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ABSTRACT In multichannel EEG, several electrodes are attached to the head that may be annoying for
patients and troublesome for operators. Moreover, the number of electrodes is the main reason of the
infeasibility of developing EEG based wearable and point of care devices. To address this problem, recently,
the concept of single-channel EEG (SCEEG) is presented. The spatial resolution of SCEEG is lower than
the multichannel one, but it is easy to use, cost-effective, ubiquitous, and wearable. In this paper, for the first
time, we have developed the concept of SCEEG for the classification of responders and nonresponders to
repetitive transcranial magnetic stimulation (rTMS) treatment in major depressive disorder (MDD). We also
compared the performance of SCEEG and multichannel EEG with the different number of channels in the
prediction of responding to rTMS treatment. 19-electrode EEG is recorded from 46 MDD patients before
rTMS treatment. Among participants, 23 individuals responded to treatment. The dataset is partitioned into
the training (36 subjects) and testing (10 subjects) datasets. Linear and nonlinear features were extracted
from every channel of EEG. In training, to select informative features, the minimal-redundancy-maximal-
relevance (mRMR) algorithm was applied. The selected features were classified by k-nearest neighbors
(KNN) classifier, which is evaluated by leave-one-out cross-validation. Then the obtained classifier is applied
to the testing dataset. The results demonstrated that the F8 channel classifies responders and nonresponders
with an accuracy of 80%. Moreover, our results revealed that SCEEG could perform as multichannel EEG
in the prediction of rTMS treatment outcome in MDD patients. The obtained accuracy indicates that our
proposed method based on SCEEG has a high potential for predicting rTMS treatment outcome in MDD
patients.

INDEX TERMS Classification, major depressive disorder, prediction treatment response, single channel
EEG, transcranial magnetic stimulation.

I. INTRODUCTION
EEG is a non-invasive method for monitoring brain activity
and has various applications in the detection and treatment of
brain disorders. Compared to other brain monitoring methods
like fMRI, MEG, NIRS, etc., the main advantages of EEG are
its cost-effectiveness and high time resolution. To use multi-
channel EEG, several gel-impregnated electrodes should be
attached to the head of the patients. These electrodes are
also connected to some electrical devices (e.g., amplifiers)
with many wires. All of these accessories and even only
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attaching several electrodes on the head (in case of wireless
EEG) can be annoying for patients, troublesome for oper-
ators [1]. Besides the mentioned constraints, multichannel
EEGs are limited to use in the scientific and clinical labs,
and it can make infeasible the variety of continuous and real-
time EEG based applications like online detection of epileptic
seizures [2]. Infeasibility of at-home application is another
constraint for multichannel EEG. Also, in some other appli-
cations like neurofeedback training, it is necessary to have
frequent recordings that are another critical constraint for
multichannel EEGs. Because it is tough to keep lots of elec-
trodes on the head of subjects for several trials [3]. To address
these issues, portable EEG devices that have fewer electrodes
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are developed, for example, BR8+ and ENOBIO8 [4] with
8 electrodes, Mindo-4S JellyFish [5] with 4 electrodes, and
MindWave [4] with 1 electrode.

The spatial resolution of the EEG system with a low num-
ber of electrodes is lower than high-resolution EEG systems,
but due to its ease-of-use, cost-effectiveness, ubiquitousness,
repeatability, and portability, the lower spatial resolution is
negligible. The mentioned merits will be more available in
the EEG system with fewer electrodes, especially in single-
channel EEG (SCEEG); thus, they can be an appropriate
option for EEG studies. There are lots of practical applica-
tions that SCEEG signals can be used. One of the most com-
mon applications of SCEEG is the recording and analysis of
brain activity in sleep-related studies. Many researchers have
tried to use SCEEG for sleep stage classifications [6]–[8].
One of the other applications of SCEEG is for epilepsy
patients. The epileptic seizure also is one of the prevalent
neurological diseases that can be very dangerous, especially
when it is not detected before its complete occurrence. Thus,
to have a portable, comfortable, and easy-to-use monitoring
system, SCEEG is so attractive in detecting and classification
of epileptic seizures [9]–[11]. In addition to the mentioned
works, there are a variety of other applications that they
have used SCEEG, such as affective and emotional recog-
nition [12], fatigue [13], in-flight vigilance states [14], and
delirium detections [15].

