) No of PD Patterns
Case Study I
Air Corona 9kV 101
Oil Corona 10.5kV 102
Surface Discharge 7kV-8kV 112
Case Study II
Corona Defect 5kV 3000
Surface Defect 83kV 3000
Internal Defect 9IkV 3000

In this section, the essential preliminaries of Hypergraph
and Helly property to constitute Helly features and Random
Forest and its recursive feature elimination strategies are
discussed. The overall workflow is given in Fig. 5.

1) HYPERGRAPH PRELIMINARIES

Hypergraph (HG) is a new computing tool in clustered data
avenues in the form of hyper edges which exhibit the relation
among features in terms of both geometry and topology,
mainly to reduce the computational burden of a chosen prob-
lem. For this reason, HG has been widely used by the research
community for classification problems. Moreover, exploiting
its properties to move towards their features, called “hyper
features,” requires machine intelligence to be built in any
proposed technique. HG can represent the binary relation
between vertices representing data points to n-array relations
by including more than two vertices in an edge called hyper-
edge. Mathematically, hypergraph can be defined as H =
{X, E}, where X = {x1, X2, - - - , X} is the non-empty, finite
set called vertices and E = {E;, Ej, ---, Eny} is the non-
empty subset of X called hyper edges [33].

In many data science applications, when data points are
represented as vertices, one can come across having pairwise
relations, wherefrom an exciting and useful property (called
Helly property) is observed. If all pairwise intersecting hyper
edges have a common intersection, then that hypergraph is
said to obey Helly property which represents the most promi-
nent vertex among the neighborhood hyperedges. Conse-
quently, there can be Helly (Fig. 6a) and Non-Helly (Fig. 6b),
and Isolated hyper edges (Fig. 6¢) can be observed once the
data are represented in terms of hyper edges constituting
a Hypergraph. A Machine learning algorithm learns Helly
and Non-Helly and isolated hyper edges from the incidence
matrices of the hypergraph [34], [35].

2) HYPERGRAPH BASED FEATURE SELECTION

Every feature selection method aims at a reduced number of
features to achieve good classification accuracy when trained
with any learning model. Textual, spectral, geometric, and
statistical features are mainly used to train the learning model,
but the error increases due to redundant features. Hence,
HG is introduced for the identification of the optimal feature
subset with minimal time complexity.
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FIGURE 5. Flowchart of the proposed HG-RF-RFE.

The HG feature selection consists of two phases. In the first
stage, hyper edges of the HG are obtained by establishing
topological and geometrical connections between the fea-
tures. The hyper edges and vertices correspond respectively
to the data set samples and features.

In the second stage, the Helly property of the HG is
applied to the intersecting hyper edges. In the further process,
the features contained in the non-intersecting hyper edges
are removed. The time complexity for identifying the ideal
reduction is minimum because of HG’s Helly property. If n
is the number of the training sample, p is the number of
features, ntrees is the number of trees (for methods based
on various trees), the complexity of RF algorithm turns out
to be O(n2./pntrees) due to Breiman implementation. Since
the number of generated hyper edges is not going beyond
the number of training samples, there cannot be increased
complexity. Hence the complexity of the proposed algorithm
turns out to be the same as O(n2./pntrees) [30].

3) BRIEF THEORY ON RANDOM FOREST BASED RECURSIVE
FEATURE ELIMINATION

A collection of decision trees is generally a Random Forest.
The motivation behind this idea is that learning made by
a group of people would yield better results and allow the
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knowledge to be shared. Each decision tree predicts outcome,
and RF collects the responses obtained from each tree and
makes the overall decision. For classification, the class label
classified by a majority of the decision trees is the final class
given by the RF. In the case of regressions, the output of the
RF is the mean of the outcomes produced by all the trees in
the forest.

Bootstrap Aggregating (or bagging) is the process of split-
ting the samples randomly with replacement into B bags.
Each bag is used to construct a decision tree, and therefore
B decision trees will be built. In theory, one can show that
when bootstrapping, only two-thirds of the data is allotted
to a tree. The remaining one-third is termed as Out-Of-Bag
(OOB). The advantage of random forest is that it uses this
remaining one-third of data to find the error, known as the
Out-Of-Bag error estimate.

If there are p predictors, it is generally recommended to
have ,/p feature candidates for each split in the case of a
classification problem and p/3 feature candidates for that
in the case of a regression problem. Nevertheless, it has
to be considered that if the number of trees is very high,
RF becomes computationally expensive.

