
Received November 30, 2020, accepted December 20, 2020, date of publication December 24, 2020,
date of current version January 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3047116

Graph Embedding Framework Based
on Adversarial and Random
Walk Regularization
WEI DOU , WEIYU ZHANG , ZIQIANG WENG , AND ZHONGXIU XIA
School of Computer Science and Technology, Qilu University of Technology (Shangdong Academy of Sciences), Jinan 250353, China

Corresponding author: Weiyu Zhang (zwy@qlu.edu.cn)

This work was supported in part by the National Key Research and Development Project under Grant 2018YFC704, in part by the National
Natural Science Foundation of China under Grant 61502259, and in part by the Natural Science Foundation of Shandong Province under
Grant ZR2017MF056.

ABSTRACT Graph embedding aims to represent node structural as well as attribute information into a
low-dimensional vector space so that some downstream application tasks such as node classification, link
prediction, community detection, and recommendation can be easily performed by using simple machine
learning algorithms. The graph convolutional network is a neural network framework for machine learning
on graphs. Because of its powerful ability to model graph data, it is currently the best choice for graph
embedding. However, most existing graph convolutional network-based embedding algorithms not only
ignore the data distribution of the latent codes but also lose the high-order proximity between nodes in a
graph, leading to inferior embedding. To mitigate this problem, we investigate how to enforce latent codes to
match a prior distribution, and we introduce randomwalk to preserve high-order proximity in a graph. In this
paper, we propose a novel graph embedding framework, Adversarial and Random Walk Regularized Graph
Embedding (ARWR-GE), which jointly preserves structural and attribute information. ARWR-GE adopts
an adversarial training scheme to enforce the latent codes to match a prior distribution, and by employing
the skip-gram model, nodes in a random walk sequence are closer in the latent space. We evaluate our
proposed framework by using three real-world datasets on link prediction, graph clustering, and visualization
tasks. The results demonstrate that our framework achieves better performance than state-of-the-art graph
embedding algorithms.

INDEX TERMS Graph embedding, graph convolutional network, random walk, adversarial scheme.

I. INTRODUCTION
Graphs are universal data structures that can represent com-
plex relational data that ubiquitously exist in the real world,
including social networks [1], [2], paper citation networks
[3], [4], protein-protein interaction networks [5], [6], etc.
Mining valuable information from graph data is an important
research topic of data mining. However, the high com-
putational complexity, low parallelizability, and inapplica-
bility of machine learning methods to graph data have
made traditional graph analysis algorithms including shortest
path, centrality measurement, etc., profoundly challenging.
To resolve the above problems, graph embedding aims to
learn a project from graph data in the original topological

The associate editor coordinating the review of this manuscript and

approving it for publication was Jing Bi .

space to low-dimensional vector space while encoding struc-
tural and semantic information. The vector representation
obtained could effectively support extensive graph analysis
tasks including node classification [7], [8], node cluster-
ing [9], [10], link prediction [11], [12], graph classifica-
tion [13], etc. Because of the universality of the embedding
vectors, graph embedding technology can be applied to many
fields and tasks such as social networks and recommender
systems [14] by using the off-the-shelf machine learning
method.

Graph embedding algorithms have become one of the
indispensable and hot topics in the domain of data min-
ing and machine learning in recent years. These algo-
rithms are mainly divided into three categories: matrix
factorization-based methods, random walk-based methods,
and deep learning-based methods. The motivation of matrix

1454 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2193-4430
https://orcid.org/0000-0002-4646-1991
https://orcid.org/0000-0003-1896-330X
https://orcid.org/0000-0002-4610-0141

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

factorization-based methods is a graph that can usually be
expressed in some form of relation matrix, such as an adja-
cency matrix and Laplacian matrix. Therefore, this approach
is an intuitive way to obtain node embeddings by matrix fac-
torization to achieve the effect of dimensionality reduction.
The commonly used factorization methods include singu-
lar value decomposition (SVD) and eigenvalue decomposi-
tion. For example, GraRep [15] presented a node embedding
method by decomposing the global structural information
matrix, which integrated various k-step relational informa-
tion. TADW [16] introduced text features of vertices into the
matrix factorization framework. The disadvantage of this type
ofmethod is the high computational complexity ofmatrix fac-
torization, which makes it difficult to expand the application
on large-scale graph data.

Capturing the graph structure is a primary concern while
generating node embeddings. The random walk has been
widely used in graph data analysis to capture the structure
information, the basic idea of which is that the embedding of
nodes in a random walk path should be similar. Unsupervised
representation learning methods have been widely studied
and applied in the field of natural language processing (NLP).
Deepwalk [17] experimentally verified that the nodes in the
random walk sequence follow the power-law as well as the
words in the document. Therefore, the walking path obtained
when performing random walks can be taken as the sentence
in the corpus, and the vertices in the network can be regarded
as vocabulary in the text corpus. Then, combined with mature
NLP technology Word2Vec [18], nodes can be mapped to a
low-dimensional vector space. Some subsequent algorithms
are improvements and extensions to DeepWalk, including
Node2Vec [19], DDRW [20], FeatWalk [21], etc.

In recent years, deep learning has developed rapidly in
various fields to learn multiple levels of feature represen-
tations from complex and non-linear data, and graph data
are no exception [22]. GCN [23] simplified the defini-
tion of frequency-domain convolution and performed the
convolution operation in the space domain, representing a
semisupervised framework for node classification. However,
the labels of graph data in the real world are extremely sparse,
which greatly limits the performance of supervised or semi-
supervised graph embedding algorithms. Therefore, vari-
ous unsupervised graph embedding algorithms have been
proposed one after another. SDNE [24] is an autoencoder-
based model and simultaneously optimizes the first-order and
second-order proximity to characterize the local and global
graph structure. GAE [25] extends the graph convolutional
neural network to an unsupervised framework.

