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ABSTRACT In this study, a multi-objective H2/H∞ observer-based fault-tolerant control (FTC) design
with reverse-order multi-objective evolution algorithm (MOEA) is proposed to deal with the FTC problem
of Takagi-Sugeno (T-S) fuzzy systems. To achieve the optimal robust FTC design for the T-S fuzzy
systems under the sensor and actuator faults, as well as external disturbance and measurement noise,
the multi-objective H2/H∞ observer-based FTC scheme is proposed to efficiently estimate the system
state and the fault signals based on a proposed smoothed fault signal model. Then, multi-objective H2/H∞
FTC performance can be achieved by an estimated state and fault signal feedback scheme to efficiently
compensate the effect of fault signals and attenuate the effect of external disturbance. By using the proposed
indirect method, the multi-objective H2/H∞ observer-based FTC design problem is transformed into linear
matrix inequalities (LMIs)-constrained multi-objective optimization problem (MOP). Besides, to overcome
the difficulties in searching large fuzzy parameters of observer-based FTC design for solving the LMIs-
constrained MOP, a reverse-order MOEA is proposed to overcome the bottleneck to efficiently solve the
MOP for multi-objective H2/H∞ observer-based FTC of T-S fuzzy system by searching feasible objective
vectors in the objective space instead of searching fuzzy design parameters in the parametric space. Two
practical examples are considered for the performance validationwith (i)H2/H∞ observer-based FTC design
for the missile guidance systemwith the actuator and sensor fault signals due to the sudden cheating side-step
maneuvering and the hostile jamming interference and (ii) H2/H∞ observer-based FTC design for inverted
pendulum system which effected by the constant actuator fault.

INDEX TERMS Reverse-order multi-objective evolution algorithm (MOEA), Takagi-Sugeno (T-S) fuzzy
systems, multi-objective problems (MOP), observer-based fault tolerant control, missile guidance system,
actuator and sensor fault.

I. INTRODUCTION
Along with the development of modern industrial production,
due to the fact that the actuator and sensor in the control
system become much vulnerable to the fault signal, higher
requirements of safety and reliability for the control plant
have put forward. In order to ensure safety and reliability in
the industrial process, the capability of fault tolerance during
the control process has become an important issue and caught

The associate editor coordinating the review of this manuscript and

approving it for publication was Radu-Emil Precup .

the sight of control engineers. In the case of passive fault-
tolerant control (FTC) design, which considers the fault as a
specific external disturbance, it aims to achieve the control
performance with a prescribed fault tolerance level [1]–[3].
On the other hand, for the active FTC scheme, the fault signals
are estimated by an observer and the estimated faults will be
used to eliminate the effect of real faults. The FTC techniques
have been widely investigated and applied in several fields.
To attenuate the high-frequency variation effect from the
actuator, the FTC is applied for attitude control of the satellite
in [4]. In [5], the FTC control was used to stabilize the linear

1556 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1644-6106
https://orcid.org/0000-0002-0391-257X
https://orcid.org/0000-0003-2958-8437
https://orcid.org/0000-0001-7470-077X
https://orcid.org/0000-0002-2060-7403


B.-S. Chen et al.: Reverse-Order MOEA for Multi-Objective Observer-Based FTC of T-S Fuzzy Systems

quantum system with the consideration of random voltage
fluctuations. In [6], the operator theory-based fault-tolerant
control was applied to MIMO microreactor. Also, in [7],
a fault-tolerant control was developed for hypersonic flight
vehicle with the multiple sensor faults.

For almost the physical systems, there has strongly non-
linearity behavior in the physical system. Also, most fault
signals are the nonlinear functions, which are coupled with
state variables and control inputs in the physical system.
While considering the effect of faults in the nonlinear system,
the nonlinear fault functions will increase the difficulty of
FTC analysis [6]–[8]. In recent years, the Takagi-Sugeno
(T-S) fuzzy model has been considered as an efficient tool to
describe the nonlinear dynamic systems [9], [10]. By utilizing
the T-S fuzzy approximation method, the nonlinear system
can be approximated by interpolating a set of local linear
systems and the control design for the nonlinear system can
be simplified by a set of fuzzy controllers. The T-S fuzzy
model based control scheme has been widely investigated in
several control issues [11]–[14].Moreover, the fuzzy adaptive
FTC scheme has been proposed for the fault-tolerant tracking
control of a class of uncertain nonlinear systems with the non-
affine nonlinear faults [15]. A back-stepping fuzzy control
scheme is proposed to deal with the stabilization problem
with the consideration of actuator faults in [16]. In [17], the
event-triggered FTC design for network-based fuzzy systems
is also discussed.

In general, the environmental noise is inevitable during the
control process. Thus, it is expected that the FTC design can
not only achieve the great FTC performance while the system
is affected by the fault but also achieve some prescribed
robust control performance for the disturbance attenuation.
For this reason, several mixed FTC designs such as mixed
optimal FTC control schemes [18], [19] and mixed robust
FTC control schemes [20], [21] are developed. By extending
the concept of mixed control method [22], [23], the multi-
objective (MO) design has become a popular issue and
addressed in many research topics on control and estimation
[24]–[29]. Compared with the conventional mixed H2/H∞
control design schemes [22], [23] which have an unique opti-
mal control strategy, there exist several optimal control strate-
gies with the corresponding multi-objective optimal perfor-
mance in a multi-objective control design. Based on the MO
control design, the engineers are free to choose the preferred
control strategy from the several optimal control strategies
according to their own demands. To the best of authors’
knowledge, there have very few studies to address the fuzzy
MO FTC problem of nonlinear systems under sensor and
actuator faults. Further, in the conventional FTC designs, the
descriptor observer is always employed for fault signal esti-
mation [16]–[21]. Since the augmented descriptor observer
system is singular, more effort is needed for the robust FTC
design. Therefore, the conventional FTC schemes are not
suitable for MO FTC. In this study, a smoothed dynamic
model is proposed to efficiently describe the actuator and

sensor fault signals. Since the augmented system with fault
dynamic model is nonsingular so that the simple conventional
Luenberger observer could be employed to precisely estimate
state variables and fault signals for the consequent H2/H∞
observer-based FTC design of T-S fuzzy systemwith actuator
and sensor faults as well as external disturbance andmeasure-
ment noise.

Despite the fact that the design concept of MO control
is suitable for modern industry, it is not easy to solve the
corresponding multi-objective optimization problem (MOP)
in general. Especially, in the fuzzy-based MOP, the com-
putational complexity will be multiple growing accord-
ing to the number of fuzzy IF-THEN rules. Among wide
ranges of different algorithms of nature-inspired optimization
method [30]–[33], the multi-objective evolution algorithms
(MOEAs) are powerful nature-inspired optimization method
to solve the MOP [34]–[36]. In general, the conventional
MOEAs update design parameters by evolution algorithm
(EA) to search the multi-objective vector for the Pareto opti-
mal solutions via the non-dominated sorting and the crowded
tournament selection schemes in the design parametric space
[31]–[36]. Since fuzzy controller and observer of complex
fuzzy systems consist of a large number of local controllers
and observers, respectively, it is almost impossible to employ
EA for updating these fuzzy controller and observer parame-
ters to achieve a MOP of complex T-S fuzzy systems, such
as the multi-objective H2/H∞ observer-based FTC of T-S
fuzzy systems with actuator and sensor faults. This is why
the conventional MOEAs have not been addressed on the
MOP of nonlinear T-S fuzzy systems even they are very
powerful in MOPs of other more simple designed systems.
Besides, for the conventional MOEAs, the corresponding
objective vector of child population randomly generated by
crossover operation and mutation operation may exceed the
real Pareto front if the current population is close to the real
Pareto optimality. Clearly, if the generated child population
is infeasible, it will be directly discarded. In this situation,
it is much difficult to generate feasible child population while
the current population is close to the real Pareto optimality
[37], [38]. Hence, it is more appealing to override the bottle-
neck of the conventional MOEA to solve the more complex
MOP such as multi-objectiveH2/H∞ observer-based FTC of
T-S fuzzy systems.

In this study, a simple Luenberger observer-based FTC is
designed for the T-S fuzzy system with actuator and sensor
faults as well as external disturbance and measurement noise.
In order to achieve the optimal robust attenuation of exter-
nal disturbances on the FTC performance of the controller
and observer, the optimal H∞ observer-based FTC design is
proposed to minimize the effect of the external disturbance
and measurement noise on the FTC performance of control
and observation.While the effects of external disturbance and
measurement noise have been optimally attenuated by the
H∞ observer-based control strategy, the H2 observer-based
control strategy is also proposed to achieve the optimal
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quadratic control and observation simultaneously, i.e., to
achieve the MOP of multi-objective H2/H∞ observer-based
FTC of T-S fuzzy systems.

On the other hand, a reverse-order MOEA is proposed to
simplify the design procedure of the complex MO H2/H∞
fuzzy observer-based FTC design problem. Instead of search-
ing controller and observer parameters directly, we search
the H2/H∞ objective vector (α, β) directly by EA algorithm,
non-dominated sorting, and crowded tournament selection
scheme, and then find the corresponding controller and
observer parameters by LMI TOOLBOX inMATLAB via the
convex optimization algorithm indirectly. Based on the pro-
posed reverse-order MOEA algorithm and LMI TOOLBOX
in MATLAB, we could efficiently solve the complex MOP
of multi-objective H2/H∞ observer-based FTC of T-S fuzzy
system. In the future, the proposed reverse-order MOEA
algorithm could be applied to other complex MOPs of non-
linear control and estimation design problem. An observer-
based 3-D missile guidance system with actuator and sensor
fault, due to suddenly cheating side-step maneuvering and
hostile jamming, respectively, is given to illustrate the design
procedure and then validate the performance of the proposed
multi-objective H2/H∞ optimal fault-tolerant guidance con-
trol design. Besides, a multi-objective H2/H∞ FTC design
for inverted pendulum system is carried out in comparison
with state-of-the-art FTC method.

The contributions of this study are described as follows:
(I) In this study, a novel non-singular smoothed dynamic

model is proposed to efficiently describe the actuator and
sensor fault signals. Thus, instead of constructing the conven-
tional singular descriptor estimator for fault signal, the simple
Luenberger observer could be employed to precisely estimate
state variables and actuator and sensor fault signals for the
H2/H∞ observer-based FTC design. Further, comparing to
the descriptor-based FTC design which has to solve a set
of algebraic constraints, the proposed FTC design can be
transformed to an equivalent LMIs-based constrained opti-
mization problem and it is easier to be solved for practical
application.