Depression is a prevalent disease all over the world. Based
on world health organization reports, this mental disorder is
the leading cause of disability and the main contributor to the
world’s overall disease burden [16].

Different therapies are used to treat depression [17], and
most of the depressed patients underwent more than one of
these treatments before remission. The experience of inef-
fective therapies leads to adverse effects in patients who
have not responded to treatment includes exacerbation of
disorder. It will also increase the risk of stopping the treatment
by patients [18]. Hence to avoid ineffectual therapies and
their complications, predicting treatment response can be
very helpful. Therefore, applying easy-to-use and affordable
SCEEG devices facilitates monitoring patients’ brain activi-
ties and developing indicators to predict treatment’s therapeu-
tic outcome. However, multichannel EEG has been widely
used to study brain activity and brain networks [19]–[21]
in depressive disorder. SCEEG is only applied to detect
depression in only a few studies [22]–[24]. Bachmann et al.
extracted linear and nonlinear measures from single-channel
EEG for classifying depressed and normal subjects. The
results revealed that SCEEG could discriminate depression
with accuracy in the same range of studies that applied
multichannel EEG methods [24]. Continuing our previous
work [25], in the current study, we are going to determine
whether the signal of a single EEG electrode recorded at base-
line (before the treatment) can predict responding to rTMS
treatment. In other words, we are aimed to find a marker
based on SCEEG for predicting treatment response to rTMS
and compare its performancewith systems, including a higher

number of EEG channels. In this way, we have investigated
the predictive ability of systems with the different number of
EEG channels recorded before rTMS treatment by extract-
ing some nonlinear features, Hjorth parameter, spectral and
bispectral features, and applying a classification technique.
After partioning the data to training and testing datasets,
we have employed classification techniques to find the most
discriminative EEG channels. In classification, to specify the
effective features in R and NR discrimination, we have used
the minimal-redundancy-maximal-relevance (mRMR) algo-
rithm. Then, the obtained classifier is applied to the testing
dataset. This procedure is applied for different number of
channels from all to 1.

It is notable that as far as we know, this is the first study
on applying SCEEG in the prediction of treatment response
in depression. In the rest of the paper, in section 2, subjects
of the research and EEG recording and preprocessing are
explained. Then extracted features are described. After that,
the classification procedure is expressed. The classification
results obtained from the different number of EEG channels,
including single channel, are reported in section 3. The results
are discussed in section 4. Then the paper is ended with the
‘‘conclusion’’ section.

II. MATERIAL AND METHODS
A. SUBJECTS
Participants of this study were 46 major depressive disor-
der (MDD) patients referred to Atieh Clinical Neuroscience
Centre, Tehran, Iran. Psychiatrists made MDD diagnoses
based on the Diagnostic and Statistical Manual–IV diagnos-
tic (DSM-IV) [26]. Among the MDD patients who were
decided to be treated by rTMS, those who had none of the
exclusion criteria participated in the study. The exclusion
criteria were the presence of Axis I or II disorders, present
or history of head injury, seizures, epilepsy, and neurological
disorders, substance abuse, suicidal risk, unstable medical
conditions, implanting devices, cardiac arrhythmia, and preg-
nancy. Moreover, the participants were not on antidepressant
medication or had unchanged medication taking during the
rTMS. All of the patients gave informed consent for the study.
The details of usedmedication along with other clinical infor-
mation of subjects are represented in TABLE 1. Rank-sum
and Friedman tests are applied to compare demographic and
clinical data of two groups of R and NR. The results of these
tests are represented in the last column of TABLE 1. rTMS
treatment was applied to left DLPFC with the frequency
of 10 Hz as three sessions per week for five weeks for all
of the subjects. This procedure was continued for two weeks
for responder patients, whereas, for nonresponders, one of
the left 10 Hz, right 1 Hz, or bilateral rTMS was randomly
selected.