The wrapper approach uses RF as a learning algorithm
in this technique. The wrapper approach suggests the “most
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FIGURE 6. Hypergraph representation of data. (a) Intersecting hyper edges with common intersection (exploits Helly property)
(b) Pairwise intersecting hyper edges without common intersection (lack of Helly property) (c) Isolated hyper edges.

important™ features for classification. The advantage of RF
is that cross-validation is not required, as the Out-Of-Bag
estimate can be used to get the parameter of the model. First,
the optimal number of trees is obtained by training the RF
model and choosing the number of trees that correspond to
the lowest Out-Of-Bag error value. RF has been trained with
an obtained number of trees. As discussed in the previous
section, ,/p number of predictors is tried for each split, where
p is the number of predictors.

From the HG RF-RFE, a rank list of the feature candidates
is obtained. The next task is to analyze the performance
of each feature subset and choose the subsets that are hav-
ing lower ranks. For each feature subset formed, RF has
been trained and validated. The Matthews Correlation Coef-
ficient (MCC) is computed from the confusion matrix. A line
graph is plotted with every feature subset size against its cor-
responding MCC. Inferences are drawn from this graph and,
by balancing the feature subset size with the performance,
interesting feature subsets are selected for each setting (time
domain and time-phase domain).

V. FEATURE EXTRACTION

A. SELECTION OF HYPER FEATURES

The Helly property of HG helps eliminating the redundant
features in the data. Hyper edges are obtained after applying
the HG algorithm, which reduces the structure of the PD
data (Table 3). The threshold varies between 0.25 to 1.5,
and the best accuracy was achieved when the threshold to
select isolated hyper edges was 1. Redundant hyper edges
are eliminated using the HG’s trim property, as there may
be an instance where these redundant hyper edges might be
mistakenly predicted to apply to isolated hyper edges.

B. EXTRACTION OF STATISTICAL FEATURES
The number of features required in order to achieve suc-
cessful classification depends on the distinctive quality of
the selected features. During the last few decades, different
approaches were taken to select characteristics in recognition
of PD patterns. Techniques such as statistical approaches,
pulse shape parameters, signal processing tools, image pro-
cessing tools, and time-series approach, are widely reported
in literature to extract features from the PD patterns [2].
Several statistical indexes have been proposed in the liter-
ature, and their classification accuracy is reported in Table 1.
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TABLE 3. Hypergraph representation of data (case study ).

Original data size 2405*200
Data size after removing
1408*200

redundant features

In general, two main distributions, pulse count and pulse
height, can characterize PD data, and statistical features are
extracted from these PD distributions [16]. Although there
are many potential metrics available to identify PD, the
authors are cautioned in selecting precise indicators that can
uniquely and unambiguously classify the defects. Although
some defects produce easily identifiable patterns, there may
be a substantial overlap among them [26] and such situations
may complicate accurate interpretation.

In this work, hyper statistical features related to time and
phase domains are considered to classify the PD sources.
Hyper statistical features are statistical features obtained
from hyper-edge (HE) information that possess hyper rela-
tion property. Hence, redundant hyper edges with common
information can be eliminated by the hypergraph algorithm.
As a result, less hyper features are selected to represent the
data.

Statistical and pulse shape characterizing features describ-
ing PD in the time domain are: F;) Maximum Amplitude
(Amax), F2) Crest Factor (CF), F3) Skewness (Sk), F4) Kur-
tosis (Ku), Fs) Mean (u), Fg) Variance (o2), F7) Aver-
age Discharge Current (Iayvg), Fg) Quadratic Rate (QR), Fo)
Discharge Power (P), and Fio)lavg / QR. Statistical features
describing PD in phase domain are: F) Phase angle of Maxi-
mum Amplitude (¢max ), F12) Phase angle of Mean Amplitude
(¢avg), F13) Kurtosis of max apparent charge phase distribu-
tion (Kug,...) F14) Kurtosis of mean apparent charge phase
distribution (Kuy,.... ), F15) Skewness of max apparent charge
phase distribution (Skg,...), Fi6) Skewness of mean appar-
ent charge phase distribution (Skg,,.). Their mathematical
descriptions are as follow:

mean

E
F, = CF= —=% (D)