(II) Instead of using conventional MOEA to search the
design parameters of fuzzy controller gain and observer gain
for the multi-objective H2/H∞ observer-based FTC design
problem, a reverse-order MOEA algorithm is proposed to
directly search the optimal multi-objective vector and then
the corresponding design variables of controller and observer
can be easily obtained by using MATLAB LMI TOOLBOX.
In the future, the proposed reverse-order MOEA algorithm
could be applied to efficiently solve other complex MOP of
control and estimation in the nonlinear systems or T-S fuzzy
systems.

(III) To improve the rate of convergence ofMOEA, amech-
anism is included to deal with the problem “infeasible pop-
ulation generated by the mutation operator and crossover
operator in MOEA. By embedding this additional mecha-
nism in the proposed reverse-order MOEA, the infeasible
population is replaced by the mean of itself and the closest

feasible population in the previous iteration. In this situation,
the information of infeasible population can be utilized to
find the closest feasible population for each iteration. Hence,
the convergence of the proposed MOEA can be effectively
improved than the conventional MOEAs.
This study is organized as follows: The T-S fuzzy sys-

tem model with actuator and sensor fault are introduced in
Section II. The virtual fault dynamic models are also given in
Section II, too. In Section III, we develop the multi-objective
optimalH2/H∞ observer-based FTC design for the T-S fuzzy
systemwith sensor and actuator fault. A reverse-orderMOEA
for the multi-objective observer-based FTC design is pro-
posed in Section IV. The simulation of a fault-tolerant missile
guidance control design of 3-D tactical missile system and
FTC design for inverted pendulum system are proposed to
verify the effectiveness of the proposed method in Section V.
Conclusions are given in Section VI.
Notation: AT : the transpose of matrix A; A ≥ 0(A > 0):

symmetric positive semi-definite (symmetric positive def-
inite) matrix A; ‖x‖: the Euclidean norm for the given
vector x(t) ∈ Rn; L2(R+;Rn) = {v(t) : R+ →

Rn
∥∥∥(∫∞0 vT (t)v(t)dt)

1
2 <∞}; λmax (P): the maximum

eigenvalue of real-value symmetric matrix P, Ia denotes the
identity matrix with demission a × a. The symbol 0a×b
expresses the zero matrix with dimension a × b. eig(A)
denotes the set which collect the eigenvalues of matrix A.
S denotes the set of one-dimensional complex number. col[D]
denotes the column space of matrix D.

II. SYSTEM DESCRIPTION
We consider the continuous-time nonlinear system with actu-
ator and sensor faults, which could be described by T-S fuzzy
model. The ith fuzzy IF-THEN rule of the nonlinear system
can be represented as follows [9], [10]:

If z1(t) is Fi1 and . . . and zg(t) is Fig,

Then

ẋ(t) = Aix(t)+ Bu,iu(t)+ Ba,ifa(t)+ Bw,iw(t),

y(t) = Cix(t)+ Difs(t)+ n(t), for i = 1, . . . , I . (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rnu is the input
vector, y(t) ∈ Rm denotes themeasurement output by sensors,
fa(t) ∈ Rna and fs(t) ∈ Rns are the fault signal on actuators
and sensors, respectively. w(t) ∈ Rnw denotes the the external
disturbance and n(t) ∈ Rm denotes the measurement noise at
sensor. z1(t), · · · , zg(t) are the premise variables, Fij is the ith
fuzzy set of the jth premise variable, for i = 1, · · · , I and j=
1, · · · , g, where I is the number of fuzzy rules. The matrices
Ai ∈ Rn×n, Bu,i ∈ Rn×nu , Ba,i ∈ Rn×na , Bw,i ∈ Rn×nw ,
Ci ∈ Rm×n, Di ∈ Rm×ns , for i = 1, · · · , I . Thus, the overall
T-S fuzzy system in (1) is inferred as follows [10]:

ẋ(t) =
∑I

i=1
hi(z(t))

(
Aix(t)+ Bu,iu(t)

+Ba,ifa(t)+ Bw,iw(t)
)
,

y(t) =
∑I

i=1
hi(z(t))

(
Cix(t)+ Difs(t)+ n(t)

)
, (2)
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where z(t) = [z1(t), · · · , zg(t)], qi(z(t)) =
∏g

j=1Fij(zj(t)) and

hi(z(t)) =
qi(z(t))∑I
j=1qj(z(t))

, which satisfies 1 ≥ hi(z(t)) ≥ 0 and∑I
i=1hi(z(t)) = 1.
Assumption 1: The T-S fuzzy system in (2) is controllable

and observable, i.e., the pair (Ai,Bu,i) is controllable and the
pair (Ai,Ci) is observable, for i = 1, · · · , I .
In this study, in order to efficiently estimate fault signals

fa(t) and fs(t) by the conventional Luenberger observer for the
FTC design in the sequel, a novel dynamic smoothedmodel is
proposed for fault signals fa(t) and fs(t). To begin with, based

on the derivative definition of ḟa(t) = limh→0
fa(t+h)−fa(t)

h , the
smoothed model of fa(t) is given as follows:

ḟa(t) =
1
h
(fa(t + h)− fa(t))+ ε1,a(t),

ḟa(t − h) =
1
h
(fa(t)− fa(t − h))+ ε2,a(t),

...

ḟa(t − kh) =
1
h
(fa(t − (k − 1)h)− fa(t − kh))

+ εk,a(t), (3)

where ε1,a(t), . . . , εk,a(t) denote the corresponding approxi-
mation errors of derivative at different smoothed time points
for actuator fault fa(t). The constant h is a small enough time
interval. Further, in order to reduce the effect of future fault
signal fa(t+h) on the dynamic smoothedmodel of fault signal
fa(t), fa(t+h) could be also represented by extrapolation (e.g.,
Lagrange extrapolation [39]) as follows:

fa(t + h) =
k∑
i=0

aifa(t − ih)+ δa(t), (4)

where ai, i = 0, . . . , k are the extrapolation coefficients, δa(t)
indicates the extrapolation error of fa(t + h). Then, we could
obtain the following dynamic smoothed model of actuator
fault signal fa(t):

Ḟa(t) = AfaFa(t)+ εa(t), (5)

where Fa(t) = [fa(t)T , fa(t − h)T , . . . , fa(t − kh)T ]T , the
smoothed model error of actuator εa(t) = [(ε1,a(t) +
δa(t)/h)T , εT2,a(t), . . . , ε

T
k,a(t)]

T , and

Afa =



ā0
h
Ina

a1
h
Ina

a2
h
Ina . . .

ak
h
Ina

1
h
Ina −

1
h
Ina 0 . . . 0

0
1
h
Ina −

1
h
Ina . . . 0

...
. . .

. . .
...

0 . . . 0
1
h
Ina −

1
h
Ina


,

where ā0 = −1+a0. Similarly, the dynamic smoothed model
for the sensor fault signal fs(t) is similar to the virtual signal

model in (5) as follows:

Ḟs(t) = AfsFs(t)+ εs(t), (6)

where Fs(t) = [fs(t)T , fs(t − h)T , . . . , fs(t − kh)T ]T ,
the smoothed model error of sensor εs(t) = [(ε1,s(t) +
δs(t)/h)T , εT2,s(t) , . . . , ε

T
k,s(t)]

T and

Afs =



b̄0
h
Ins

b1
h
Ins

b2
h
Ins . . .

bk
h
Ins

1
h
Ins −

1
h
Ins 0 . . . 0

0
1
h
Ins −

1
h
Ins . . . 0

...
. . .

. . .
...

0 . . . 0
1
h
Ins −

1
h
Ins


,

where b̄0 = −1 + b0, bi, i = 0, . . . , k are the extrapolation
coefficients
Remark 1: For the T-S fuzzy system (2) with the signal

faults on actuators and sensors, it is difficult to construct a
suitable fault estimation scheme due to the unknown prior
knowledge of the actuator faults and the sensor faults.
In the traditional augmented descriptor observer design,
the unknown input (i.e., the fault signal) decoupling condition
cannot always be satisfied [3]. Therefore, more efforts are
needed to efficiently estimate the state and fault information.
In this study, unlike the conventional descriptor model [40],
the nonsingular fault dynamic models of fa(t) and fs(t) in (5)
and (6) are to be embedded in the augmented system with
T-S fuzzy system in (2). In this situation, the conventional
Luenberger observer could be employed to precisely estimate
the state variables and actuator and sensor fault signals to
efficiently compensate the effect of fault signals and external
disturbance for the FTC design.

For the convenience of estimating x(t) and fa(t), fs(t) simul-
taneously, the dynamic smoothed model of fault signals in (5)
and (6) could be embedded as an internal model of T-S fuzzy
system in (2) as the following augmented system:

˙̄x(t) =
∑I

i=1
hi(z(t))

(
Āix̄(t)+ B̄u,iu(t)+ B̄w,iw̄(t)

)
,

y(t) =
∑I

i=1
hi(z(t))

(
C̄ix̄(t)+ D̄iw̄(t)

)
, (7)

with the augmented state x̄(t) =
[
FTa (t),F

T
s (t), x

T (t)
]T ,

the mapping matrix Cfa =
[
Ina , 0na×na , . . . , 0na×na

]
, the vec-

tor w̄(t) =
[
εTa (t), ε

T
s (t),w

T (t), nT (t)
]T , the mapping matrix

Cfs = [Ins , 0ns×ns , . . . , 0ns×ns ] and

Āi =

 Afa 0 0
0 Afs 0

Ba,iCfa 0 Ai

 , B̄u,i =

 0
0
Bu,i

 ,
B̄w,i =

I 0 0 0
0 I 0 0
0 0 Bw,i 0

 , C̄i =
[
0 DiCfs Ci

]
,
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and D̄i =
[
0 0 0 I

]
. Before the estimating the state and

actuator and sensor signals for fault tolerant control of fuzzy
system in (1), we need to guarantee the augmented state x̄(t)
in (7) could be observable from y(t).
Theorem 1: For the T-S fuzzy system in (1), if the local

matrices (Ai,Ci) for i = 1, . . . , I are observable, i.e.,

rank
[
sIn − Ai
Ci

]
= n, for s ∈ S, (8)

and the following conditions hold

eig(Ai) ∩ eig(Afa ) = ∅, eig(Ai) ∩ eig(Afs ) = ∅

eig(Afs ) ∩ eig(Afa ) = ∅ (9)

col
[
−Ba,iCfa

0

]
∩ col

[
sIn − Ai
Ci

]
= ∅

for s ∈ Afa (10)

rank
[
sIna(k+1) − Afa
−Ba,iCfa

]
= na(k + 1),

for s ∈ S, (11)

rank
[
sIns(k+1) − Afs

DiCfs

]
= ns(k + 1),

for s ∈ S (12)

then the ith augmented fuzzy system (Āi, C̄i) in (7) is observ-
able, for i = 1, . . . , I .