With its simple encoder-decoder structure and efficient
encode capability, GAE has found utility in many fields.
However, GAE has two flaws that cause it to have inferior
embeddings. First, the objective of GAE is to reconstruct the
adjacency matrix of the original graph, and thus, its recon-
struction loss ignores the distribution of the latent representa-
tion. Second, it cannot capture high-order proximity because
too many convolutional layers of the encoder will lead to

over-smoothing. In this paper, we propose Adversarial and
Random Walk Regularized Graph Embedding (ARWR-GE)
to make up for the above deficiencies and obtain a more
robust embedding.We employ an adversarial training scheme
to enforce the latent representation to match a prior distribu-
tion. The high-order proximity of the graph is a structural
characteristic that cannot be ignored. We perform random
walks on the graph and combine the skip-grammodel to max-
imize the likelihood of nodes sequences. Therefore, ARWR-
GE can not only enforce the latent codes to match a prior
distribution but also preserve high-order proximity, which
makes the embedding more robust and restores the struc-
tural characteristics of the graph. In this paper, the proposed
framework regularizes the graph embedding by adversarial
training scheme and random walk. Our main contributions
are summarized as follows.
• We introduce an adversarial training scheme to discrim-
inate whether a sample is generated from the encoder-
generated embedding or a prior distribution.

• We employ random walk and skip-gram models to bring
nodes that are directly or indirectly connected in the
original graph closer in latent vector space.

• We conduct extensive experiments on three datasets
through three tasks: link prediction, node classification,
and visualization. The experimental results demonstrate
the effectiveness of the proposed model.

The remainder of the paper is organized as fol-
lows. Section II discusses the related works. We detail
our ARWR-GE framework completely in Section IV.
In Section V, we describe the experimental setup and analyze
the experimental results. Finally, we conclude our work
in Section VI.

II. RELATED WORKS
Graph embedding represents the original graph information
in low-dimensional vectors, which can be facilitated in graph
analysis tasks such as link prediction, community discovery,
and node clustering. Matrix factorization, random walk, and
deep neural networks are three common methods in graph
embedding.

Matrix factorization-based embedding methods factor-
ize the adjacency matrix or Laplacian matrix of a graph.
LLE [26], LE [27], and other spectralmethods aim to preserve
the local geometry structure of the data and represent them
with a lower dimension space. These approaches are parts
of dimensionality reduction techniques and can be regarded
as the pioneers of graph embedding. HOPE [28] proposed a
high-order proximity embedding that decomposed the high-
order proximity matrix rather than the adjacency matrix using
a generalized SVD. GraRep [15] first constructed K state
transition probability matrices Ak (k = 1, 2, . . . ,K) and then
performed SVD decomposition of these K matrices to obtain
the low-dimensional representation of step K . Finally, the K
representations were spliced together to form the final repre-
sentation in order to ensure that the network representation
can depict the global information. M-NMF [29] is based on

VOLUME 9, 2021 1455

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

the framework of non-negative matrix factorization (NMF)
and incorporates community structure in the learning of graph
embeddings.

DeepWalk [17] first applied random walk to graph embed-
ding, opening a new era of graph embedding. Inspired by
the language model Word2Vec [18], DeepWalk adopts the
random walk strategy to generate several paths for each node
in a graph and then sends them to the skip-gram [30] model to
learn graph embedding. Node2Vec [19] changed the random
walk strategy of DeepWalk, introduced biased random walk
into it, and explored the homophily and structural equivalence
of graph by combining depth-first search and breadth-first
search. Struc2Vec [31] constructed a multilayer graph, where
each layer denotes a hierarchy in measuring the structural
similarity, and then applied random walk followed by skip-
gram learning on the multilayer graph to generate the embed-
ding of each node. DDWR [20] combined DeepWalk and
SVM to learn the node embeddings that well captured the
topological structure while also being discriminative for the
node classification task.

Some graph embedding methods based on depth models
have been proposed [32], [33]. DNGR [34] used the PMI
matrix (pointwise mutual information matrix) to express the
probability of co-occurrence between nodes while improving
the previous method of utilizing SVD to decompose the PMI
matrix (using the stacked denoising autoencoder for feature
extraction). ANE [35] mainly consisted of two components,
i.e., a structure-preserving component and an adversarial
learning component. The autoencoder component is used to
capture the global proximity, and the adversarial component
preserves the local proximity [36].

However, the abovementioned graph embedding algo-
rithms do not consider the graph content and cannot be
directly applied to attributed graph embedding. The attributed
graph embedding method aims at combining the graph
structure and node attribute information to obtain a node
low-dimensional vector representation that fully charac-
terizes the graph. TADW [16] proved that DeepWalk is
equivalent to matrix factorization. On this basis, TADW
decomposes the adjacency matrix and constrains it with
a text representation matrix to obtain node representa-
tions that simultaneously depict structural information and
attribute information. TriDNR [37] coupled DeepWalk and
Doc2Vec [38] model, taking into account information regard-
ing structure, attributes, and labels. FeatWalk [21] and
Gat2Vec [39] have similar ideas: they both design a ran-
dom walk with compatible attributes and structures and then
employ a shallow neural network to learn the node embed-
dings. DANE [40] uses two autoencoders to encode the
structure and attribute information separately, constrains their
consistency and complementary, and then stitches two vectors
as the final representation. MVC-DNE [41] also uses two
deep autoencoders to learn the graph embedding of the struc-
ture and attributes through the idea of multiview learning.
ANRL [42] employs a neighbor enhancement decoder model

that takes node features as input while reconstructing the
target neighbors.