Tms
N
> (i — w*xi)
F3 = Skewness(Sk) = IZIN— 2

o3 3 f(xp)

i=1
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N
> xif(xi)
Fs = Mean (1) = = —— 3)
2 fxi)
i=1 .
S (xi — u?)f(xi)
F¢ = Variance(o'?) = =2 S )
> fxi)
1 & -
Fr = Iae = — ; i )
1,
mzwzag% 6)
1 N
Fo=P=_ X;qivi )

Here, N indicates the1 total number of discharges, At is
the time interval, qi is the apparent charge, and V; gives
the magnitude of the voltage. To capture the Helly features,
hypergraph data representation is done first, and Helly, non-
Helly, and isolated hyper features are extracted. As mentioned
in [2], hyper statistical features extracted both in time and
phase domain (total 16) have been employed for classification
through the HG-RF-RFE algorithm.

V1. RESULTS AND DISCUSSION

All samples are considered as an initial set of hyper edges
and columns as features. The hyper features indicate selected
hyper edges after the elimination of redundant and uninfor-
mative features by the RFE algorithm. To design a precise
set of hyper edges, Helly hyper edges were also taken into
account for determining the final set of hyper statistical
features. The dataset was subjected to a chi-square test in
order to test the hypothesis of independence among attributes.
The hyper relation among the data is represented via hyper
edges. Neighborhood relations between the hyper edges have
been established through fixing a minimum threshold using
the Euclidean distance algorithm. Chi-Square tests were per-
formed with (m—1, n—1) degrees of freedom to determine
whether the selected attributes are independent, where m
and n represent the number of rows and columns, respec-
tively [30]. From the dataset used in both case studies, it was
observed that at least 65% of the attributes were found to be
mutually dependent at a level of 5% significance.

In this section, the classification by the selected features is
performed, and the results are compared with other classifiers
by using k-fold cross-validation. The cross-validation method
helps to control the over-fitting of the data. The k-fold cross-
validation is the statistical practice that divides the sample
data into k subsets. Out of k subsets, k—1 subsets are used
for training the proposed system, and the remaining subset
is used for testing the performance. In this article, a 3-fold,
5-fold, and 10-fold cross-validation method are used for anal-
yses to authenticate the given samples.
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Random Forest models are implemented by using the R
packages available at the Comprehensive R Archive Net-
work (CRAN) to classify PD sources. To verify effectiveness,
the HG-RF-RFE classification performance is also estimated
with different training/testing heuristics with training/testing
ratios of 60:40, 70:30, and 80:20. Results pertaining to the
classification of these sets ensure that change in the training-
testing heuristics to 5%, the difference in the detection rate
is £0:05%, and the results show that the proposed HG-RF-
RFE can classify PD sources with a higher classification rate
compared to other methods.

A. EVALUATION METRICS
The metrics used to quantify the performance of HG-RF-RFE
are as follows:

1) MATTHEWS CORRELATION COEFFICIENT

The MCC is calculated from the confusion matrix and is
one of the most reliable methods for assessing classifier’s
performance. The benefit of using MCC is that it captures
the entire confusion matrix, thus giving a complete insight
into the performance.

_ TP*TN — FN*FP
N /(TP + FP)(FP + TN)(TN + FN)(FN + TP)

(®)
The value of MCC lies between —1 and 1. A value of 1 indi-
cates excellent agreement, and the value of —1 indicates

inferior prediction. MCC is used to compute the overall per-
formance of the classifier.

MCC

2) ACCURACY
Accuracy (Avane) is simply a ratio between correct observa-
tion and total observations.

TP +TN

AvValue = 9
Valie = TP T FP + EN + TN ©

3) PRECISION

Precision (Py,)ye) is the ratio of correctly predicted positive
observations of the total predicted positive observations.

TP

e — 10
TP + FP (10)

Pvalue =
4) RECALL
It is the ratio of correctly predicted positive observations to
all observations in the actual class.

TP
Rvalue = (1D

TP +FN
5) F1 SCORE
The F1 score is mathematically the harmonic mean of preci-
sion and recall that is given below in terms of the elements of
the confusion matrix.

2TP
FISCORE= — (12)
2TP + FP + FN
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where TP, TN, FP, and FN are the True Positives, True Nega-
tives, False Positives, and False Negatives, respectively, in the
confusion matrix.