Proof: See Appendix A.
Remark 2: The physical meaning of the conditions in (11)

and (12) is that the fault state fa(t) of dynamic smoothed
model in (5) and fault state fs(t) of dynamic smoothed model
in (6) are all observable.

Suppose the following conventional fuzzy Luenberger
observer is proposed to deal with the estimation of the state
variables and actuator and sensor fault signals of nonlinear
system in (2) or the state of the augmented system in (7):

Observer Rule i:

If z1(t) is Fi1 and . . . and zg(t) is Fig,

Then
.

ˆ̄x(t) = Āi ˆ̄x(t)+ B̄u,iu(t)+ Li(y(t)− ŷ(t)),

ŷ(t) = C̄i ˆ̄x(t), (13)

where Li ∈ R((na+ns)(k+1)+n)×m is the observer parameters for
i = 1, · · · , I . The vectors ˆ̄x(t) ∈ R(na+ns)(k+1)+n and ŷ(t) ∈
Rm are the estimated state and the estimated measurement
output for the T-S fuzzy system in (7), respectively. Then the
overall fuzzy observer can be designed as follows:

.

ˆ̄x(t) =
∑I

i=1
hi(z(t))(Āi ˆ̄x(t)+ B̄u,iu(t)

+Li(y(t)− ŷ(t))

=

∑I

i=1

∑I

j=1
hi(z(t))hj(z(t))(Āi ˆ̄x(t)+ B̄u,iu(t)

+Li(C̄j(x̄(t)− ˆ̄x(t))+ D̄jw̄(t)).

ŷ(t) =
∑I

i=1
hi(z(t))C̄i ˆ̄x(t), (14)

Remark 3: In general, the state variables x̄(t) in (7) are
not accessible. Thus, the estimated state can be specified
as the premise variables in the T-S fuzzy model (14), i.e.,
z(t) = ˆ̄x(t).

In this article, we employ the T-S fuzzy observer-based
controller to deal with the fault-tolerant controller design of
the above T-S fuzzy system in (14). Thus, the jth fuzzy control
rule is given as follows:

Control Rule j:

If z1(t) is Fj1 and . . . and zg(t) is Fjg,

Then u(t) = Kj ˆ̄x(t), (15)

for j = 1, · · · , I . Hence, the overall fuzzy controller can be
represented as:

u(t) =
∑I

j=1
hj(z(t))Kj ˆ̄x(t), (16)

where Kj ∈ Rnu×((na+ns)(k+1)+n) denotes the jth fuzzy con-
troller gain to be designed, for j = 1, · · · , I . Let us denote
the estimation error as e(t) = x̄(t) − ˆ̄x(t), then we can
formulate the augmented fuzzy observer-based fault-tolerant
control systems as follows:[ .

x̄(t)
ė(t)

]
=

∑I

i=1

∑I

j=1
hi(z(t))hj(z(t))

×

([
Āi + B̄u,iKj −B̄u,iKj

0 Āi − LiC̄j

] [
x̄(t)
e(t)

]
+

[
B̄w,i

B̄w,i − LiD̄j

]
w̄(t)

)
. (17)

Let us denote x̃(t) = [x̄T (t) eT (t)]T and

Ãij =
[
Āi + B̄u,iKj −B̄u,iKj

0 Āi − LiC̄j

]
,

D̃ij =
[

B̄w,i
B̄w,i − LiD̄j

]
,

then the augmented system in (17) could be expressed as
follows:
.

x̃(t) =
∑I

i=1

∑I

j=1
hi(z(t))hj(z(t))(Ãijx̃(t)+ D̃ijw̄(t)) (18)

which is the observer-based output feedback T-S fuzzy
system. Since the augmented disturbance w̄(t) due to exter-
nal disturbance, modeling errors of fault signals and mea-
surement noises in (18) will significantly influence state
estimation and control performance, the following MO
observer-based control is designed toH∞ optimally attenuate
the effect of w̄(t) on the observer-based fault-tolerant control
and H2 optimally achieve the observer-based fault-tolerant
quadratic control performance simultaneously.

III. MULTI-OBJECTIVE OPTIMAL H2/H∞

OBSERVER-BASED FAULT-TOLERANT CONTROL FOR T-S
FUZZY SYSTEM WITH ACTUATOR AND SENSOR FAULTS
In the closed-loop observer-based output feedback T-S fuzzy
control system in (18), the effects of smoothed model error
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of sensor and actuator faults, the external disturbance and the
measurement noise in w̄(t) will deteriorate the control and
estimation performance of the observer-based FTC system
and even lead to the instability of the fuzzy observer-based
FTC system. In this situation, how to eliminate the effect
of the smoothed model error of sensor and actuator faults,
the external disturbance and the measurement noise in w̄(t) to
guarantee the robust control performancewill be an important
design purpose of the fuzzy observer-based fault-tolerant
control system. SinceH∞ control is themost important robust
control design to efficiently eliminate the effect of uncertain
w̄(t) on the FTC system, it will be employed to deal with the
robust observer-based FTC problem for the T-S fuzzy system
in (18). Let us consider the following H∞ observer-based
fault-tolerant control performance of (18):

H∞({Li,Kj}Ii,j=1)

= sup
w̄(t)∈L2(R+;Rnw̄ )

∫ tf
0 x̃

T (t)Q̃1x̃(t)dt − x̃T (0)Px̃(0)∫ tf
0 w̄

T (t)w̄(t)dt
, (19)

where tf is the terminal time of control, the matrix Q̃1 =

diag{0na(k+1)×na(k+1), 0ns(k+1)×ns(k+1), Q̃1,x , Q̃1,e} is speci-
fied beforehand according to the design purpose with the
weighting matrix Q̃1,x ≥ 0 on the system state x(t) and
the weighting matrix Q̃1,e ≥ 0 on the estimation error e(t).
nw̄ = (na+ns)(k+1)+nw+m is the dimension of w̄(t). The
term x̃T (0)Px̃(0) for some P = PT > 0 in the numerator of
(19) is used to deduct the effect of initial condition x̃(0) on the
H∞ control and estimation performance. The main purpose
ofH∞ control and estimation performance is to eliminate the
effect of external disturbance and measurement noise on the
control and estimation performance of the observer-based T-S
fuzzy FTC system in (18).

Most of the time, the nonlinear system is always in the
normal condition without the occurrence of external distur-
bance and measurement noise. The consideration ofH∞ FTC
design is not enough and it may lead to a very conservative
design. Hence, the following H2 optimal control and estima-
tion design, without the consideration of disturbance signal
w̄(t), is more appealing for control engineers to achieve an
optimal quadratic observer-based fault-tolerant control via a
proper choice of weighting matrices:

H2({Li,Kj}Ii,j=1) =
∫ tf

0
x̃T (t)Q̃2x̃(t)+ uT (t)R̃2u(t)dt, (20)

where R̃2 is the weighting matrix of control effort, Q̃2 =

diag{0na(k+1)×na(k+1), 0ns(k+1)×ns(k+1), Q̃2,x , Q̃2,e} with the
weighting matrix Q̃2,x ≥ 0 on the system state x(t) and
the weighting matrix Q̃2,e ≥ 0 on the estimation error e(t).
The weighting matrices Q̃2 ≥ 0 and R̃2 > 0 are spec-
ified beforehand according to the design purpose of FTC.
Thus, the multi-objective optimal H2/H∞ observer-based
FTC design problem for the fuzzy observer-based control

system in (18) is given as follows:

min
Li,Kj

j,i=1,··· ,I

(H2({Li,Kj}Ii,j=1),H∞({Li,Kj}
I
i,j=1)

Subject to (18). (21)

In the above MOP, there exist a set of Pareto optimal
solutions for multi-objective optimal H2/H∞ observer-based
FTC design problem in the Pareto optimal sense. In general,
it is not easy to solve the MOP in (21) directly. Thus, in this
study, an indirect method is proposed in the following to solve
the MOP in (21) for multi-objective optimal H2/H∞ FTC
design from the suboptimal perspective:

min
{Li,Kj}Ii,j=1
α>0,β>0

(α, β)

Subject to H2({Li,Kj}Ii,j=1) ≤ α,

H∞({Li,Kj}Ii,j=1) ≤ β. (22)

Since the MOP needs to minimize the multiple objec-
tive functions simultaneously, we use the Pareto domination
instead of the conventional minimization. The solution of
MOP in (22) is a set of fuzzy control and observer parameters
{L∗i ,K

∗
j }

I
i,j=1 with the corresponding non-dominated objec-

tive vector (α∗, β∗).Before the further analysis, the following
fundamental definitions are provided:
Definition 1 (Pareto Dominance [35]): For the MOP in

(22), a solution {L1i ,K
1
j }
I
i,j=1 with feasible objective vector

(α1, β1) is said to dominate another solution {L2i ,K
2
j }
I
i,j=1

with feasible objective vector (α2, β2) if and if only α1 ≤ α2

and β1 ≤ β2 and at least one of two inequalities with strict
inequality.
Definition 2 (Pareto Optimal Solution [35]): For theMOP

in (22), the solution {L∗i ,K
∗
j }

I
i,j=1 with the corresponding

objective vector (α∗, β∗) is a Pareto optimal solution if and
only if it could not be dominated by any other solution.
Remark 4: Under the concept of Pareto optimal solu-

tion [35], the Pareto optimal solution of the MOP in (21) is
not unique, i.e., there exist a set of Pareto optimal solutions for
the MOP in (21). Since there exist multiple solutions, it is not
easy to solve the MOP in (21) by conventional optimization
techniques.
Theorem 2: The MOP in (22) is equivalent to the MOP in

(21) if the Pareto optimal solutions are achieved.
Proof: The proof is simple if we could prove that

two inequalities in the constraints of (22) become equalities
when the optimization objective vector (α∗, β∗) is achieved.
We will prove this by contradiction. Suppose the inequality
constraints in (22) are strictly held for a Pareto optimal solu-
tion (α′, β ′), i.e., there exists a Pareto optimal solution (α′, β ′)
such that H2({L ′i ,K