The graph convolutional neural network is a framework
that applies convolutional ideas to attribute graph embedding
and shows powerful performance in processing graph data.
GCN is the first-order approximation of spectral convolution,
which makes the graph convolution neural network widely
used, and some variants of GCN have also been proposed.
GAE is a typical approach that applies GCN to unsupervised
graph embedding algorithms; it uses the GCN layer as the
encoder, and the decoder reconstructs the adjacency matrix of
the graph. ARGA [43], an extension of GAE, was proposed
as an adversarial training scheme to regularize the latent
codes. RWR-GAE [45] adds random walk on the basis of the
graph autoencoder, which improves the embedding effect of
GAE. AAVGA [46] replaced the graph convolutional neural
network in ARGA with a graph attention network, paying
more attention to the importance of node neighbors.

III. METHODOLOGY
In this section, we present the details of the proposed frame-
work ARWR-GE. First, we formally introduce the notation
and problem definition in our work, and then, we detail each
component of the framework. Themain structure of the frame
is shown in Fig. 1.

TABLE 1. Notations.

A. NOTATIONS AND PROBLEM DEFINITION
The summary of notations is listed in Table 1. Let G =
(V, E,A,X) be a graph, where V denotes the set of n nodes
and E represents the set of edges. A ∈ Rn×n is the adjacency
matrix describing the edges and X ∈ Rn×m is the attribute
matrix representing m attributes potentially associated with
the n nodes. Let Ai be the ith row vector of A and let Aij = 1
if there is an edge between nodes i and j; otherwise, Aij = 0.
xi ∈ X indicates the content features associated with each
node vi.
Problem Definition: Given a graph G = (V, E,A,X),

we aim to map the node vi ∈ V to low-dimensional vectors
zi ∈ Rd with the formal format f : (A,X) 7→ Z. We want
Z to capture the topological structure as well as the attribute
proximity.

1456 VOLUME 9, 2021

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

B. GRAPH AUTOENCODER
1) GRAPH CONVOLUTIONAL NETWORKS
GCN is the first-order local approximation of the convolution
of the spectral graph. Its input is the adjacency matrix and
attribute matrix of the graph, which can convert the structural
information and attribute information into a low-dimensional
vector representation. Given a graph G = (V, E,A,Z),
the graph convolutional network is a spectral convolution
function f (Zl,A|Wl):

Zl+1 = f (Zl,A|Wl) (1)

where Zl is the output of the l th layer after convolution and
the input of the l + 1th layer convolution, Z0

= X, andWl is
the parameter associated with the l th layer. In GCN, the graph
convolutional network can be expressed with the function
f (Zl,A|Wl) as follows:

f (Zl,A|Wl) = σ (D̃−
1
2 ÃD̃−

1
2ZlWl) (2)

Here, Ã = A+I, where I is the identity matrix, D̃ii=
∑
j
Ãij is

the diagonal node degree matrix of Ã and σ is the activation
function, Wl is the parameter matrix to be learned in the l th

layer neural network.

2) GRAPH AUTOENCODERS
Similar to ordinary autoencoders, graph autoencoders are
composed of an encoder and a decoder. However, the graph
autoencoder employs GCN layers as an encoder to obtain the
latent representation of nodes and the inner product as the
decoder. Specifically, we use a two-layer GCN as the encoder:

Z1
= fReLU (X,A|W0) (3)

Z2
= flinear (Z1,A|W1) (4)

The first layer uses X and A as the input of the graph
autoencoder, outputs the feature matrix Z1 of the first layer,
and then uses Z1 as the input of the second layer GCN to
generate the embedding matrix Z2 of nodes. ReLU and linear
are the types of neural network activation functions of the
first and second layers, respectively, and W0 and W1 are
the parameter matrix of the first and second layers, respec-
tively. The embedding generated by the encoder G(Z,A) =
q(Z|X,A) is used to reconstruct the original graph:

Â = sigmoid(ZZT) (5)

A high-quality Z should make the reconstructed adjacency
matrix as similar to the original adjacency matrix as possible
because the adjacency matrix determines the structure of the
graph. We minimize the reconstruction error by:

Lg = Eq(Z|X,A)[log p(A|Z)] (6)

If a graph autoencoder performs well, then the latent rep-
resentation that it generates contains the attribute informa-
tion of the node, and the adjacency matrix reconstructed by
the latent representation is similar to the original adjacency
matrix. The graph autoencoder is different from the ordinary

automatic encoder. It uses GCN [23] as the encoder and the
inner product of the embedding as the decoder to reconstruct
the original graph. The ordinary autoencoder can stack hidden
layers to make the model obtain stronger representation abil-
ity, but this method is not advisable in a graph autoencoder.
Since too many GCN layers will cause the model to exhibit
over-smoothing, which will have a negative impact on the
final result, only two layers of GCN are used in GAE [25]
to obtain the best performance of the model.

C. VARIATIONAL GRAPH AUTOENCODER
The variational graph autoencoder is the variant of the graph
autoencoder, which also uses GCN to generate the node
representation. The difference is that the variational graph
autoencoder first determines a (multi-dimensional) Gaussian
distribution through GCN and then samples Z from this
distribution:

q(Z | X,A) =
n∏
i=1

q (zi | X,A) (7)

q (zi | X,A) = N
(
zi | µi, diag

(
σ 2
))

(8)

where µ = Z2 is a matrix of mean vectors zi, and σ =

flinear (Z1,A|W1′) is the covariance matrix. µ and σ share
the parameter of the first layer convolutionW0. The decoder
reconstructs the adjacency matrix with z:

Âij = sigmoid
(
zTi zj

)
(9)

The variational graph autoencoder still aims to make the
reconstructed graph as similar as possible to the original
graph. In addition, it intends for the distribution calculated
by GCN to be as similar as possible to the standard Gaussian.
Therefore, the loss function is composed of cross entropy and
KL divergence. To train the variational graph autoencoder,
we optimize the variational lower bound:

Lvg = Eq(Z|(X,A))[log p(A | Z)]−KL[q(Z | X,A)‖p(Z)]

(10)

Among them, q(Z | X,A) is the distribution calculated by
GCN, and p(Z) is the standard Gaussian.