Assessment of depression level was done by Beck Depres-
sion Inventory (BDI-II) and 24-item Hamilton Rating Scale
for Depression (HRSD) before the first session and after the
end of the treatment. Furthermore, depression severity was
also assessed by the HRSD after every 5 rTMS sessions.
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TABLE 1. Demographic and clinical information [25].

Responding is considered as a more than 50% decrease
in BDI_II scores or HRSD or by BDI≤8 (HRSD≤9).
As TABLE 1 demonstrates, only post-treatment BDI-II and
HRSD scores are significantly different (p <0.05) between
responders and nonresponders. This study has the approval of
the Iran University of Medical Sciences’ ethics committee.

Among 46 subject datasets, 10 subjects are selected ran-
domly as the testing dataset, and the remaining are used as
the training dataset.

B. EEG RECORDING AND PREPROCESSING
EEG recording was done in resting state before the first
rTMS session and at the end of treatment duration. In each
recording, five minutes EEG was acquired by a Mitsar-EEG
201 with 19 Ag\AgCl electrodes and a sampling frequency
of 500 Hz. Channel location was based on the international
10–20 system and included Fp1, Fp2, F7, F3, Fz, F4, F8, T3,
C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. The channel
locations are illustrated in Figure 1.

During EEG recording, subjects were eye closed sitting
on a comfortable chair in a shielded room. They also were
instructed to avoid falling asleep. EEGLAB Toolbox [27]
was used for the preprocessing of EEG data. The prepro-
cessing includes applying a 1-42 Hz bandpass FIR filter and
Independent component analysis (ICA) [28] algorithm for
removing artifacts. A multiple artifact rejection algorithm
(MARA) [29] has been utilized to eliminate noisy indepen-
dent components. Moreover, to remove the remaining arti-
facts, we have visually inspected the EEG data. In the end,
the data have re-referenced against a new reference that was
the average reference.

FIGURE 1. Channel locations.

C. FEATURE EXTRACTION
The features that are applied in this study include Katz fractal
dimension (KFD), Higuchi fractal dimensions (HFD), Corre-
lation dimension (CD), Rényi Entropy (RE), Hjorth parame-
ters, bispectrum, and power spectrum features. These features
are explained briefly in this section.

1) KATZ AND HIGUCHI FRACTAL DIMENSION
Fractal dimension (FD) measures a time series’s self-
similarity based on counting the appearance of a pattern
in that time series. Complexity and self-similarity can be
interpreted in different ways, so there are various algorithms
for FD computation. Two of the most known algorithms for
FD are KFD and HFD. Each algorithm has its pros and cons,
so we used both of them in our analysis [30], [31]. Both KFD
and HFD are based on changes in the distance of points in
time series. For time series x(n) with length N, the average
distance of consecutive points is a = L

/
N − 1 where

L =
N∑
i=2

‖(x(i), x(i− 1))‖ (1)

and ‖ . ‖ is distance. If d is the maximum distance between
x(1) and other points of times series, KFD will be obtained
by:

KFD = (ln(L
/
a))
/
(ln(d

/
a)) (2)

HFD is computed by the construction of k new time series,
xmk =

{
x(m), x(m+ k), x(m+ 2k), . . . , x(m+ k[N − m

/
k])}

that m = 1, 2, . . . , k and [.] denotes the floor function. The
length of each time series xmk is defined by:

Lm(k) = ((N − 1)
/
(k[N − m

/
k]))

(
[N−m/k]∑
i=1

|x(m+ ik)− x(m+ (i− 1)k)|) (3)

where | . | indicates the absolute value and [ . ] shows floor
function. These computations are done for different values
for k. If L(k) is the average of Lm(k) over k, then HFD is the
slope of the line best fitted to ln(L(k)) versus of ln(1

/
k).

2) CORRELATION DIMENSION
Correlation dimension (CD) is computed by time-delay
embedding theory in phase space [32], [33]. By applying time
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delay embedding theory to the time series x(n), the state i of
the time series in another space with d dimensions is defined
asXi = (x(i), x(i+τ ), . . . , x(i+(d−1)τ )) ,where τ is the time
delay. The average probability that the states of the system be
closer than a threshold is given by:

C(r) =
2

N (N − 1)

∑
i 6=j

θ (r −
∣∣Xi − Xj∣∣) (4)

where r is the threshold or radius of similarity and θ (X ) is
Heaviside step function. CD is obtained by estimation of the
slope of the line best fitted to ln(C(r)) versus of ln(r).