B. SELECTION OF INFORMATIVE FEATURES BY RF-RFE
The mean decrease in the Gini index is obtained from the
trained model, and this metric tells how much Gini index
decreases when a split of the node is made on a particu-
lar variable. The bigger the decrease, the more important
is the variable. Based on the mean reduction in the Gini
index, the variables of the current feature set are then sorted,
and the least important variable is taken out, then it is placed
at the bottom of the rank list, which is filled up in a bottom-up
approach. The next task is to analyze the performance of each
feature subset and choose the subsets that are having lower
ranks. For each feature subset formed, RF has been trained
and validated.

The mean of MCC is calculated from the confusion matri-
ces obtained during cross-validation. The cost corresponding
to the best MCC is chosen for training the RF using the
combined data of training and validation sets. The final model
obtained is used to predict the test set, and the confusion
matrix is constructed. From this matrix, the final MCC is
computed for this feature subset. The last element of the rank
list is removed, and the entire process is repeated for the new
subset of features. The algorithm ends when features in the
rank list are exhausted

C. CASE STUDY I: CLASSIFICATION OF PD SOURCES
MEASURED IN SHIELDED LABORATORY

In the first part of the experimental results, PD data measured
in a shielded environment is considered, hence the noise level
is very low. It is interesting to study the plots by observing
how the classifier performs when features are removed one
by one from the set. That is why the plot starts from the
maximum subset size at the left, and size decreases when it
goes to the right. From Fig.7a and 7b, it is evident that the
MCC value is an almost straight line for all uninformative
features (from feature 1 to 8). From feature 9, there is a
sudden decrease in the MCC value, and the fall in MCC value
indicates the presence of “‘important” feature for classifica-
tion. The performance of the algorithm is analyzed first with
the time domain features and later, with both time and phase
domain features. A part of the database was utilized during
the study and the models participating in the training were
randomly selected. Fig. 7a and Fig. 7b show the HG-RF-RFE
performance plot for time domain and time-phase domain
features, respectively. According to decreasing MCC values,
feature subset rank is assigned to the x-axis, and MCC values
are assigned to the y-axis. The features obtained are plotted
over the graph and the low rank features are encircled; those
are the important informative features for classification. The
sequence of features F2, F9, F7........ , F8 appearing in Fig.7a
are the ranking of the features in the time domain and in
Fig.7b phase domain ranking features are appearing in the
sequence FO, F7,F2,....... , Fl16.

104

i F9 F7 F5 FI0  F3 F4 FI | Fo~]
: F§
o T —
E’ 0.5¢ 1
|——Time Domain Hyper Statistical Fealures]
L L L L L
10 8 6 4 2
Feature Subset Rank
(2)
1 F9 F7 F2 F14 F¢ F1 F11 F5 F3 FI12 FI13 FI5 F4 F10 :F's\'l
: F14|
&) da=u
% 051 1
|+Time-Phasc Domain Hyper Statistical Fealurcsl
0 L L L L L 1 L
16 14 12 10 8 6 4 2

Feature Subset Rank
(b)

FIGURE 7. Case study I: MCC vs feature subset rank plot for a) time
domain PD features, b) time-phase domain features.

From Fig. 7a, it is clear that there is almost a straight line
up to 8 features indicating the presence of non-informative
features. After the 9th feature (from left to right) there is a
sudden decrease, which indicates the most relevant features
for classification. Thus, in this case, features 6 and 8 (variance
and QR) are chosen for classification. Likewise, in the time-
phase feature subset, on a closer look, it is clear that the graph
is similar to that of the time domain feature plot. i.e., the MCC
value is equal to 1, for the 14 features, and there is a steep far
after the subset size 15. Thus, in this case, the features 8 and
16 (variance and I/QR) are chosen for classification.

Since the quadratic rate assigns greater weight to the larger
pulses, the QR of the discharge has been considered here
as good indicator of the above three defects for the time
domain features, and the feature I/QR is taken as the main
indicator when time-phase domain features are considered.
Along with QR, the variance has also been taken as a feature,
which can tell about the widespread nature of the PD defects.
Although the other statistical metrics suggested in [36] are
good features, they are not precise indicators, and they require
longer computation time. The efficiency of the HG-RF-RFE
classifier over the existing classifiers is studied under various
performance evaluation criteria shown in Table 4.