′
j }
I
i,j=1) < α′ and H∞({L ′i ,K

′
j }
I
i,j=1) < β ′

are strictly held. However, we can find (α∗, β∗) such that
H2({L ′i ,K

′
j }
I
i,j=1) = α∗ and H∞({L ′i ,K

′
j }
I
i,j=1) = β∗. This

immediately shows that the solution (α′, β ′) is dominated by
(α∗, β∗) and (α′, β ′) is not the Pareto optimal solution in (22),
which completes the inference of contradiction.
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Based on Theorem 2, the MOP for multi-objectiveH2/H∞
observer-based FTC problem becomes the MOP in (22).
Before we solve the MOP in (22), the following lemma is
given:
Lemma 1 [41]: For any two vectors x ∈ Rn, y ∈ Rm and

positive matrix P, we have

xTPy+ yTPx ≤
1
ρ2
xTPPx + ρ2yT y,

where ρ is any nonzero real number.
Theorem 3: The MOP in (22) for the multi-objective opti-

mal H2/H∞ fault-tolerant control design can be transformed
to the following MOP:

min
P>0,α>0,β>0
{Li,Kj}Ii,j=1

(α, β) (23)

subject to ÃTijP+ PÃij + Q̃2 + K̄T
j R̃2K̄j ≤ 0, (24)

x̃T (0)Px̃(0) ≤ α, (25)

PÃij + ÃTijP+ Q̃1 +
1
β
PD̃ijD̃TijP ≤ 0,

where K̄j = [Kj,−Kj]

∀i, j = 1, · · · , I . (26)

Proof: Please refer to Appendix B.
By choosing the general Lyapunov function V (x̃(t)) =

x̃T (t)Px̃(t) with positive definite matrix P > 0, the multi-
objective optimal H2/H∞ FTC design can be transformed
to the MOP in (23)–(26). However, since the constraints in
(24)–(26) are bilinear constraints, it can not be solved directly
by any current optimization technique. Thus, by choosing the
Lyapunov function for the augmented fuzzy observer-based
control system in (18) as the sums of Lyapunov functions of
two sub-systems, i.e., V (x̃(t)) = x̄T (t)P1x̄(t) + eT (t)P2e(t)
with P1 > 0 and P2 > 0, the design problem can be trans-
formed to the MOP in (28)–(31) and it can be easily solved
by MATLAB LMI TOOLBOX with the proposed two-step
design procedure and reverse-order MOEA in the sequel.
To begin with, some decoupling techniques are employed for
the weighting matrices Q̃1 of H∞ control performance and
Q̃2 of H2 control performance as follows:

Q̃1 =

[
Q̃1,x̄ 0
0 Q̃1,e

]
, Q̃2 =

[
Q̃2,x̄ 0
0 Q̃2,e

]
, (27)

where the matrices Q̃1,x̄ = diag{0na(k+1)×na(k+1),
0ns(k+1)×ns(k+1), Q̃1,x}, Q̃2,x̄ = diag{0na(k+1)×na(k+1),
0ns(k+1)×ns(k+1), Q̃2,x}. Thus, we can get the following result:
Theorem 4: The MOP in (23) can be transformed to the

following BMIs-constrained MOP:

(α∗, β∗) =
min

W1>0,P2>0
{Kj,Li}Ii,j=1,α>0,β>0

(α, β)
(28)

subject to
1
′′

2,1 −B̄u,iKj W1KT
j W1(Q̃2,x̄)

1
2

∗ 1
′′

2,2 −KT
j 0

∗ ∗ −R̃−12 0
∗ ∗ ∗ −I

 ≤ 0, (29)

[
eT (0)P2e(0)− α x̄T (0)

x̄(0) −W1

]
≤ 0, (30)

1
′′

∞,1 −B̄u,iKj B̄w,i W1(Q̃1,x̄)
1
2

∗ 1
′′

∞,2 P2B̄w,i − P2LiD̄j 0
∗ ∗ −βI 0
∗ ∗ ∗ −I


≤ 0 (31)

for i, j = 1, . . . , I , where1
′′

2,1 = ĀiW1+B̄u,iKjW1+W1ĀTi +
W1KT

j B̄
T
u,i,1

′′

2,2 = P2Āi−P2LiC̄j+ ĀTi P2− C̄
T
j L

T
i P2+Q̃2,e.

1
′′

∞,1 = ĀiW1 + B̄u,iKjW1 + W1ĀTi + W1KT
j B̄

T
u,i, 1

′′

∞,2 =

P2Āi − P2LiC̄j + ĀTi P2 − C̄
T
j L

T
i P2 + Q̃1,e.

Proof: see Appendix C.
If we could solve (α∗, β∗) of the MOP in (28)-(31)

with the corresponding Pareto optimal solution {W ∗1 ,P
∗

2,
{L∗i ,K

∗
j }

I
i,j=1}, then we could obtain the fuzzy controller

parameters K∗j in (16) and fuzzy observer parameters L∗i in
(14) for the following fuzzy observer-based FTC scheme:

.

ˆ̄x(t) =
I∑
i=1

hi(z(t))Āix̂(t)+ B̄u,iu(t)+ L∗i (y(t)− ŷ(t)),

u(t) =
I∑
j=1

hj(z(t))K∗j ˆ̄x(t), for i, j = 1, · · · , I (32)

Remark 5: (i) If we only consider the optimal H2 observer-
based FTC of T-S fuzzy system, then the MOP in (28) is
reduced to the following single-objective optimization prob-
lem (SOP):

α+ = min
W1>0,P2>0,
{Kj,Li}Ii,j=1,α>0

α

subject to the matrix constraints in (29), (30).

(33)

(ii) If we only consider the optimal H∞ observer-based FTC
of T-S fuzzy system, then the MOP in (28) is reduced to the
following SOP:

β+ = min
W1>0,P2>0
{Kj,Li}Ii,j=1,β>0

β

subject to the matrix constraints in (31). (34)

Remark 6: Since the constraints in (29) and (31) are BMIs,
it can not be efficiently solved via current optimization tech-
niques. As a result, a two step-design procedure is developed
to solve the MOP in (28 )-(31):
(I) If the inequality constraints in (29) and (31) hold, then

the sufficient and necessary conditions are that the diagonal
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terms of (29) and (31) must be negative. Thus, by letting
Zj = KjW1, we first solve the linear constraints 1

′′

2,1 < 0 in
(29) and1

′′

∞,1 < 0 in (31) to obtain the the solution W ∗1 and{
Z∗i
}I
i=1 by using Matlab convex optimization toolbox. Once

the solutions W ∗1 and
{
Z∗i
}I
i=1 are obtained, the correspond-

ing fuzzy controller can be constructed as K∗j = Z∗j (W
∗

1 )
−1.

(II) By letting Yi = P2Li with the fixed matrices W ∗2 and{
K∗j
}I
j=1

obtained from step 1 in (29) and (31), the constraints

in (29) and (31) become linear matrix inequalities (LMIs),
which is solvable by utilizing Matlab convex optimization
toolbox. Thus, we can solve (29)-(31) efficiently to obtain the
optimal solutions P∗2 and

{
Y ∗i
}I
i=1. Once the solutions P

∗

2 and{
Y ∗i
}I
i=1 are obtained, the corresponding fuzzy observer can

be constructed as L∗i = (P∗2)
−1Y ∗i .

Remark 7: If the robust H∞ performance in (19) is sat-
isfied with positive definite weighting matrix Q̃1 and a pre-
scribed disturbance attenuation level β > 0 and the system
is free of external disturbance, the left-hand side in (19) is
bounded above by x̃T (0)Px̃(0) for any time, i.e., the sum-
mation of the state energy x̃(t) from zero to infinite time
is bounded. As a result, it reveals the state variables will
converge to zero by the proposed controller, i.e., the asymp-
totically stability for fuzzy observer-based FTC system in (18)
is guaranteed.

IV. REVERSE-ORDER MOEA FOR MULTI-OBJECTIVE
OPTIMAL H2/H∞ OBSERVER-BASED FAULT TOLERANT
DESIGN OF T-S FUZZY SYSTEMS
In the conventional MOEA, the algorithm employs evolution
algorithm (EA) to search the parameter of {W1,P2,Ki,Li}Li=1
to solve the MOP in (28)-(31) directly. However, there
are too many fuzzy controller and observer parameters
to be searched to achieve the optimal objective vector
(α∗, β∗). Obviously, it is almost impossible to employ
the conventional MOEA to MOP in (28)-(31) to solve
the multi-objective H2/H∞ observer-based FTC design
problem. Different than the conventional multi-objective evo-
lution algorithm (MOEA) which directly searches the solu-
tions {α, β,W1,P2,Ki,Li}Li=1 of the multi-objective optimal
H2/H∞ observer-based FTC design in (28), the proposed
reverse-order MOEA only searches the feasible objective
vectors (α, β). Then, by substituting the objective vec-
tors (α, β) into (29 )–(31), the corresponding solutions
{Ki,Lj}Ii,j=1 can be easily obtained by using MATLAB LMI
TOOLBOX. As a result, the multi-objective optimal H2/H∞
observer-based FTC design in (28) can be effectively solved
by the proposed reverse-order MOEA and MATLAB LMI
TOOLBOX. Before further analysis of LMIs-constrained
MOP in (28)-(31), some fundamental definitions of MOP are
given in the following:
Definition 3 [35]: For the LMIs-constrianed MOP

(28)-(31) for multi-objective H2/H∞ observer-based FTC
design in the T-S fuzzy system with actuator and sensor faults
in (1), the ideal objective vector is defined as (α+, β+) where

α+ and β+ can be obtained by solving the SOP in (33) and
(34), respectively.
Definition 4 [35]: For the LMIs-constrained MOP in

(28)-(31), the solution {W ∗1 ,P
∗

2, {K
∗
j ,L

∗
i }
I
i,j=1} with the cor-

responding objective vector (α∗, β∗) is called the Pareto
optimal solution if there does not exist any feasible solu-
tion {W1,P2, {Kj,Li}Ii,j=1} with the corresponding objec-
tive vector (α, β) that dominates the solution {W ∗1 ,P

∗

2,

{K∗j ,L
∗
i }
I
i,j=1}.