3) RÉNYI ENTROPY
Rényi entropy for a random variable x with discrete probabil-
ity distribution P = (p1, p2, . . . , pN ) is obtained by [34]:

REα = (1
/
1− α) log(

n∑
i=1

(pi)α) (5)

where α is the order of the RE. α = 2 is assumed in this study.

4) HJORTH PARAMETERS
Hjorth parameters that include Hjorth activity (HA), Hjorth
mobility (HM), and Hjorth complexity (HC) show statistical
properties of the signal in the time domain. If x ′(n) and
x ′′(n) show the first and second derivative of time series x(n)
respectively, the Hjorth parameters of x(n) are calculated as
following [35]:

HA = σ 2
x

HM = σx ′/σx
HC = (σx ′′/σx ′ )/(σx ′/σx) (6)

5) BISPECTRUM FEATURES
Bispectrum, which is based on third-order statistics, demon-
strates phase coupling of different frequency compo-
nents [36]. For x(t) which is a non-Gaussian signal,
bispectrum,B(f1, f2) is defined as the two-dimensional
Fourier transform of third-order cumulant:

B(f1, f2) = E
[
X (f1)X (f2)X∗(f1 + f2)

]
(7)

where X (f ) is the Fourier transform of x(t) and ∗ denotes
the complex conjugate. Bispectrum has symmetry in the fre-
quency range, which is calculated, and it is non-redundant
in a triangular region where f1 ≥ f2 ≥ 0. This bispec-
trum region can characterize the whole bispectrum, so the
extracted features of bispectrum are computed in this region.
For a frequency range of [0, h], the bispectrum plot area and
non-redundant region of the bispectrum plot are illustrated
in Figure 2.

The extracted features are related to moments and entropy
of the bispectrum plot. In all following formula � indicates
the non-redundant region:

FIGURE 2. The bispectrum plot area. The dotted area is the
non-redundant region.

- The sum of logarithmic amplitudes of the bispectrum
(BispSL):

BispSL =
∑

f1,f2∈�

log(|B(f1, f2)|) (8)

-The sum of logarithmic amplitudes of diagonal elements
in the bispectrum (BispSLD) that is obtained by applying
summation in eq (8) on only diagonal elements.

-The first-order spectral moment of the amplitudes of diag-
onal elements in the bispectrum (Bisp1M):

Bisp1M =
N∑
k=1

k log(|B(fk , fk )|) (9)

-The second-order spectral moment of the amplitudes of
diagonal elements in the bispectrum (Bisp2M):

Bisp2M =
N∑
k=1

(k − (Bisp1M ))2 log(|B(fk , fk )|) (10)

- Normalized bispectral entropy (BispEn):

BispEn = −
∑
n

pn log(pn) (11)

where

pn = |B(f1, f2)|
/∑

�

|B(f1, f2)| (12)

- Normalized bispectral squared entropy (BispSqEn):

BispSqEn = −
∑
n

qn log(qn) (13)

where

qn = |B(f1, f2)|2
/∑

�

|B(f1, f2)|2 (14)

The mentioned bispectrum features are extracted from all
frequency bands.
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TABLE 2. Features extracted from every EEG channel. D, T, A, and B
denote Delta, Theta, Alpha, and Beta frequency bands, respectively.

6) POWER SPECTRUM
The power of EEG signals in all frequency bands is applied
for classification.Many previous studies reported the involve-
ment of the power of delta [37], [38], theta [39], [40] and
alpha [38], [41] bands in depression. Thus for further study,
the ratio of the power of delta to theta bands (DT_Ra) and the
ratio of the power of theta to the alpha band (TA_Ra) are also
investigated as features.

All of the extracted features are listed in TABLE 2.