D. ADVERSARIAL TRAINING SCHEME
We introduce the adversarial training mechanism to force the
encoder to generate embedding to match a prior distribution.
We train a discriminator based on a multi-layer perceptron,
which is trained to distinguish whether the embedding is
sampled from the prior distribution (positive simple) or gen-
erated by the encoder (negative simple). The loss function of
discriminator D(·) is defined as follows:

Ld = −Ez∼pz logD(Z)− EX log(1−D(G(X,A))) (11)

where pz is the prior distribution, and we choose the Gaussian
distribution in this paper. It is worth noting that the encoder
G(·) is shared by the autoencoder and adversarial model, and

VOLUME 9, 2021 1457

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

FIGURE 1. The architecture of the proposed ARWR-GE model. The middle part of the figure is a graph autoencoder, which inputs are the adjacency
matrix A and attribute matrix X of the graph, and the embedding Z is generated by the graph convolution encoder to complete the reconstruction
of A. The top half of the framework corresponds to an adversarial network, which is trained to distinguish whether the data come from the
embedding generated by the encoder or the prior distribution. The data sampled from the prior distribution are regarded as positive samples and
represented by a plus sign; the data sampled from the latent representation output by the encoder are regarded as negative samples and
represented by a minus sign. The bottom half shows the random walk and skip-gram model, which function to make the embeddings in the same
random walk path closer to each other in latent space.

jointly optimizing D(·) and G(·) can make the potential code
match the prior distribution:

min
G

max
D

Ez∼pz [logD(Z)]

+Ex∼p(x)[log(1−D(G(X,A)))] (12)

E. RANDOM WALK + SKIP-GRAM
The adversarial mechanism only constrains the distribution
of the latent representation. Although the adjacency matrix
of the graph is reconstructed at the decoding end of the graph
autoencoder, the two-layer GCN is insufficient to capture
the structural information of the graph. Inspired by Deep-
Walk [17] and Node2Vec [19], which assume that nodes
with similar context should be similar in latent semantic
space, we combine random walk and the skip-gram model
to mine high-level structural information of the graph. Based
on this approach, we propose to incorporate node attribute
information together with a high-level structure. Specifically,
the objective function minimizes the following log probabil-
ity of the skip-gram model by giving current node vi with its
embedding zi:

Lsg = −
|V|∑
i=1

∑
vj∈C i

log Pr(vj|Zi) (13)

where Ci = {vi−w, . . . , vi+w} is the node context in random
walk generated by center node vi, and w is the window size.
The conditional probability of Pr(vj|Zi) is the likelihood of
the center node context vj by giving its embedding zi. There-
fore, the probability is formulated as:

Pr(vj|zi) =
exp(vTj · zi)∑n
s=1 exp(vTs · zi)

(14)

Here, Zi is the embedding vector generated by the graph
encoder. It can be seen that the skip-gram model and graph
autoencoder share the same encoder. Therefore, the skip-
gram model can optimize the parameters of the encoder so
that the embedding generated by the encoder can capture the
high-order proximity of the graph. vj is the corresponding
embedding when node vj is the context for the node vi.
Eq.(14) expresses the probability obtained by the softmax
function, and directly calculating Eq.(14) is computationally
expensive because we require iterate through all the nodes
in a graph when computing the conditional probability of
Pr(vj|zi). To speed up the training process and guarantee
the validity of the calculation results, we adopt the negative
sampling strategy proposed in [30] that samples multiple
negative samples according to some noisy distributions. The
negative samples here refer to nodes that are not related to the
central node. Therefore, for central node vi ∈ V to generate

1458 VOLUME 9, 2021

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

its contexts vj ∈ Ci, we simplify Eq.(14) to the following
objective:

log σ (vTj · zi)+
|neg|∑
n=1

Evn∼Pn(v)[log σ (−v
T
n · zi)] (15)

where σ (·) is the sigmoid function, and |neg| is the number of
negative samples. We randomly sample the negative contexts
vn according to the probability Pn(v) ∝ d3/4v as suggested
in [30], where dv is the degree of node v. For all nodes V ,
we have the following loss function:

Lsg = −
|V |∑
i=1

∑
vj∈Ci

[log σ
(
vTj · zi

)

+

| neg |∑
n=1

Evn∼Pn(v) log σ
(
−vTn · zi

)
] (16)

After optimizing the Eq.(16), node attribute information
consistent with high-order structure information can be pre-
served in the same representation space.

IV. OUR MODEL
Combining the advantages of the above components, we pro-
pose a graph embedding framework based on the graph
autoencoder: Adversarial and Random walk Regular-
ized Graph Embedding(ARWR-GE), which can transform
high-dimensional complex graph data into a robust, low-
dimensional latent representation that preserves the graph
structure (local and high-order) and attribute information.
It can be seen from Fig. 1 that our proposed novel framework
is divided into three main components; namely, the middle
components is the graph autoencoder, the upper tier is an
adversarial network and the lower tier is the skip-gram mod-
ule, which cooperates to generate high-quality graph embed-
ding. The learning algorithm is summarized in Algorithm 1.
Variational ARWR-GE is named ARWR-VGE.