Definition 5 [35]: For the LMIs-constrained MOP in
(28)-(31), the Pareto optiml solution set is defined as follows:

�Opt =

{
{W ∗1 ,P

∗

2, {K
∗
j ,L

∗
i }
I
i,j=1}

∥∥∥∥
The feasible solution
in (28)-(31)
is not dominated
by other feasible
solutions.

}
,

i.e., the Pareto optimal solution set collects the Pareto optimal
solutions for the MOP in (28)-(31).
Definition 6 [35]: For the LMIs-constrained MOP in

(28)-(31), the Pareto front is defined as follows:

�Front =

{
(α∗, β∗)

∥∥∥∥ The objective vector(α∗, β∗) of the solution
{W ∗1 ,P

∗

2, {K
∗
j ,L

∗
i }
I
i,j=1} ∈ �Opt

}
,

i.e., the Pareto front �Front collects the objective vectors of
Pareto optimal solutions in �Opt .

Once the Pareto front �Front is obtained, the correspond-
ing fuzzy controller gains {K∗j }

I
j=1 and fuzzy observer gain

{L∗i }
I
i=1 can be constructed for the multi-objective H2/H∞

fault-tolerant control of T-S fuzzy system with actuator and
sensor failure. Based on the above analysis, a design pro-
cedure based on the proposed reverse-order MOEA method
for the multi-objective optimal H2/H∞ observer-based FTC
design of T-S fuzzy system with actuator and sensor faults is
given in detail:

Design procedure of the multi-objective H2/H∞
observer-based FTC for the T-S fuzzy system

• Step 1: Choose the searching region R = [αlow, αup] ×
[βlow, βup]. The objective vector [αlow, βlow] at the low
bound can be obtained by solving two SOPs in (33) and
(34), i.e., αlow = α+, βlow = β+. Give the population
number NP, iteration number Ni, the crossover rate Cr ,
themutation rateCm of EA in the proposed reverse-order
MOEA. Set the iteration index as j = 1.

• Step 2: Randomly generate the feasible objective vector
{(αi, βi)}

Np
i=1 from the searching region R by examining

whether {(αi, βi)}
Np
i=1 are feasible or not in LMI con-

straints in (29)–(31). Define the parent set as PjParent =
{(αi, βi)}

Np
i=1.

• Step 3:Employ crossover operator and mutation opera-
tor for the parent set PjParent and produce NP child popu-
lation, i.e., {(α̃i, β̃i)}

Np
i=1. Define the child set as Pjchild =

{(α̃i, β̃i)}
Np
i=1. If there exists a child population (α̃, β̃)
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which is not feasible for the constraints in (29)-(31), then
a population (α, β) from the parent set which is most
closest to (α̃, β̃) is selected and the child population is
replaced by 1

2 (α + α̃, β + β̃). The mechanism will be
repeatedly executed until the fixed child population is
feasible for the constraints in (29)-(31).

• Step 4: Apply the nondominating sorting operator to
the set PjParent ∪ P

j
child to obtain the corresponding non-

dominated front F j
= {F j

1,F
j
2, · · · }.

• Step 5: Apply the crowded comparison assignment
operator to the sets F j

i and generate the corresponding
crowding distance of each element inF j

i , for i = 1, · · · .
Based on the their crowding distance, the sets {F j

i }i∈N
can be sorted in descending order.

• Step 6: Let tj ∈ N be the minimum positive integer such

that
∑tj

i=1

∣∣∣F j
i

∣∣∣ > Np where |S| denotes the cardinality

of the set S, i.e., tj = argmintj∈N
∑tj

i=1

∣∣∣F j
i

∣∣∣ > Np.
Update the iteration index j = j + 1 and let the parent
set PjParent = {F

j
i }
tj−1
i=1 ∪ F̃ j

tj for the next iteration where

F̃ j
tj is the set containing the first Gj elements in F j

tj and

Gj = Np −
∑tj−1

i=1

∣∣∣F j
i

∣∣∣.
• Step 7: Repeat Step 3 to Step 6 until the iteration index
j = Ni and set the final population PNiParent = �Front as
the Pareto front.

• Step 8:Choose a desired Pareto optimal objective vector
(α∗, β∗) ∈ �Front according to the one’s own pref-
erence with the corresponding Pareto optimal solution
{W ∗1 ,P

∗

2, {K
∗
j ,L

∗
i }
I
i,j=1} of the MOP in (28)-(31). Once

the "preferable" optimal solution is selected, the multi-
objective optimal fuzzy observer-based fault-tolerant
controller in (32) can be constructed as {K∗j }

I
j=1 and

{L∗i }
I
i=1 for the multi-objective H2/H∞ observer-based

FTC in (32) of the T-S fuzzy systems in (2).
The detailed crossover operator, mutation operator,

nondominating sorting operator and crowded comparison
operator are defined as follows:

Crossover Operator:
(I) Define two populations (α1, β1), (α2, β2)∈R2 and ran-

domly generate a number r ∈ [0, 1].
(II) The crossover operator fC ((α1, β1), (α2, β2)) is defined

as follows:

fC ((α1, β1), (α2, β2)) =
{
(α1, β2) if r < Cr
1
2 (α1 + α2, β1 + β2), o.w.

where Cr ∈ [0, 1] is crossover rate.
Mutation Operator:
(I) Define one population (α, β)∈R2 and randomly gener-

ate two numbers r1, r2 ∈ [0, 1].
(II) The mutation operator fM ((α, β)) is defined as follows:

fM ((α, β)) =


(α, β), if r1 ≥ Cr , r2 ≥ Cm
(α + d1, β), if r1 ≤ Cr , r2 ≥ Cm
(α, β + d2) if r1 ≥ Cr , r2 ≤ Cm
(α + d1, β + d2), if r1 ≤ Cr , r2 ≤ Cm

where Cm ∈ [0, 1] denotes mutation rate, d1 = 1 − (2(1 −
r1))

1
5 , d2 = 1− (2(1− r2))

1
5 .

Crowded comparison assignment operator:
(I) Give a finite set I with the cardinality l = |I| and set
{Ii = 0}li=1
(II) Set the objective index j = 1.
(III) Sort I in the descending order according to their jth

objective value.
(IV) Assign the values to the first element I1 and last

element Il in the sorted set I as follows:

I1 = ∞, Il = ∞,

(V) Assign the values to the elements {Ii}
l−1
i=2 in the sorted

set I :

Ii = Ii + (f i+1j − f i−1j )/(f max
j − f min

j )

i = 2, · · · , l − 1

where f i+1j and f i−1j are the jth objective value of the i+ 1th
element and i − 1th element in sorted set I, respectively,
and f max

j and f min
j are the maximum jth objective value and

minimum jth objective value in the sorted set I, respectively.
(VI) Update the objective index j = 2 and repeat

Steps (III)–(V).
Nondominating sorting operator:
(I) Given a set P. For each element p ∈ P , generate the

corresponding counter index np and domination set Sp as
follows:

Sp = {q ‖q ∈ P, p < q}

np = |{q ‖q ∈ P, q ≤ p}|

where |S| denotes the cardinality of set S.
(II) Define the first domination front F1 as

F1 = {p
∥∥p ∈ P, np = 0

}
and the jth domination front Fj as

Fj = {q

∥∥∥∥p ∈ Fj−1, q ∈ Sp, nq =∑j−1

i=1
|Fi|

}
, for j ∈ N.
To sum up, the multi-objective optimal H2/H∞ FTC

design problem is transformed to the BMIs-constrained
multi-objective problem (MOP). Consequently, the BMIs-
constrained MOP can be solved by utilizing the proposed
reverse order MOEA and MATLAB LMI TOOLBOX.
Remark 8: The computation complexity of the proposed

reverse-orderMOEA for LMIs-constrainedMOP in (28)-(31)
is about O(n2INiN 2

p ), which includes O(n
2I ) in solving two-

step LMIs in (29)-(31), O(NiN 2
p ) in the reverse-order MOEA,

where I is the number of fuzzy rules, n is the dimension of
positive-definite matrix P, NP is the population number and
Ni is the iteration number.
Remark 9: Since the augmented system in (18) includes

the smoothed model of actuator signal and sensor signal,
the dimension of augmented system will be enlarged if we use
more points to extrapolate the actuator fault fa(t + h) and
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sensor fault fs(t + h). As a result, the computing complexity
directly depends on the dimension of smoothed model of
actuator and sensor signals.
Remark 10: In the proposed reverse-order MOEA for

multi-objective H2/H∞ observer-based FTC design, the
designer should give the following parameters for MOEA:
(i) Searching region R = [αlow, αup] × [βlow, βup] ∈ R2

with αlow ∈ R≥0, αup ∈ R≥0, βlow ∈ R≥0 and βup ∈
R≥0(II) Population number NP ∈ N (III) Iteration num-
ber Ni ∈ N (IV) Crossover rate Cr ∈ [0, 1] (V) Muta-
tion rate Cm ∈ [0, 1]. On the other hand, at the start
of the algorithm, NP populations are randomly generated
from the searching region R and there are set as the initial
population
Remark 11: Recently, with the advance of interpolation

methods, the nonlinear inequality constraint can be equiva-
lently transformed to a combination of local linearized matrix
inequalities with corresponding interpolation functions, e.g.,
Fuzzy interpolation method, Global linearization method.
As a result, by utilizing these interpolation methods, the pro-
posed reverse-order MOEA can be applied to general MOPs
with nonlinear inequality constraints, e.g., multi-objective
optimal controller design for nonlinear system.
Remark 12: In the proposed reverse-order MOEA, the ini-

tial populations are randomly generated from the prede-
fined searching region. Clearly, if the initial populations are
close to the real Pareto front, the MOEA will take less time
to approach the real Pareto front, i.e., the global optimal-
ity. As a result, the convergence of proposed reverse-order
MOEA is related to the choosing of searching region. In this
study, the searching region is defined as R = [αlow, αup] ×
[βlow, βup] where αlow and βlow can be obtained by solving
two SOPs in (33) and (34). On the other hand,αup andβup can
be chosen as several times of αlow and βlow, respectively, e.g.,
αup= θαlow, for some θ ∈ R+. In this situation, the randomly
generated initial populations will fall into the feasible region
of the constraints in (24)–(26).