D. FEATURE SELECTION
Before applying the classifier, the minimal redundancy-
maximal-relevance (mRMR) algorithm was employed to
choose the most informative features for applying to the clas-
sifier. The mRMR is a feature selection algorithm that selects
features that maximize the relevancy of features to the target
classes while minimizing redundancy between them [42].
The applied mRMR code in this study was based on the
mutual information quotient scheme available at the Matlab
source codes exchange site [43].

E. CLASSIFICATION
Different classifiers are applied to the dataset, including sup-
port vector machine (SVM), decision tree, logistic regression,
and discriminant analysis classifiers. Based on the obtained
performance, we have selected k-nearest neighbors (KNN)
to discriminate between responders and nonresponders. The
KNN classifier parameters, including the number of nearest
neighbors, are chosen by hyper-parameter optimization. The
number of applied features is selected in such a way as to
obtain the highest classification performance.

F. PERFORMANCE EVALUATION
The classification performance was evaluated by three crite-
ria, including specificity, sensitivity, and accuracy.

As mentioned in section A, the dataset is divided into
training and testing datasets. The testing dataset contains
10 randomly selected subjects. The feature reduction proce-
dures are applied only to the training dataset. After feature
selection, the KNN classifier is applied to the training dataset.
During training the classifier to reduce the bias, we used

the leave-one-out cross-validation method. In this technique,
we trained the classifier using 36 subjects’ data and validated
it on the remaining one. This procedure is repeated such that
the dataset of each subject is used as the validation dataset
once. After the training procedure, the obtained classification
is applied to the testing dataset. The described classification
procedure was applied to EEG data of the different number
of EEG channels (from 19 to 1) separately.

G. EEG CHANNEL SELECTION
As mentioned before, we are going to study the performance
of single channel EEG in the prediction of rTMS treatment
response in MDD patients and compare its performance
with multichannel EEG systems. Thus we have M systems
that everyone is based on EEG data of M channels M =

1, 2, . . . , 19. In this way, to select the best M channels in
every system, the ideal method is to consider all M-channel
combinations of 19 channels and find the combination, which
leads to the highest performance. But as an example, for
M=9 it will be 92378 9-channel combinations that should be
checked, which in the case of leave-one-out cross-validation
(36 Subjects) it will be multiplied by 35 (3233230). Therefore
it is not a computationally practical way to check all combi-
nations. To solve this issue, we can have two approaches [44].

The first approach is based on adding channels one by one.
So in the first round, we select only one channel with the
highest performance among 19 channels. Then in the second
round, we want to build a system with two channels, which
its first channel is already selected in round 1. So we should
check the performance of all remaining 18 channels together
with the previously selected channel. The channel which
yields the highest performance will be selected as the second
channel. This procedure is repeated until we find the best
19 channels. Thus best M channels for all M systems are
obtained.

The second approach is similar to the first one, but it is in
the reverse direction. In this approach, firstly, we consider all
19 channels. Then in each round, we delete one channel that
its removal leads to the best performance by the remaining
channels. This procedure is continued till 1 channel remains.
Therefore in this approach, we find the best M channels for
all M systems too.

After applying both approaches for every one of the M
systems, the selected channels that yields higher performance
is chosen to use for analysis.

III. RESULTS
The applied channels, selected features and the KNN classi-
fication performance with the highest accuracy for the dif-
ferent number of channels (1, 2, . . . , 19) for both training
and testing datasets are reported in TABLE 3. In Table 3
the location of applied channels are specified by green and
removed channel are marked by grey color. The name of
channels are depicted in Figure 1 clearly. It can be seen that
the highest accuracy of 80% in the testing dataset is obtained
by classification based on 17 to 3 channels and also single
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TABLE 3. The applied channels, selected features, classification accuracy (AC), specificity (SP), and sensitivity (SE) for different number of EEG channels in
training and testing datasets. The applied channels (green) and removed channel (grey) are shown in column 2. D, T, A, and B denote Delta, Theta, Alpha,
and Beta frequency bands, respectively.

channel. The obtained results of classification by 17 to 3
channels are similar for both training and testing datasets.