First, we generate a fixed-length node sequence for each
node in the graph to prepare for subsequent optimization of
the skip-grammodule. In step 3, we employ the GCN encoder
to encode the local structural information and attribute infor-
mation into Z. Then, we take the same number of samples
from Z and the real data distribution pz in steps 5 and 6 to
update the discriminator with the cross-entropy cost com-
puted in step 7. After training the discriminator K rounds,
the graph encoder will try to deceive the discriminator and
update itself with the generated gradient in step 9. Step 10 cal-
culates the gradient according to Equation (16) and updates
the parameters of the skip-gram module and graph encoder.
The graph encoder refers to the encoding part of the model,
and the graph autoencoder includes the decoder. The graph
autoencoder and skip-gram model share connections to the
encoder, which captures the node attributes as well as graph
structure information. Finally, the graph autoencoder gen-
erates gradient according to Equation (6) or Equation (10)
and updates its own parameters. After T rounds of iterative

Algorithm 1 Adversarial and Random Walk Regularized
Graph Embedding
Input: attributed graph G = (V, E,A,X); graph embedding

dimension d ; window size c; walks per vertex r ; walk
length l; the number of iterations T ; the number of steps
for iterating discriminator K

Output: node embedding Z ∈ Rn×d

1: Construct node context corpus C by starting r times of
random walks with length l at each node

2: for iterator = 1,2,3, . . . , T do
3: Generate latent variables matrix Z through

Equation (4);
4: for k = 1,2, . . . , K do
5: Sample m entities {z(1), . . . , z(m)} from latent

matrix Z
6: Sample m entities {a(1), . . . , z(m)} from the prior

distribution pz
7: Update the discriminator with its stochastic gradient

by Equation (11)
8: end for
9: Update the graph autoencoder with its stochastic gra-

dient by Equation (6) or (10);
10: Update skip-gram module with its stochastic gradient

by Equation (16);
11: Update the graph autoencoder with its stochastic gra-

dient by Equation (6) or (10);
12: end for

training, we take the output Z of the last layer of the graph
encoder as the final graph embedding. In the 9th and 11th

steps ofAlgorithm 1, we updated the parameters of the graph
autoencoder twice because our model is completed under
the common regularization of the adversarial mechanism
and the skip-grammodel. Each regularization needs to update
the parameters of the graph autoencoder to make the final
latent representation Z obtain double gain.

V. EXPERIMENTS
To validate the effectiveness of the proposed framework,
we conduct link prediction and node clustering tasks on three
public real-world datasets. The detailed descriptions of the
datasets and baselines are shown in this section.

A. DATASETS
We evaluate our framework on three popular citation graphs,
namely, Cora,1 Citeseer, and Pubmed.2 These graphs are also
used in previous works [23], [43]. Specifically, nodes in the
citation graph denote papers, and edges describe the citation
relations between papers. The attributes of each node are
the bag-of-words representations of the corresponding paper.
We summarize statistics of the datasets in Table 2 with more
descriptions as follows:

1https://snap.stanford.edu/data/.
2https://linqs.soe.ucsc.edu/data.

VOLUME 9, 2021 1459

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

TABLE 2. Statistics of the datasets.

• Cora consists of 2,708 papers from themachine learning
area, and these papers are divided into seven categories:
case-based, genetic algorithms, neural networks, proba-
bilistic methods, reinforcement learning, rule learning,
and theory. The citation graph consists of 5,429 edges
that represent citation relationships. The attributes of
a paper are described as a 1433-dimensional feature
vector.

• Citeseer consists of 3,312 scientific papers from the
CiteSeer web database and are categorized into six
classes: artificial intelligence, agents, machine lan-
guage, data base, information retrieval, and HCI. The
citation graph consists of 4,732 links. Each paper in the
dataset is described by a bag-of-words vector indicating
the absence/presence of the corresponding word from
the dictionary. The dictionary consists of 3,703 unique
words.

• Pubmed consists of 19,717 scientific papers from the
PubMed database about diabetes classified into three
classes: diabetes mellitus experimental, diabetes melli-
tus type 1, and diabetes mellitus type 2. The citation
graph consists of 44,338 links. Each publication in the
dataset forms a dictionary that is made up of 500 unique
words.

B. BASELINES
We employ the following graph embedding models as
baselines.

• DeepWalk [17] is an influential graph embedding algo-
rithm that uses truncated random walks to generate node
sequences and then employs the skip-gram model to
obtain the latent embedding.

• GAE [25] converts the topological information and
attribute information of the graph into a low-dimensional
embedding through the graph convolutional neural net-
work, and then, the decoder reconstructs the adjacency
moment through the inner product.

• VGAE [25] employs a graph convolutional neural net-
work to let the model learn some distributions, then sam-
ples latent representations (or embedding) from these
distributions, and finally reconstructs the original graph
using the obtained latent representations.

• ARGA [43] based on the graph autoencoder introduces
an adversarial training mechanism to force the embed-
ding to match the prior distribution.

• ARVGA [43] is the variant of ARGA and employs the
idea of variation in the data encoding stage.

• RWR-GAE [45] proposes a technique that uses random
walk to standardize the node representation learned by
the graph autoencoder.

• AAVGA [46] employs a graph attention encoder involv-
ing node neighbors in the representation of nodes by
stacking attention layers.
We compare ARWR-GE and ARWR-VGE to these
state-of-the-art graph embedding algorithms: the first is
structure-basedmethods, and the remainingmethods use
both structure and attribute information. For all base-
lines, we used the code released by the original authors
and set the default parameters according to their report.

C. PARAMETER SETTINGS
With reference to ARGA [43], ANRL [42] and GAE [25],
based on experimental verification, the parameter settings
of our model are shown in Table 3. For the random walk,
we set the window size w as 10, walk length l as 80, walks
per node r as 10. As the Pubmed dataset is relatively large,
we set the window size w as 70 and walks per node r as 30.
For the encoder, we stacked two GCN layers, each with
32 and 16 neurons. The discriminator consists of two hidden
layers with 16 and 64 neurons. For Cora and Citeseer, we set
the number of iteration training of the model to 200, set the
learning rate of the graph autoencoder and other components
to 0.001 and use the Adam algorithm for optimization. Due to
the relatively large scale of the Pubmed data, we iterate over
2000 training models, the learning rate of graph autoencoder
and skip-gram is set to 0.001, and the discriminator is set
to 0.008.

TABLE 3. Parameter settings of each dataset.

D. LINK PREDICTION
Link prediction is an important graph analysis task and aims
to predict or infer either missing interactions or links that may
appear in the future, e.g., friend recommendation in social
networks.