V. SIMULATION EXAMPLE
To illustrate the design procedure and to validate the perfor-
mance of proposedMOH2/H∞ observer-based FTC scheme,
two simulation examples are provided. A tactical missile
guidance system suffer from actuator and sensor fault signals
is given. Based on the proposed smoothed model, the fault
signals are embedded in an augmented missile system. Then
the proposed MO H2/H∞ observer-based FTC control prob-
lem is given to tactical missile guidance system. Finally,
the MO optimal H2/H∞ observer-based FTC design problem
is transformed to the BMIs-constrained multi-objective prob-
lem MOP which can be easily solved by utilizing the pro-
posed reverse-order MOEA and MATLAB LMI TOOLBOX.
On the other hand, the FTC design problem of balancing and
swing-up of an inverted pendulum on a cart is considered with
a comparison between the proposed method and conventional
FTC design in [46].

FIGURE 1. 3-D pursuit-evasion geometry in the missile guidance system.

Example 1: Consider the 3-D missile guidance system in
the spherical coordinate (r, ψ, θ ) with the origin fixed at the
missile. The pursuit-evasion geometry between the missile
such as Patriot at the origin and the target such as incom-
ing ballistic missile is shown in Fig. 1. Let (Eer , Eeψ , Eeθ ) be
the unit vector along the coordinate axis. The 3-D relative
velocity is obtained through the differentiation of the rela-
tive distance vector r̄ along with the line of sight (LOS) as
follows [42], [44]:

.

r̄ = ṙEer + rψ̇ cos(θ )Eeψ + r θ̇Eeθ (35)

Hence, the relative acceleration at the direction of Eer ,Eeψ
and Eeθ can be obtained by differentiating the above equation
in the following:

r̈ − r θ̇2 − rψ̇2 cos2 θ = wr

rψ̈ cos θ + 2ṙψ̇ cos θ − 2r θ̇ ψ̇ sin θ = wψ − uψ

r θ̈ + 2ṙ θ̇ + rψ̇2 cos θ sin θ = wθ − uθ (36)

where uψ and uθ are the control inputs; wr ,wψ and wθ
are the target acceleration vectors. Therefore, the kinematic
between the missile and target in (36) can be represented by
the following state space system:

ẋ(t) = F(x(t))+ Buu(t)+ Bww(t)

y(t) = Cx(t)+ n(t) (37)

where x(t) = [r(t), ψ(t), θ(t), vr (t), vψ (t), vθ (t)]T denotes
the state vector, F(x(t)) denotes the vector field, u(t) =
[uψ (t), uθ (t)]T denotes the missile acceleration vector due
to the guidance control and w(t) = [wr (t),wψ (t),wθ (t)]T

denotes the target acceleration vector, which is unavailable
and is considered as the external disturbance to the mis-
sile guidance system. y(t) denotes the measurement output
of missile by laser sensor with measurement noise n(t).
The detailed information of these matrices are given
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as follows:

F(x(t) =



vr
vψ

r cos(θ )
vθ
r

v2ψ + v
2
θ

r
vψ (vθ tan θ − vr )

r
−(vrvθ + v2ψ tan θ )

r



, Bu =
[
04×2
−I2

]
,

Bw =
[
03×3
I3

]
, C = I6

To avoid the attack of the tactical missile such as Patriot,
the target will generate jamming signal to interfere with the
laser sensor through the wireless channel, which will lead to
an equivalent sensor fault signal. On the other hand, the target
will perform sudden side-step maneuvering through its two-
side jets, which will lead to an equivalent actuator fault in
the missile system. By considering the sensor and actuator
faults by hostile jamming and sudden side-step maneuvering,
respectively, themissile guidance system in (37) with actuator
and sensor fault should be revised as:

ẋ(t) = F(x(t))+ Buu(t)+ Bww(t)+ Bafa(t)

y(t) = Cx(t)+ n(t)+ Dfs(t) (38)

where fa(t) ∈ R denotes actuator fault due to sudden side-step
maneuvering through two-side jets in the target and fs(t) ∈ R
denotes the sensor fault of missile due to hostile jamming
from target. The corresponding fault matrices are given as
follows:

Ba = [0, 0, 0, 0, 1, 1]T ,D = [0, 0, 0, 1, 1, 1]T

In this simulation example, the following fuzzy premise
variables are chosen z1(t) = r(t), z2(t) = θ(t), z3(t) = vψ (t)
and z4(t) = vθ (t) with the corresponding fuzzy operation
points:

ri = 599.7, for i = 1− 24, ri = 2560, for i = 25− 48
θi = −0.6452 for i = 1− 12, 25− 36
θi = 1.2872 for i = 13− 24, 37− 48

vψ,i = −50 for i = 1− 4, 13− 16, 25− 38, 37− 40
vψ,i = 75.6 for i = 5− 8, 17− 20, 29− 32, 41− 44
vψ,i = 551.1 for i = 9− 12, 20− 24, 33− 36, 45− 48
vθ,i = −121 for i = 1+ 4s, vθ,i = 0 for i = 2+ 4s
vθ,i = 135.3 for i = 3+ 4s, vθ,i = 310.5 for i = 4+ 4s
where s = 0− 11

Also, the ith IF-THEN rule of T-S fuzzy system for the
nonlinear system in (38) is given as follows:

If r(t) is ri and θ (t) is θi
and vψ (t) is vψ,i and vθ (t) is vθ,i

Then

ẋ(t) = Aix(t)+ Bu,iu(t)+ Ba,ifa(t)+ Bw,iw(t)

y(t) = Cix(t)+ Difs(t)+ n(t) (39)

and the detailed local linearized matrices {Ai}48i=1 are
given in [47].

To model the actuator fault and sensor fault, a 3rd order
smoothed model in (5) is employed for actuator fault signal
and a 3rd order smoothed model in (6) is employed for sensor
fault signal as follows:

Afa =



ā0
h

a1
h

a2
h

a3
h

1
h
−
1
h

0 0

0
1
h

−
1
h

0

0 0
1
h

−
1
h


,

Afs =



b̄0
h

b1
h

b2
h

b3
h

1
h
−
1
h

0 0

0
1
h

−
1
h

0

0 0
1
h

−
1
h


.

with the specified extrapolation parameter parameters h =
10−3, ā0 = −1 + a0, a0 = 0.5, a1 = 0.3, a2 = 0.1,
a3 = 0.1, b̄0 = −1 + b0, b0 = 0.6, b1 = 0.2, b2 = 0.1
and b3 = 0.1. Hence, the overall fuzzy observer-based FTC
systems can be constructed as follows:

.

x̃(t) =
∑I

i=1

∑I

j=1
hi(z(t))hj(z(t))(Ãijx̃(t)+ D̃ijw̄(t)).

(40)

In the missile guidance control, when vψ (t) → 0 and
vθ (t)→ 0, it means the missile and the target in the head-on
condition [44]. Among three relative velocities, only the rel-
ative velocity vr (t) along with line-of-sight (LOS) decreases
the distance between the missile and the target, i.e., vr (t)
could decrease the relative distance between missile. There-
fore, vr (t) could not be zero in the missile guidance pro-
cess, i.e. vr (t) 6= 0. In this situation, to ensure the head-on
condition, the controlled output η(t) =

[
vψ (t), vθ (t)

]T to
be controlled as small as possible for the missile guidance
system in (38) can be obtained as:

η(t) = Ex(t)

where

E =
[
0 0 0 0 1 0
0 0 0 0 0 1

]
.

Therefore, to meet the head-on condition for the MO
H2/H∞ observer-based fault-tolerant control, the weighing
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FIGURE 2. The Pareto front of the MO H2/H∞ fault-tolerant
observer-based control design. In this figure, each red point represents
the Pareto optimal solution in MO H2/H∞ fault-tolerant observer-based
control design. The marked point denotes the knee solution.

matrices Q̃1 and Q̃2 in (19) and (20) should be specified as:

Q̃1 = diag{08×8, Q̃1,x , Q̃1,e},

Q̃2 = diag{08×8, Q̃2,x , Q̃2,e},

Q̃1,x = ETQη1E, Q̃2,x = ET Q̃2,xE

Qη1 = diag(1, 1),Qη2 = diag(2, 1)

Q̃1,e = I14×14, Q̃2,e = I14×14, R̃2 = 0.01I2×2 (41)

Remark 13: To ensure the MO H2/H∞ observer-based
FTC performance and the head-on condition, the above
weighting matrices Q̃1,x and Q̃2,x in Q̃1 and Q̃2 should focus
on the control performance of controlled output η(t) =[
vψ (t), vθ (t)

]T
, respectively. On the other hand, to ensure

the estimation performance on state variables and actuator
and sensor fault signals in missile guidance system, the above
weighting matrices Q̃1,e and Q̃2,e in Q̃1 and Q̃2 are chosen as
the full rank matrix.

To apply the MOEA for the MO H2/H∞ observer-based
FTC in (28), the design parameters of MOEA is given as:

Iteration Number Ni : 100

Searching Region R : [106, 1010]× [0.6, 10]

Crossover Rate Cr : 0.85

Mutation Rate Cm : 0.15

Population Number NP : 300

Once the iteration number is achieved in the MOEA,
the Pareto front of MO H2/H∞ fault-tolerant observer-based
control design is plotted in the Fig. 2. In the Pareto front,
each red point represents a Pareto optimal solution with the
corresponding optimal H2 observer-based FTC performance
and optimal H∞ observer-based FTC performance. Since
the objective vectors of obtained Pareto optimalities cannot
be decreased anymore in Fig. 2, the obtained Pareto front
is nearly equivalent to the real Pareto front. According to
one’s own demand, the designer is free to choose the one’s
own Pareto optimal solution. In this study, the marked point
(8.9 × 106, 0.61) in Fig. 2, which is the so-called knee-
solution, is chosen as the solution in this simulation.

FIGURE 3. (a) The square actuator fault and (b) the cosine-type sensor
fault signal.

In general, the knee solution has the benefit of balanced
performance between the H2 performance and H∞ perfor-
mance. From the knee point, the fuzzy controllers and fuzzy
observers can be constructed as K∗j = Z∗j (W

∗

1 )
−1 and L∗i =

(P∗2)
−1Y ∗i , for i, j = 1, · · · , 48. The detailed parameters of

{K∗j ,L
∗
i }

48
i,j=1 can be found in [47].