The corresponding selected features of these classifications
indicates that only four features including CD4 (correlation
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TABLE 3. (Continued.) The applied channels, selected features, classification accuracy (AC), specificity (SP), and sensitivity (SE) for different number of
EEG channels in training and testing datasets. The applied channels (green) and removed channel (grey) are shown in column 2. D, T, A, and B denote
Delta, Theta, Alpha, and Beta frequency bands, respectively.

dimension of channel 4), Bisp2M_B1 (The second-order
spectral moment of the amplitudes of diagonal elements in the
bispectrum of channel 1 in the beta band), D_pow3 (power of
delta band of channel3), TA_ratio3 (power ratio of theta to the
alpha band of channel 3) are selected for classification. These
four features that are extracted from channels 4 (F3),1 (FP1),
and 3 (F7) yields 91.67 % and 80% accuracy in training and
testing datasets, respectively. Single channel classification

by channel 7 (F8) provides the same results by using only
one channel. The selected features during training for the F8
channel include TA_ratio (power ratio of theta to the alpha
band), Renyi entropy, and BispSqEn (normalized bispectral
squared entropy) in the delta band of the F8 channel. Classi-
fication by all channels (.i.e. 19 channels) provides the lowest
accuracy 86.11% in the training dataset and 60% in the testing
dataset.
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Although applying 19 channels for classification pro-
vides more features but increasing the number of fea-
tures will not necessarily improve the performance of the
classifier [45], [46].

The increase or decrease of classification error by adding
features depends on the nature of the problem and classifier
and the discriminatory effect of added features [46].

About the classification by 18 and 2 channels, although
the accuracy for the training dataset is reached to 94%, for
the testing dataset, they have inferior performance than a
classification by other numbers of channels.

The results in Table 3 also demonstrate that the specificity
of the testing dataset is 100% in almost all classification while
sensitivity is lower. However, the ideal is both specific and
sensitivity to be 100%, but as the aim of our classification is
to find the effectiveness and response to rTMS treatment, the
specificity can be considered as a more important criterion
than sensitivity. The observed 100% specificity indicates that
the proposed method can predict all of NR correctly as non-
responders; however, the rate of prediction of the original R
as responders is lower.

IV. DISCUSSION
In the current study, we proposed a framework based on EEG
signals recorded before treatment to predict rTMS treatment
response in MDD. We have compared the performance of
single channel EEG with multichannel EEG systems in the
prediction of treatment outcome.

Our results clarified that SCEEG of the F8 channel can
predict treatment responding as multichannel systemswith an
accuracy of 80%. F8 is also reported to have higher spectral
power in depressed patients compared to healthy control
subjects [47]. Moreover, F8 provided high accuracy in the
classification of healthy and depressive individuals in another
study [22]. Based on our results, since a single channel of
F8 same as multichannel EEG, can obtain the maximum
testing accuracy of 80% and also high training accuracy
of 91.67%, it can be deduced that SCEEG can be useful in
the prediction of rTMS treatment response in depression. Not
to mention that the fewer channel s we reach the goal of the
study, the better.

The results of TABLE 3 shows that in classification by
17 to 3 channels, only features extracted from F3, FP1, and
F7 channels are involved, and other channels don’t have any
role in obtained classification results. This observation and
also the high classification accuracy of the F8 channel can
confirm the involvement of the frontal region in the prediction
of treatment outcome of depression. Many other researchers
also reported the frontal lobe as a region involved in
depression [30], [48], [49].

One of the selected features in classification is theta alpha
power ratio of F8 and F3 channels. Alpha theta power ratio
is one of the known neurofeedback training that is used
for the treatment of deep levels of depression [50]. Alpha
power is reported to be involved in responding to depression
treatment [38], [41]. The correlation dimension is chosen in

most classifications. Our previous study shows that the CD
of nonresponders to rTMS treatment is significantly higher
than responders. Moreover, CD of all channels yields high
classification accuracy in discriminating responders from
nonresponders to rTMS treatment [25].

About the bispectrum features, it can be observed from
TABLE 3 that most of the selected bispectrum features
are from the beta and delta bands. It is reported that
the bispectrum of beta and delta bands outperforms theta
and alpha bands in discriminating rTMS responders and
nonresponders [25].