The hyper parameters that are used to tune the classifiers
are given in Table 5. The main limitation in the SVM is
the speed and size of the dataset in training and testing. For
SVM, Radial Basis Function (RBF) kernel is used, which was
actually found to be most effective for PD data. Moreover,
when only two features are considered for classification, the
recognition rate of the SVM is significantly reduced. The
accuracy of NB is only 82% when the selected features are
given as input to the NB classifier. The main reason for this
low accuracy is that the features are dependent (HG helps to
find the topological and geometrical relationship in the data).
The classification accuracy of OneR is higher than SVM
and NN. The proposed HG-RF-RFE is also compared with
ensemble classifiers. The major drawback of ensemble type
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FIGURE 8. Performance analysis-accuracy, precision, recall, MCC values
(top-bottom) for case study | PD data.

classifiers is that they take higher time in the training stage,
and also that the recognition rate is very sensitive to data.
Moreover, the accuracy of gradient boosting algorithms is
nearer to the proposed HG- RF-RFE algorithm, but it requires
more time to train, and it is harder to tune the parameters to
classify effectively.

From the experimental analysis, it is evident that the per-
formance of the HG-RF-RFE algorithm is better than the
existing ones when the hyper statistical features are taken into
account (Fig. 8). When the classification is done by all feature
subsets, though the accuracy improvement is incremental,
the performance of the classifier improves further when the
selected hyper statistical features are considered. The varia-
tion in the accuracy level with the number of features has been
observed in both time domain and time-phase domain feature
subset for HG-RF-RFE classification.

D. CASE STUDY Il CLASSIFICATION OF PD SOURCES
MEASURED IN SHIELDED LABORATORY

In case study II, PD data measured from the unshielded
laboratory is considered [28]. The case study I results showed
that the proposed features could classify the PD sources

VOLUME 9, 2021

TABLE 4. Performance of different classifiers - case study I PD data.

Classifiers Classifier Performance
Time Domain Time — Phase Domain
NB Accuracy 80.12 82.35
Precision 80.32 82.14
Recall 83.05 81.14
F1 Score 0.81 0.82
MCC 0.905 0.86
SVM Accuracy 62.97 64.78
Precision 64.01 66.17
Recall 63.10 59.01
F1 Score 0.64 0.62
MCC 0.62 0.65
NN Accuracy 90.01 91.89
Precision 91.45 92.03
Recall 90.14 91.81
F1 Score 0.87 0.89
MCC 0.87 0.89
J48 Accuracy 85.92 87.12
Precision 88.3 86.13
Recall 88.1 87.10
F1 Score 0.82 0.87
MCC 0.86 0.87
OneR Accuracy 92.12 91.45
Precision 90.29 91.09
Recall 91.00 91.14
F1 Score 0.90 0.92
MCC 0.9 091
XGBoost Accuracy 93.23 91.26
Precision 93.12 91.31
Recall 93.08 91.04
F1 Score 0.92 0.91
MCC 0.92 091
NGBoost Accuracy 91.74 89.19
Precision 91.24 89.05
Recall 90.92 88.91
F1 Score 0.89 0.87
MCC 0.89 0.87
LightGBM Accuracy 95.18 93.24
Precision 95.26 93.12
Recall 96.14 94.01
F1 Score 0.95 0.93
MCC 0.95 0.93
HG-RF-RFE Accuracy 95.7 98.6
Precision 96.2 98.3
Recall 96.87 98.26
F1 Score 0.96 0.98
MCC 0.96 0.98

TD- Time Domain Features (with all hyper statistical features)

PD- Phase Domain Features (with all hyper statistical features)

TDWEF- Time Domain Features (with features selected by HG-RF-RFE)
PDWEF- Time-phase Domain Features (with features selected by HG-RF-
RFE)

with higher accuracy than other state of the art classifiers.
To prove the efficacy of the proposed classification method
under noisy conditions, the hyper statistical features are alone
taken into account. Such features indicate selective hyper
edges after the elimination of redundant and uninformative
features by the Trim Hypergraph. For this precise set of hyper
edges, Helly hyper edges have also been taken into account
to determine the final set of hyper statistical features for
classification. Fig. 9a and Fig. 9b represent how the classifier
performs when the hyper statistical features are removed one
by one from the subset.

105



IEEE Access

S. Govindarajan et al.: Development of HG-Based Improved RF Algorithm

TABLE 5. Hyper parameters of classifiers.

Classifier Hyper Parameter

SVM Kernel: Radial Basis Function

Learning rate: 0.97
number of layers: 3

Neural Networks

Training cycles: 500

No of Trees: 158
Criterion: Gini index

Random Forest

Gradient Boosting No of Trees: 130
Learning rate: 0.5
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FIGURE 9. Case study Il: MCC vs feature subset rank plot for a) time
domain PD features b) time-phase domain features.