In this simulation, the ramp strategy of the target is chosen
as the target acceleration vectors [44]:

wr (t) = λT r(t),wψ (t) = λT
−θ̇ (t)√

θ̇2(t)+ ψ̇(t) cos2 θ (t)
ψ(t)

wθ (t) = λT
ψ̇(t) cos θ (t)√

θ̇2(t)+ ψ̇(t) cos2 θ (t)
θ (t)

where λT denotes the target’s navigation random gain within
0 to 2G. The measurement noise and the initial condition of
the missile guidance system in (38) are given as:

n(t) = 0.5 ∗ cos(0.05 ∗ t) ∗ [1, 1, 1, 1, 1, 1]T

x0 = [4900, pi/3, pi/3,−1000, 500, 500]T

In general, to avoid the attack of the missile, the target
can perform sudden side-step maneuvering by its two-side
jets and transmit the jamming signal to interfere the missile,
which could lead to an equivalent actuator and sensor faults,
respectively. In this simulation, the equivalent actuator fault
signal due to the sudden side-step maneuvering by two-side
jets and sensor fault signal are shown as the square signal and
the cosine-type signal in Fig. 3, respectively. Especially, for
the cosine-type sensor fault, the target aims to deteriorate the
estimation of relative velocity, yaw angular velocity and pitch
angular velocity with a large oscillation effect.

In this simulation, the states of the missile guidance
system and the corresponding estimated states are plotted
in Figs. 4-6. From the results in Figs. 4-6, the Luenberger
observer-based controller could successfully track the system
states at t = 0.06s, i.e., the Luenberger observer completely
estimates the missile guidance system from t = 0.06s.
From t = 1s, the target begins to perform sudden side-step
maneuvering. Since the proposed Luenberger observer-based
controller can quickly estimate the actuator fault, the effect
of actuator fault can be cancelled out by the proposed MO
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FIGURE 4. The relative distance and its estimation of missile guidance
system by the proposed MO H2/H∞ observer-based fault-tolerant control
under the effect of the square actuator fault signal and cosine-type
sensor fault signal.

FIGURE 5. The relative pitch angular velocity and its estimation of missile
guidance system by the proposed MO H2/H∞ observer-based
fault-tolerant control under the effect of the square actuator fault signal
and cosine-type sensor fault signal.

FIGURE 6. The relative yaw angular velocity and its estimation of missile
guidance system by the proposed MO H2/H∞ observer-based
fault-tolerant control under the effect of the square actuator fault signal
and cosine-type sensor fault signal.

H2/H∞ observer-based fault-tolerant controller, i.e., the actu-
ator fault is cancelled by the estimated actuator fault. For the
cosine-type sensor fault signal, Figs. 5-6 reveals the relative
angular velocity of yaw angle and relative angular velocity of
pitch angle are slightly fluctuate around the real states in the
control process. By the proposedMOH2/H∞ observer-based
fault-tolerant controller, the missile can successfully hit the
target at t = 4.9s with the head-on condition, i.e., the relative

FIGURE 7. (a) The square actuator fault signal and its estimation. (b) the
cosine-type sensor fault signal and its estimation.

FIGURE 8. (a) The control signal of uψ (t). (b) the control signal of uθ (t).
Once the actuator fault signal appear in the system, the control inputs
will employ estimated actuator fault signal to eliminate the effect of real
actuator fault signals.

distance, yaw angular velocity and pitch angular velocity of
missile guidance system approach to 0 at t = 4.9s. Once the
target is hit, the actuator and sensor fault signals vanished
after t = 4.9s.
The simulation results in Fig. 7 shows the actuator and

sensor fault and their estimation. In the beginning, due to the
large estimation error (large initial condition) on the missile
guidance system state, there have large but short estimated
actuator and sensor fault signals. After that, the Luenberger
observer can precisely estimate the actuator and sensor fault
signals. The control strategies uψ (t) and uθ (t) are shown
in Fig. 8 and it is seen that the proposed observer-based
control strategies are effective to achieve the missile guidance
task. Moreover, once the actuator fault signal is estimated,
it can be seen that the control strategies will use estimated
actuator fault signal to eliminate the real actuator fault signal.
In general, due to the external disturbance, the actuator and
sensor fault signal from the target, it is much difficult for
the missile to achieve the head-on condition, i.e., the control
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FIGURE 9. 3D graph of missile system. After a short transient state
response, the missile can achieve the head-on condition to hit the target.

period is enlarged by the actuator and sensor fault signal.
Nevertheless, by the proposed MO H2/H∞ observer-based
fault-tolerant controller, the effect of external disturbance on
the missile guidance system is greatly attenuated and the
effect of actuator and sensor fault signal is eliminated. Hence,
from the 3D graph in Fig. 9, themissile canmaintain the head-
on condition and successfully hit the target. The code file is
included in [48] for performance validation.
Example 2: In this simulation example, the FTC design

problem of balancing and swing-up of an inverted pendu-
lum on a cart is considered. The pendulum motion can be
explicitly expressed by the following fuzzy system with two
IF-THEN rules [46]:

ẋ(t) =
∑2

i=1
hi(x(t))(Aix(t)+ Biu(t)

+Ba,ifa(t)+ Bw,iw(t))

y(t) = Cx(t)+ n(t), x(0) = [3 1]T (42)

where x(t) = [x1(t) x2(t)]T ∈ R2 denotes the state vector
with the angle of pendulum x1(t) (rad) and the corresponding
angular velocity x2(t) (rad/s), u(t) is the force (N) to the
cart, fa(t) is the actuator fault signal, w(t) is the external dis-
turbance to the cart, y(t) represents the measurement output
and n(t) is the measurement noise. The matrices in (42) are
given as

A1 =

[
0 1
g

4l/3− aml
0

]
, A2 =

 0 1
2g

π (4l/3− amlβ2)
0


Ba,1 = B1 =

[
0 −

g
4l/3− aml

]T
, C = [1 0]

Ba,2 = B2 =
[
0 −

αβ

4l/3− amlβ2

]T
,

with the gravity constant g = 9.8m/s2, mass of the car
M = 2kg, mass of the pendulum m = 2kg, half length
of pendulum l = 0.5m, interpolation functions h1(x1(t)) =
1/(1 + exp(x1(t) + 0.5)) and h2(x1(t)) = 1 − h1(x1(t)) and
a = 1/(M + m).

To efficiently estimate the actuator fault signal fa(t) in
(42), the 3rd order smoothed signal model is chosen with the

FIGURE 10. The trajectory of state x1(t) and it’s estimation.

FIGURE 11. The trajectory of state x2(t) and it’s estimation.

FIGURE 12. The fault signal fa(t) and it’s estimation.

extrapolation coefficients α0 = 0.6, α1 = 0.2, α2 = 0.1, and
α3 = 0.1 of Afa in (5). Also, the 3rd order smoothed signal
model for sensor fault signal is chosen with the extrapolation
coefficients β0 = 0.6, β1 = 0.2, β2 = 0.15, and β3 = 0.05
of Afs in (6). Since the pendulum system is free of sensor fault
signal, the weighting matrix in (27) is chosen as:

Q̃1 = diag{08×8, I2, I4, 04×4, I2}

Q̃2 = diag{08×8, 2I2, I4, 04×4, 2I2}

R̃2 = 1

, i.e., the weightings of sensor fault estimation in Q̃1 and Q̃2
are zero, respectively. In this simulation example, the detailed
parameters of reverse-MOEA are selected as: searching
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FIGURE 13. The trajectory of state x1(t) and it’s estimation by the
method in [46].

FIGURE 14. The trajectory of state x2(t) and it’s estimation by the
method in [46].

FIGURE 15. The fault signal fa(t) and it’s estimation by the method in [46].

region R = [10.5, 50] × [0.9, 10], population number
NP = 120, iteration number Ni = 100, crossover rate
Cr = 0.8 and mutation rate Cm = 0.1. Then, by solving the
MOP in (28), the optimal control performance (α∗, β∗) =
(23.21, 1.31) is selected and the corresponding design vari-
ables can refer to [47].

In this simulation, the external disturbance and the mea-
surement noise are set as 0.1N (0, 0.2) and 0.1N (0, 0.2),
respectively. The actuator fault signal fa(t) = 10, for
0s–20s, is set to represent unknown constant fault in actu-
ator. The simulation results are shown in Figs. 10–15.

From Figs. 10–11, the pendulum system can be effectively
stabilized to zero with a great disturbance attenuation level.
Furthermore, since the actuator fault signal fa(t) is precisely
estimated in Fig. 12, it’s effect can be effectively elimi-
nated by the proposed FTC design. The FTC design in [46]
is carried out for the comparison with our design. From
Figs. 13–14, it can be clearly seen that the state vari-
ables severely oscillate during the control process. On the
other hand, from Fig. 15, the transient state response for
fault estimation is large with some oscillation. As a result,
due to the feedback of these imprecise fault signal estima-
tion, the system may cause some undesired control perfor-
mance. The code file is included in [48] for performance
validation.

VI. CONCLUSION
Based on the proposed dynamic smoothed signal model,
a novel reverse-order MOEA was proposed to solve a com-
plex multi-objective observer-based FTC of T-S fuzzy sys-
tem, which could not be solved by the conventional MOEA
due to large fuzzy control parameters and fuzzy observer
parameters to be selected by evolution algorithm for multi-
objective optimization. Through the proposed indirect subop-
timal method, the multi-objective observer-based FTC design
problem is reduced to an LMIs-constrained MOP, which
could be efficiently solved by the proposed reverse-order
MOEA with the help of LMI TOOLBOX in MATLAB via
convex optimization algorithm such as interior point method.
Finally, the proposed reverse-order MOEA is applied to effi-
ciently solve the complex multi-objective H2/H∞ observer-
based 3-D missile fault-tolerant guidance control problem
with sensor and actuator faults, due to sudden cheating
maneuvering jet and hostile interference. Also, the proposed
method is applied to the FTC design for inverted pendu-
lum system in comparison with state-of-the-art FTC method.
In the future, the proposed reverse-order MOEA could be
an efficient scheme to solve different MOPs control and
estimation of complex T-S fuzzy system in both the appli-
cation and research fields. Besides, along with the rapid
development of internet of thing (IOT), the information can
be quickly exchanged in the networked system via wireless
communication technique to achieve more challenging tasks.
Meanwhile, there may exist some malicious signals from
the attackers who try to deteriorate the networked system
and interfere the transmitted signal. Since the requirement
of safety and reliability for networked system becomes an
important issue, the proposed FTC method will be applied
to the networked-based control system to achieve multi-
objective optimal design with the consideration of malicious
attack signals in the future.