1) METRICS
We randomly hide 10% of existing links as positive instances
and generate an equal number of nonexisting links as neg-
ative instances to test the performance, with 5% edges for
hyperparameter tuning, and the rest are used for training.
Subsequently, we obtain the node embedding, which will be
applied to predict positive links. We rank both positive and

1460 VOLUME 9, 2021

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

FIGURE 2. Link prediction results on the three real-world datasets. The y-axis describes the AUC value of each method, while the x-axis shows the
name of the datasets.

negative instance optimization based on cosine similarity.
Finally, we employ the area under the ROC curve (AUC)
values to evaluate the ranking list; the higher the value is,
the better the model performance.

2) EXPERIMENTAL RESULTS
We perform link prediction tasks on the three datasets, and
the results are shown in Fig. (2). We summarize the following
observations and analyses:
• A general observation that we can draw from Fig. (2)
is that ARWR-GE and ARWR-VGE consistently obtain
the best AUC results on the three datasets. In particular,
our method achieves approximately 2% AUC improve-
ment over the state-of-the-art baseline RWR-GAE on the
Citeseer dataset. On the Pubmed dataset, our method
improves by 1.3% and 0.8% compared to the state-of-
the-art methods RWR-GAE and AAVGA, respectively.
Although RWR-GAE also introduces random walk,
we further incorporate the adversarial training scheme
to regularize the latent representation to learn a robust
graph embedding. We can see that AAVGA’s result is
also good because it introduces an attention mecha-
nism in the coding process, which is equivalent to the
expansion of neighborhood node information. However,
the experimental results show that our method is better
because our method can explore higher-order neighbor-
hood information by random walk. The experimental
results demonstrate that competitive performance can be
realized by combining the adversarial mechanism and
random walk in the graph autoencoder.

• Compared with DeepWalk, which only uses structure
information, our method achieves an AUC improve-
ment of approximately 13%. This substantial improve-
ment effectively illustrates the necessity of considering
attribute information in graph embedding. We argue that

when the graph links are sparse, it is not enough to
learn the structural information to mine the potential link
information. The introduction of attribute information
can alleviate this problem.

• Distinctly, on the three datasets, ARWR-GE and
ARWR-VGE are better than the good-performing
ARGA or ARVGA, proving that based on the combi-
nation of adversarial training, the combination of the
random walk strategy and skip-gram model can expand
structural structure information. Therefore, the latent
embedding learned by the ARWR-GE and ARWR-VGE
models has better reasoning and prediction performance.

E. NODE CLUSTERING
One of the most important tasks in graph mining and graph
analysis is node clustering, the goal of which is to infer
the clusters in graphs based on the graph embedding. Many
practical applications can be transformed into node cluster-
ing problems, such as community detection in social net-
works [22]. After learning embedding through the graph
embedding algorithm, we can use an off-the-shelf clustering
algorithm such as K-means to achieve the node clustering
task.

1) METRICS
We employ five quality metrics to measure the clustering
result: Accuracy (ACC), Normalized Mutual Information
(NMI), precision, F-score (F1), and Adjusted Rand index
(ARI) [45].

2) EXPERIMENTAL RESULTS
Similarly to previous works [19], [43], we perform node
clustering task on three datasets, and the results are shown
in in Table 4, Table 5 and Table 6. We we make the following
observations:

VOLUME 9, 2021 1461

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

TABLE 4. Node clustering results on the Cora dataset.

TABLE 5. Node clustering results on the Citeseer dataset.

TABLE 6. Node clustering results on the Pubmed dataset.

• ARWR-GE and ARWR-VGE achieve the best perfor-
mance among all the baseline methods. Immediately
following other methods combining structure and
attributes, the clustering results have also been
significantly improved compared to those of the
structure-based methods. This result further justifies the
usefulness of attribute information for graph embedding.
The effective combination of structural information and
attribute information can enable the model to learn
higher-quality embedding.

• It is obvious from these tables that the clustering results
of ARWR-GE and ARGA are both better than those
of GAE. For the Cora dataset, we find that compared
to VAGE, ARWR-VGE improves the ACC by approxi-
mately 8% and the ARI by approximately 7.3%. It can
be proved that the introduction of the adversarial mech-
anism in the training process of the graph autoencoder
forces the embedding to be more smooth and robust.

• In particular, the results show that ARWR-GE and
ARWR-VGE have achieved a dramatic improvement in
all five metrics compared with ARGA and ARVGA. For
instance, on the Citeseer dataset, our method’s perfor-
mance exhibits a relative increase of 4.5%, 4.3%, 3.4%

FIGURE 3. Visualization of the embedding results. On the left is the
visualization of ARWR-GE in 2D space, and on the right is the
visualization of the ARGA embedding results.

and % w.r.t. ACC, F-score and Precision compared to
the best baseline ARGA result, which shows our method
can better capture similar nodes in the graph through the
optimization of random walk and the skip-gram model.

F. VISUALIZATION
We visualized the embedding results of the Cora dataset,
as shown in Figure 3. First, we obtained the low-dimensional
embedding of nodes, and then, we used the t-distributed
stochastic neighbor embedding (t-SNE) to visualize graph
data in 2D space. A general observation that we can draw
from the figure is that the boundary of different types of nodes
in the two-dimensional space is visible after the dimensional-
ity reduction of the embedding obtained byARWR-GE,while
that of ARGA is somewhat blurred.

VI. CONCLUSION
In this paper, we propose a novel graph embedding
framework, Adversarial and Random Walk Regularized
Graph Embedding (ARWR-GE), as well as its variational
form (ARWR-VGE), which jointly preserves structural and
attribute information. To overcome the defects of the existing
methods that ignore the data distribution of latent embedding,
we introduce an adversarial training mechanism to force
the embedding to match a prior distribution. In addition,
we employ a combination of random walk and skip-gram
model to enable the model to capture the structural informa-
tion of graphs beyond the capabilities of graph autoencoders.
We evaluate ARWR-GE and ARWR-VGE on link prediction,
node clustering, and graph visualization tasks. The experi-
mental results on several real-world datasets show that our
proposed ARWR-GE and ARWR-VGE outperform represen-
tative state-of-the-art embedding approaches. In the future,
we plan to extend our methods to heterogeneous graphs.