MCC was used to select the best feature subset, and this
subset consists of hyper statistical features that are most infor-
mative and discriminative. The best feature subset is formed
by grouping the hyper statistical features starting from the
feature point where MCC begins to decrease and continues
decreasing. The best feature subset (with time domain hyper
statistical features alone) chosen as per the MCC score by
the RFE algorithm, consists of four time domain hyper
statistical features: variance, amplitude, kurtosis and mean
(Fig. 9a). Compared to other PD classifiers, with these four
time domain hyper statistical features, our proposed classifier
(HG-RF-RFE) achieved the highest accuracy of 96.8%. This
accuracy is achieved by forming a feature with the most
informative and discriminative hyper statistical features from
the time- domain. When time-phase domain features are
considered, the accuracy of the algorithm is further increased
t0 99.8%.

The best-chosen feature subset consists of the following
time domain and phase domain hyper statistical features:
maximum amplitude, skewness, variance, Iays/QR, and phase
angle of maximum amplitude (Fig. 9b), and the use of this
feature subset as an input to HG-RF-RFE classifier improved
its accuracy. The efficiency of the HG-RF-RFE classifier
over the existing classifiers for case study II PD data is
studied under various performance evaluation criteria shown
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TABLE 6. Performance of different classifiers - case study 11 PD data.

Classifiers Classifier Performance
Time Domain Time — Phase Domain
NB Accuracy 87.02 81.81
Precision 87.23 82.59
Recall 88.31 83.14
F1 Score 0.87 0.83
MCC 0.87 0.83
SVM Accuracy 75.24 70.34
Precision 75.12 70.57
Recall 74.87 71.01
F1 Score 0.74 0.70
MCC 0.74 0.70
NN Accuracy 92.47 91.45
Precision 92.19 91.24
Recall 93.08 92.21
F1 Score 0.93 0.92
MCC 0.93 0.92
J48 Accuracy 87.23 85.43
Precision 87.08 85.20
Recall 86.87 85.98
F1 Score 0.87 0.85
MCC 0.87 0.85
OneR Accuracy 90.89 88.27
Precision 91.26 89.09
Recall 91.08 88.81
F1 Score 0.91 0.88
MCC 091 0.88
XGBoost Accuracy 95.14 93.12
Precision 95.47 92.14
Recall 95.02 93.01
F1 Score 0.95 0.93
MCC 0.95 0.93
NGBoost Accuracy 96.12 93.26
Precision 96.24 93.24
Recall 96.09 93.87
F1 Score 0.96 0.93
MCC 0.96 0.93
LightGBM Accuracy 95.26 93.24
Precision 95.64 93.64
Recall 95.20 92.89
F1 Score 0.95 0.93
MCC 0.95 0.93
HG-RF-RFE Accuracy 96.80 99.8
Precision 96.15 99.41
Recall 96.28 99.12
F1 Score 0.96 0.99
MCC 0.96 0.99

TD- Time Domain Features (with all hyper statistical features)
PD-Phase Domain Features (with all hyper statistical features)

TDWF- Time Domain Features (with features selected by HG-RF-RFE)
PDWF- Time-phase Domain Features (with features selected by HG-RF-
RFE)

in Table 6. From the table, it is clear that the recognition rate
of other state of the art algorithms is low when the selected
time and phase domain hyper statistical features are given
as input to the classifiers. Tuning of hyperparameters and
hyper statistical features from both the time domain and phase
domain, ensured the improved classifier accuracy. In this
regard, the HG-RF-RFE classifier achieved a higher detection
rate, and features were chosen by balancing the subset size
with the performance.

The features selected for both case studies are shown in
Table 7 for the training-testing ratio of (70%-30%), and the
following conclusions have been summarized:
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TABLE 7. HG-RF-RFE classification performance for training testing ratio
of (70%-30%).

Hyper Selected Classification

Features Features Accuracy
Case Study - 1

Time Domain 6 and 8 95.7 %

Time- Phase Domain 8 and 16 98.6 %
Case Study - II

Time Domain 1,3,5,6 96.8%

Time- Phase Domain 6,3,5,11 99.8%

e The proposed HG-RF-RFE algorithm has taken only
hyper statistical non-redundant features to classify the
PD defects into three different classes.

o As PD events are random, capturing and removing
repetitive features is sufficient for efficient classifica-
tion. Hence, non-Helly features are also included as
HG-RF-RFE input.