APPENDIX A
PROOF OF THEOREM 1
By the rank test in [45], the ith augmented fuzzy
system in (7) is observable if the following rank
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condition holds:

rank
[
sIn+(k+1)(na+ns) − Āi

C̄i

]

= rank


sI(k+1)na − Afa 0 0

0 sI(k+1)ns − Afs 0
−Ba,iCfa 0 sIn − Ai

0 DiCfs Ci


= n+ na(k + 1)+ ns(k + 1), ∀s ∈ S (43)

where S denotes the set of one-dimensional complex num-
ber. In the following, the proof is separated into two cases
with (i) s ∈ S�(eig{Ai}∪eig{Afs} ∪eig{Afa}) and (ii) s ∈
eig{Ai}∪eig{Afs} ∪eig{Afa}.

In the case (i), we immediately have following rank
condition:

rank[sI(k+1)na − Afa ] = na(k + 1)

rank[sI(k+1)ns − Afs ] = ns(k + 1)

rank[sIn − Ai] = n

∀s ∈ S�(eig{Ai}∪eig{Afs}∪eig{Afa}) (44)

As a result, by (44), (43) is satisfied for s ∈

S�(eig{Ai}∪eig{Afs}∪eig{Afa}), i.e.,

rank


sI(k+1)na − Afa 0 0

0 sI(k+1)ns − Afs 0
−Ba,iCfa 0 sIn − Ai

0 DiCfs Ci


= n+ na(k + 1)+ ns(k + 1),

∀s ∈ S�(eig{Ai}∪eig{Afs}∪eig{Afa}) (45)

In the case (ii), by the assumption in (9) that the eigenvalues
of (Ai,Afs ,Afa ) are mutually independent and (10), we can
decouple the rank condition in (43) as the sum of three rank
conditions

rank


sI(k+1)na − Afa 0 0

0 sI(k+1)ns − Afs 0
−Ba,iCfa 0 sIn − Ai

0 DiCfs Ci


= rank

[
sI(k+1)na − Afa
−Ba,iCfa

]
+ rank

[
sIn − Ai
Ci

]
+ rank

[
sI(k+1)ns − Afs

DiCfs

]
∀s ∈ eig{Ai}∪eig{Afs}∪eig{Afa} (46)

By applying the rank conditions in (8), (11) and (12), the
rank condition in (46) can be written as:

rank
[
sI(k+1)na − Afa
−Ba,iCfa

]
+ rank

[
sI(k+1)ns − Afs

DiCfs

]
+ rank

[
sIn − Ai
Ci

]
= n+ na(k + 1)+ ns(k + 1)

∀s ∈ eig{Ai}∪eig{Afs}∪eig{Afa} (47)

Thus, the observable condition for the ith augmented fuzzy
system in (7) is guaranteed.

Q. E. D.

APPENDIX B
PROOF OF THEOREM 2
Consider the H2 observer-based fault-tolerant control in (20)
and the Lyapunov function V (x̃(t)) = x̃T (t)Px̃(t) with the
case w̄(t) = 0 in (18), we have

H2({Li,Kj}Ii,j=1)

=

∫ tf

0
x̃T (t)Q̃2x̃(t)+ uT (t)R̃2u(t)dt

=

∫ tf

0
x̃T (t)Q̃2x̃(t)+ uT (t)R̃2u(t)dt + dV (x̃(t))

+ x̃T (0)Px̃(0)− x̃T (tf )Px̃(tf )

=

I∑
i=1

I∑
j=1

hi(z(t))hj(z(t))
∫ tf

0
x̃T (t)

(
PÃij + ÃTijP+ Q̃2

+ K̄T
j R̃2K̄j

)
x̃(t)dt + x̃T (0)Px̃(0)− x̃T (tf )Px̃(tf ), (48)

where K̄j = [Kj,−Kj] with the positive-definite matrix
P > 0. Clearly, if the matrix inequality constraints in (24) and
(25) hold, we immediately have the following results:

H2({Ki,Lj}Ii,j=1) ≤ α,

which satisfies the optimal H2 constraint in (22).
On the other hand, for the robust H∞ FTC performance

in (19), we have∫ tf

0
[x̃T (t)Q̃1x̃(t)]dt

=

∫ tf

0
([x̃T (t)Q̃1x̃(t)]dt + dV (x̃(t)))

+ x̃T (0)Px̃(0)− x̃T (tf )Px̃(tf )

=

I∑
j,i=1

hi(t)hj(t)
∫ tf

0
[x̃T (t)(PÃij + ÃTijP+ Q̃1)x̃(t)

+ x̃T (t)PD̃ijw̄(t)+ w̄T (t)D̃TijPx̃(t)]dt

+ x̃T (0)Px̃(0)− x̃T (tf )Px̃(tf ). (49)

By utilizing Lemma 1 with some β > 0, we have:

x̃T (t)PD̃ijw̄(t)+ w̄T (t)D̃TijPx̃(t)

≤
1
β
x̃T (t)PD̃ijD̃TijPx̃(t)+ βw̄

T (t)w̄(t),

∀i, j = 1, · · · I . (50)

Substituting (50) into (49), we have:∫ tf

0
x̃T (t)Q̃1x̃(t)dt

≤

I∑
j,i=1

∫ tf

0
[x̃T (t)(PÃij + ÃTijP+ Q̃1

1
β
PD̃ijD̃TijP)x̃(t)+ βw̄

T (t)w̄(t)]dt

+ x̃T (0)Px̃(0). (51)

VOLUME 9, 2021 1571



B.-S. Chen et al.: Reverse-Order MOEA for Multi-Objective Observer-Based FTC of T-S Fuzzy Systems

If the matrix constraints (26) hold, we immediately have:∫ tf

0
x̃T (t)Q̃1x̃(t)dt

≤

∫ tf

0
βw̄T (t)w̄(t)dt + x̃T (0)Px̃(0)

∀w̄(t) ∈ L2(R+;Rnw̄ ), (52)

and H∞({Li,Kj}Ii,j=1) ≤ β. Hence, the MOP in (22) is trans-
formed to the matrix inequalities-constrained MOP in (23).

Q.E.D

APPENDIX C
PROOF OF THEOREM 3
By using Schur complement [41], the inequalities in (24) are
equivalent to:[
PÃij + ÃTijP+ Q̃2 K̄T

j

∗ −R̃−12

]
≤ 0

for i, j = 1, · · · , I (53)

From (16) and (17), (53) can be rewritten as:12,1 −P1B̄u,iKj KT
j

∗ 12,2 −KT
j

∗ ∗ −R̃−12

 ≤ 0

for i, j = 1, · · · , I . (54)

where 12,1 = P1Āi + P1B̄u,iKj + ĀTi P1 + K
T
j B̄

T
u,iP1 + Q̃2,x̄ ,

12,2 = P2Āi − P2LiC̄j + ĀTi P2 − C̄
T
j L

T
i P2 + Q̃2,e.

By multiplying diag{W1, I , I } to both side of (54) with
W1 = P−11 , we have:1

′

2,1 −B̄u,iKj W1KT
j

∗ 1
′

2,2 −KT
j

∗ ∗ −R̃−12

 ≤ 0,

for i, j = 1, · · · , I (55)

where 1
′

2,1 = ĀiW1 + B̄u,iKjW1 + W1ĀTi + W1KT
j B̄

T
u,i +

W1Q̃2,x̄W1,1
′

2,2 = P2Āi−P2LiC̄j+ĀTi P2−C̄
T
j L

T
i P2+Q̃2,e.

By using Schur complement again, (55) can be rewritten as:
1
′′

2,1 −B̄u,iKj W1KT
j W1(Q̃2,x̄)

1
2

∗ 1
′′

2,2 −KT
j 0

∗ ∗ −R̃−12 0
∗ ∗ ∗ −I

 ≤ 0,

for i, j = 1, · · · , I (56)

where1
′′

2,1 = ĀiW1+B̄u,iKjW1+W1ĀTi +W1KT
j B̄

T
u,i,1

′′

2,2 =

P2Āi − P2LiC̄j + ĀTi P2 − C̄
T
j L

T
i P2 + Q̃2,e.

For the constraint in (25), by using Schur complement
[41], the inequality in (25) can be transformed to the matrix
inequality as follows:

x̃T (0)Px̃(0) ≤ α,

H⇒ eT (0)P2e(0)+ x̄T (0)P1x̄(0)− α ≤ 0,

H⇒

[
eT (0)P2e(0)− α x̄T (0)

x̄(0) −W1

]
≤ 0.

At last, we consider the H∞ matrix constraints in (26).
By using Schur complement [41], the inequalities in (26) can
be rewritten as:[
PÃij + ÃTijP+ Q̃1 PD̃ij

∗ −βI

]
≤ 0

for i, j = 1, · · · , I . (57)

From (16) and (18), (57) can be rewritten as:1∞,1 −P1B̄u,iKj P1B̄w,i
∗ 1∞,2 P2B̄w,i − P2LiD̄j
∗ ∗ −βI

 ≤ 0

for i, j = 1, · · · , I , (58)

where1∞,1 = P1Āi+P1B̄u,iKj+ ĀTi P1+K
T
j B̄

T
u,iP1+ Q̃1,x̄ ,

1∞,2 = P2Āi − P2LiC̄j + ĀTi P2 − C̄
T
j L

T
i P2 + Q̃1,e.

By multiplying diag{W1, I , I } to both sides of (58) with
W1 = P−11 , we have1

′

∞,1 −B̄u,iKj B̄w,i
∗ 1

′

∞,2 P2B̄w,i − P2LiD̄j
∗ ∗ −βI

 ≤ 0

for i, j = 1, · · · , I , (59)

where 1
′

∞,1 = ĀiW1 + B̄u,iKjW1 + W1ĀTi + W1KT
j B̄

T
u,i +

W1Q̃1,x̄W1, 1
′

∞,2 = P2Āi − P2LiC̄j + ĀTi P2 − C̄T
j L

T
i P2 +

Q̃1,e. By applying Schur complement again, (59) can be
rewritten as:
1
′′

∞,1 −B̄u,iKj B̄w,i W1(Q̃1,x̄)
1
2

∗ 1
′′

∞,2 P2B̄u,i − P2LiD̄j 0
∗ ∗ −βI 0
∗ ∗ ∗ −I

 ≤ 0

for i, j = 1, · · · , I (60)

where 1
′′

∞,1 = ĀiW1 + B̄u,iKjW1 + W1ĀTi + W1KT
j B̄

T
u,i,

1
′′

∞,2 = P2Āi − P2LiC̄j + ĀTi P2 − C̄T
j L

T
i P2 + Q̃1,e. It is

obvious that the BMIs in (60) are the constraints in (31).

Q. E. D.
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