REFERENCES
[1] M. Krishnamurthy, P. Marcinek, K. M. Malik, and M. Afzal, ‘‘Represent-

ing social network patient data as evidence-based knowledge to support
decision making in disease progression for comorbidities,’’ IEEE Access,
vol. 6, pp. 12951–12965, 2018.

[2] T. Zhou, H. Ma, M. R. Lyu and, and I. King, ‘‘Userrec: A user recommen-
dation framework in social tagging systems,’’ in Proc. 24th AAAI Conf.
Artif. Intell., Atlanta, GA, USA, 2010, pp. 1486–1491.

[3] T. M. V. Le and H. W. Lauw, ‘‘Probabilistic latent document net-
work embedding,’’ in Proc. IEEE Int. Conf. Data Mining, Dec. 2014,
pp. 270–279.

1462 VOLUME 9, 2021

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

[4] X. Wang, X. Zhang, and S. Xu, ‘‘Patent co-citation networks of fortune
500 companies,’’ Scientometrics, vol. 88, no. 3, pp. 761–770, Sep. 2011.

[5] W. Hamilton, Z. Ying, and J. Leskovec, ‘‘Inductive Representation Learn-
ing on Large Graphs,’’ inProc. Adv. Neural Inf. Process. Syst., Long Beach,
CA, USA, 2017, pp. 1024–1034.

[6] H. Chen, W. Guo, J. Shen, L. Wang, and J. Song, ‘‘Structural principles
analysis of host-pathogen protein-protein interactions: A structural bioin-
formatics survey,’’ IEEE Access, vol. 6, pp. 11760–11771, 2018.

[7] C. Li, S. Wang, L. He, P. S. Yu, Y. Liang, and Z. Li, ‘‘SSDMV: Semi-
supervised deep social spammer detection by multi-view data fusion,’’ in
Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2018, pp. 247–256.

[8] C. Tu, W. Zhang, Z. Liu, and M. Sun, ‘‘Max-margin deepwalk: Discrimi-
native learning of network representation,’’ in: Proc. 25th Int. Joint Conf.
Artif. Intell., New York, NY, USA, 2016, pp. 3889–3895.

[9] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, ‘‘Attributed
graph clustering: A deep attentional embedding approach,’’ in Proc. 28th
Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 3670–3676.

[10] H. Gao, J. Pei, and H. Huang, ‘‘ProGAN: Network embedding via prox-
imity generative adversarial network,’’ in Proc. 25th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Anchorage, AK, USA, vol. 2019,
pp. 1308–1316.

[11] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, ‘‘GraphGAN: Graph representation learning with generative
adversarial nets,’’ in Proc. 32th AAAI Conf. Artif. Intell., New Orleans, LA,
USA, vol. 2018, pp. 2508–2515.

[12] Z. Li, Z. Liu, J. Huang, G. Tang, Y. Duan, Z. Zhang, and Y. Yang, ‘‘MV-
GCN:Multi-view graph convolutional networks for link prediction,’’ IEEE
Access, vol. 7, pp. 176317–176328, 2019.

[13] E. Ranjan, S. Sanyal, and P. P. Talukdar, ‘‘ASAP: Adaptive structure aware
pooling for learning hierarchical graph representations,’’ in Proc. 35th
AAAI Conf. Artif. Intell., New York, NY, USA, 2020, pp. 5470–5477.

[14] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, ‘‘Knowledge graph
convolutional networks for recommender systems,’’ in Proc. World Wide
Web Conf. (WWW), 2019, pp. 3307–3313.

[15] S. Cao, W. Lu, and Q. Xu, ‘‘GraRep: Learning graph representations with
global structural information,’’ in Proc. 24th ACM Int. Conf. Inf. Knowl.
Manage., Melbourne, VIC, Australia, 2015, pp. 891–900.

[16] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, ‘‘Network represen-
tation learning with rich text information,’’ in Proc. 24th Int. Joint Conf.
Artif. Intell., Buenos Aires, Argentina, 2015, pp. 2111–2117.

[17] B. Perozzi, R. Al-Rfou, and S. Skiena, ‘‘DeepWalk: Online learning of
social representations,’’ in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), New York, NY, USA, 2014, pp. 701–710.

[18] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, ‘‘Dis-
tributed representations of words and phrases and their compositionality,’’
in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, 2013
pp. 3111–3119.

[19] A. Grover and J. Leskovec, ‘‘node2vec: Scalable feature learning for
networks,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, San Francisco, CA, USA, 2016, pp. 855–864.

[20] J. Li, J. Zhu, and B. Zhang, ‘‘Discriminative deep randomwalk for network
classification,’’ in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics,
Berlin, Germany2016, pp. 1004–1013.

[21] X. Huang, Q. Song, F. Yang, and X. Hu, ‘‘Large-scale heterogeneous
feature embedding,’’ in Proc. 33th AAAI Conf. Artif. Intell., Honolulu, HI,
USA, vol. 2019, pp. 3878–3885.

[22] B. Li and D. Pi, ‘‘Network representation learning: A systematic literature
review,’’ Neural Comput. Appl., vol. 32, pp. 16647–16679, Apr. 2019.

[23] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ 2016, arXiv:1609.02907. [Online]. Available:
http://arxiv.org/abs/1609.02907

[24] D. Wang, P. Cui, and W. Zhu, ‘‘Structural deep network embedding,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 1225–1234.