In single channel EEG classification by the F8 channel,
the other selected measures are Rényi entropy and normal-
ized bispectral squared entropy. In other studies, the results
indicated that Rényi entropy [51] and normalized bispec-
tral squared entropy [52] are significantly different between
depressed patients and healthy groups.

Checking the gender of the testing dataset shows that it
includes 4 female and 6 male subjects. Investigating the
results indicates that for the F8 channel, 100% of females
and 66.67% of males are classified by correct labels (i.e.,
R or NR). However, since we have a few test subjects and as
the same female/male subjects, we cannot have any reliable
conclusion on this observation. To analyze the gender effect,
a study with many male and female subjects is required,
including a separate classification on each gender.

The proposed SCEEG and also some of the multichan-
nel EEG frameworks in training outperformed our previous
study [25], which provides R and NR classification accuracy
of 91.3%.

Some other studies used machine learning techniques to
predict treatment response in MDD patients. The perfor-
mance of classification by the different number of channels,
even SCEEG in our proposed framework for the training
dataset, is superior to other previous studies that appliedmany
EEG channels in predicting R and NR. These studies did not
check their method on the testing dataset and only reported
training results. The obtained maximum classification accu-
racy of the current research for the testing dataset is 80% that
is lower than the accuracy reported by previous studies. But
it should be considered that previous studies reported only
training accuracy, which is lower than our obtained training
accuracy. The best classification results of former studies
that applied machine learning techniques for MDD treatment
response prediction and our obtained result for training and
testing datasets are reported in TABLE 4. Comparing our
results with the results illustrated in TABLE 4; it can be
deduced that SCEEG has high potential to be applied in
predicting rTMS treatment response and maybe in general
EEG application.

Although our results represented high classification accu-
racy, the results should be interpreted with caution as our
sample size was not very large. The limitations of the current
study include the small number of studied electrodes and
the small sample size. The reported F8 channel for apply-
ing single-channel EEG in predicting treatment responses is
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TABLE 4. Classification results of previous studies that applied machine
learning techniques for prediction of MDD treatment response.

also selected among the small number of electrodes, while
investigating more EEG electrodes may lead to more single
EEG candidate electrodes to predict treatment response. Fur-
thermore, as we mentioned, some of the participants were
on antidepressant medications about the applied treatment.
Thus if it was possible to study the participants that only
underwent rTMS treatment, not medications, interpreting
the results would be easier. The other point is that hyper-
parameter optimization of the KNN classifier slows down
the implementation of the method; however, the variety of
distance criteria and different number nearest neighbors to be
chosen in the KNN classificationmake it a flexible algorithm.
One of the positive points about the applied method is that in
addition to leave-one-out cross-validation, we have used an
unseen part of data as testing dataset however it is vital to
test the proposed method on a broader set of MDD patients
to prepare for clinical applications.

V. CONCLUSION
For the first time in this paper, we proposed a framework
based on single channel EEG for predicting treatment out-
come of rTMS in MDD patients. We also compared the
performance of single channel EEG with multichannel EEG
with the different number of channels in predicting rTMS
treatment responding. In this direction, EEG before treatment
of 46 MDD patients who were under rTMS treatment was
analyzed. mRMR feature reduction technique and KNN clas-
sifier were applied to linear, nonlinear, spectral, and bispec-
tral features extracted from the different number of channels
to differentiate responders from nonresponders.

The obtained results indicate that single channel EEG
of F8 channel can provide similar high classification accu-
racy (91.67% for training and 80% for testing datasets)
of multichannel EEG systems. Compared to previous stud-
ies, our proposed method, even by using single channel
EEG, outperforms in the classification of MDD responders
and nonresponders to treatment. Considering the results, the
proposed method by single channel EEG can be a proper
candidate to be applied in the prediction of rTMS treatment
response.

For future work, we can apply the proposedmethod to large
sample size to provide more reliable results. Furthermore,
the effect of gender can be checked by the proposedmethod to

investigate whether the gender of patients affect responding
to treatment or not.
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