« Some of the topologically significant redundant features
are removed in the initial phase itself (HG phase). Sta-
tistical features are obtained only for the hyper-features
obtained from HG phase outputs. These hyper-features
are as precise as possible. Since isolated hyper edges are
also made available at the beginning of the RF algorithm,
no topologically significant feature is left.

o The size and nature of the data samples taken for training
and testing are more sensitive to HG-RF-RFE.

+ HG-RF-RFE is effective in classifying PD patterns and
has the ability to eliminate redundant features. This is
evident from Table 4 and Table 6 since, with only two
features, a classification rate of 98.6% is accomplished
in the case study I and 99.8% accuracy with four features
in case study II.

What makes the RF random is that it selects a random
subset of features for constructing a decision tree in the forest.
Since the features are chosen and the bootstrapped data are
random, this increases the diversity in the forest, making it
robust and improving the performance of the classification.
Due to this randomness, over-fitting is avoided, which is an
advantage of this technique. One more benefit of this model
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TABLE 8. Average accuracy of classifiers using 3-fold, 5-fold and 10-fold
cross validations on case study-ii PD data.

Classifier Accuracy of Accuracy of Accuracy of
3-fold cross 5-fold cross 10-fold cross
Validation Validation Validation
Naive Bayes 82.8 84.3 81.81
SVM 68.7 72.4 70.4
NN 92.0 94.5 91.3
J48 86.9 82.3 85.4
OneR 88.3 90.2 88.27
XGBoost 94.4 93.6 93.12
NGBoost 92.29 94.01 93.26
LightGBM 93.01 94.98 93.24
HG-RF-RFE 99.1 98.7 99.8

is that it computes the importance of each feature and prefers
the variables which are more important for classification.

The performance of the algorithm is compared with other
existing classifiers, and the achieved detection accuracy
proves the exhaustive capability of the HG-RF-RFE algo-
rithm. Table 8 represents the accuracy of the different clas-
sifiers for the 3-fold, 5-fold and 10-fold cross-validations.
The classifiers are trained with the time-phase domain fea-
tures extracted from Case study II PD data. The minimal
hyper statistical features selected by HG-RF-RFE (maximum
amplitude, skewness, variance, Iavg/QR and phase angle of
maximum amplitude) are used to train other state of the art
classifiers. It is evident, from the table, that the accuracy value
of HG-RF-RFE is close to 100% across all chosen samples
uniformly.

The consistency and convergence of the algorithm ensure
the stability of the proposed method. From [37], it is evident
that the increased number of features will make the system
more complicated and time-consuming. Since HG-RF-RFE
removes the redundant hyper edges and uninformative fea-
tures, the time complexity and computation time of the algo-
rithm are reduced. Fig. 10 shows the computation time of the
HG-RF-RFE algorithm taken for classifying the PD sources
when a reduced feature subset is considered for both case
studies. In many practical applications, especially if online
condition monitoring is necessary, this algorithm will select
the vital feature to attain the best classification accuracy.

VII. CONCLUSION

Identification and classification of PD source is a challenging
task. In the present work, the HG-RF-RFE method has been
proposed to reliably classify PD sources with a minimum
number of features. PD experiments have been carried out
in the laboratory (shielded and unshielded environment con-
dition) to simulate three different types of PD sources. HG is
introduced mainly for two purposes: (i) to find out the hyper
relation between the features, and (ii) to extract hyper statis-
tical features based on time and phase domain. The reduced
number of related features of PD signals (by taking time-
phase domain features) is extracted for classification. As the
redundancy and use of many features affect the performance
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of the system, the RFE approach was chosen to find the best
feature. Once the features are arranged in ranking using RFE,
the ideal feature subset is selected with the help of MCC and
employed to classify the PD source through Random Forest.
It has been observed that, with selected features alone, the PD
sources are classified with 99.8% accuracy after removing the
uncorrelated features. The algorithm proposed in this article
provides the potential hyper statistical features (statistical
features obtained from HG representation of data) that can
be used to classify the air corona, oil corona, and surface
discharge defect types effectively. In the future, HG can be
combined with parameterized hyper tree classifiers along
with similar computational intelligent tools such as Grid
Search, Generic Algorithm, Chi2 based feature selection,
Mutual Information based feature selection and Extra Tree
Classifiers to maintain this accuracy with less computational
time using convex optimization techniques.
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