[25] T. N. Kipf and M. Welling, ‘‘Variational graph auto-encoders,’’ 2016,
arXiv:1611.07308. [Online]. Available: http://arxiv.org/abs/1611.07308

[26] S. T. Roweis, ‘‘Nonlinear dimensionality reduction by locally linear
embedding,’’ Science, vol. 290, no. 5500, pp. 2323–2326, Dec. 2000.

[27] M. Belkin and P. Niyogi, ‘‘Laplacian eigenmaps and spectral techniques
for embedding and clustering,’’ in Proc. Adv. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, 2001, pp. 585–591.

[28] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, ‘‘Asymmetric transitivity
preserving graph embedding,’’ in Proc. 22nd ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2016, pp. 1105–1114.

[29] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, ‘‘Community
preserving network embedding,’’ in Proc. 31th AAAI Conf. Artif. Intell.,
San Francisco, CA, USA, 2017, pp. 203–209.

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781. [Online].
Available: https://arxiv.org/abs/1301.3781

[31] L. F. Ribeiro, P. H. Saverese, D. R. Figueiredo, ‘‘struc2vec: Learning
node representations from structural identity,’’ Proc. 23nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Halifax, NS, Canada, 2017,
pp. 385–394.

[32] L. Zhang, T. Luo, F. Zhang, and Y. Wu, ‘‘A recommendation model based
on deep neural network,’’ IEEE Access, vol. 6, pp. 9454–9463, 2018.

[33] T. Li, J. Zhang, P. S. Yu, Y. Zhang, and Y. Yan, ‘‘Deep dynamic network
embedding for link prediction,’’ IEEE Access, vol. 6, pp. 29219–29230,
2018.

[34] S. Cao, W. Lu, and Q. Xu, ‘‘Deep neural networks for learning graph
representations,’’ in Proc. 30th AAAI. Artif. Intell., Phoenix, AZ, USA,
2016, pp. 1145–1152.

[35] Y. Xiao, D. Xiao, B. Hu, and C. Shi, ‘‘ANE: Network embedding via adver-
sarial autoencoders,’’ in Proc. IEEE Int. Conf. Big Data Smart Comput.
(BigComp), Jan. 2018, pp. 66–73.

[36] B. Yu, Y. Li, C. Zhang, K. Pan, and Y. Xie, ‘‘Enhancing attributed
network embedding via similarity measure,’’ IEEE Access, vol. 7,
pp. 166235–166245, 2019.

[37] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, ‘‘Tri-party deep network
representation,’’ in Proc. 25th Int. Joint Conf. Artif. Intell., New York, NY,
USA, 2016, pp. 1895–1901.

[38] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ in Proc. Int. Conf. Mach. Learn., Beijing, China, 2014,
pp. 1188–1196.

[39] N. Sheikh, Z. Kefato, and A. Montresor, ‘‘GAT2VEC: Representation
learning for attributed graphs,’’ Computing, vol. 101, no. 3, pp. 187–209,
Mar. 2019.

[40] H. Gao and H. Huang, ‘‘Deep attributed network embedding,’’ in Proc.
27th Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 3364–3370.

[41] D. Yang, S. Wang, C. Li, X. Hang, and Z. Li, ‘‘From properties to links:
Deep network embedding on incomplete graphs,’’ in Proc. 26th ACM Int.
Conf. Inf. Knowl. Manage., Singapore, 2017, pp. 367–376.

[42] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and
C. Wang, ‘‘ANRL: Attributed network representation learning via deep
neural networks,’’ in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,
pp. 3155–3161.

[43] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, ‘‘Adversarially
regularized graph autoencoder for graph embedding,’’ in Proc. 27th Int.
Joint Conf. Artif. Intell., Jul. 2018, pp. 2609–2615.

[44] L. Tang and H. Liu, ‘‘Leveraging social media networks for classification,’’
Data Mining Knowl. Discovery, vol. 23, no. 3, pp. 447–478, 2011.

[45] P. Y. Huang and R. Frederking, ‘‘RWR-GAE: Random walk regularization
for graph auto encoders,’’ 2019, arXiv:1908.04003. [Online]. Available:
http://arxiv.org/abs/1908.04003

[46] Z. Weng, W. Zhang, and W. Dou, ‘‘Adversarial attention-based variational
graph autoencoder,’’ IEEE Access, vol. 8, pp. 152637–152645, 2020.

WEI DOU received the B.S. degree from the
Department of Computer Science and Technology,
Lvliang University, in 2018. He is currently pursu-
ing the master’s degree with the School of Com-
puter Science and Technology, Qilu University of
Technology (Shangdong Academy of Sciences).
His research interests include machine learning,
network representation learning, and graph neural
networks.

VOLUME 9, 2021 1463

W. Dou et al.: Graph Embedding Framework Based on Adversarial and Random Walk Regularization

WEIYU ZHANG received the Ph.D. degree in
computer science from the Beijing University of
Posts and Telecommunications, in 2016. He is
currently an Associate Professor with the Qilu
University of Technology. He has vast research
interests in machine learning, data mining, social
network analysis, and graph neural networks. Until
now, he has published more than ten papers in
conferences and journals such as Neurocomputing
and Acta Electronica Sinica. Now, his research

is sponsored by the Natural Science Foundation of Shandong province,
the Natural Science Foundation of China, and the National key research and
development program.

ZIQIANG WENG received the B.S. degree from
theDepartment of Computing Science, JiningUni-
versity, in 2019. He is currently pursuing the mas-
ter’s degree with the School of Computer Science
and Engineering, Qilu University of Technology
(Shangdong Academy of Sciences). His research
interests include deep learning, data mining, and
graph neural networks.

ZHONGXIU XIA received the B.S. degree from
theDepartment of Computing Science, JiningUni-
versity, in 2019. He is currently pursuing the mas-
ter’s degree with the School of Computer Science
and Engineering, Qilu University of Technology
(Shangdong Academy of Sciences). His research
interests include deep learning and social network
analysis.

1464 VOLUME 9, 2021

