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ABSTRACT Rapid advances of sensing and cloud technologies transform the manufacturing system
into a data-rich environment and make production scheduling increasingly complex. Traditional offline
scheduling methods are limited in the ability to handle low-volume-high-mix workorders with diverse design
specifications. Simulation-based methods show the promise for distributed scheduling of manufacturing
jobs but are mostly implemented with historical data and empirical rules in a static manner. Recently,
artificial intelligence (AI) algorithms fuel increasing interests to solve dynamic scheduling problems in the
manufacturing setting. However, it’s difficult to utilize high-dimensional data for production scheduling
while considering multiple practical objectives for smart manufacturing (e.g., minimize the makespan,
reduce production costs, balance workloads). Therefore, this paper presents a new AI scheduler with
composite reward functions for data-driven dynamic scheduling of manufacturing jobs under uncertainty
in a smart factory. Internet-enabled sensor networks are deployed in the smart factory to track real-time
statuses of workorders, machines, and material handling systems. A novel manufacturing value network is
developed to take high-dimensional data as the input and then learn the state-action values for real-time
decision making. Based on reinforcement learning (RL), composite rewards help the AI scheduler learn
efficiently to achieve multiple objectives for production scheduling in real time. The proposed methodology
is evaluated and validated with experimental studies in a smart manufacturing setting. Experimental results
show that the new AI scheduler not only improves the multi-objective performance metrics in the production
scheduling problem but also effectively copes with unexpected events (e.g., urgent workorders, machine
failures) in manufacturing systems.

INDEX TERMS Production scheduling, reinforcement learning, composite reward, smart factory, neural
network.

NOTATIONS
I total number of workorders
oi ith workorder (i = 1, . . . , I )
Ji total number of jobs of workorder oi
bi,j jth job of workorder oi (j = 1, . . . , Ji)
M total number of machines
m machine number (m = 1, . . . , M )
C total number of machine or job types
c machine or job type (c = 1, . . . , C)
Mc total number of type-c machines

(M1 + . . .+MC = M )
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St states of a manufacturing shop at time t
am assignment of a current job to machine m

(m = 0, 1, . . . , M ; a0 denotes ‘‘waiting’’)
At a chosen action from the action space at time t
T (A)i,j initialization time of job bi,j
T (S)i,j starting time of job bi,j
T (C)i,j actual completion time of job bi,j
T̂ (C)
i,j target completion time of job bi,j
Ti,j workload time of job bi,j
T̃i,j nominal operating time of job bi,j, T̃i,j =3Ti,j
Ki urgency factor of workorder oi
K (P)i,j price factor for job bi,j
K (E)m energy efficiency factor of machine m
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K (T )i,j speed factor of machine m
RD reward for tardiness level
RP reward for profits
RU reward for machine utilization rates
RV reward for workload balance
Rt+1 composite reward for action At
um utilization rate of machine m
Uc standard deviation of utilization rates

I. INTRODUCTION
The new generation of smart factories is highly digitalized
and is equipped with a network of internet-enabled sen-
sors and devices to increase information visibility about
real-time statuses of ‘‘manufacturing things’’ (e.g., worko-
rders, machines, and material handling systems). As a result,
large amounts of data are readily available in the manufactur-
ing environment. This provides an unprecedented opportunity
to improve the performance of manufacturing systems. How-
ever, big data from the smart factories is high-dimensional
and updated in real time during the operation, which is
subjected to uncertainties and disturbances (e.g., workorder
and machine variations). Realizing the full potential of big
data depends on the development of analytical algorithms to
improve the ‘‘smartness’’ of manufacturing operations. For
example, production scheduling is a complex combinatorial
problem, which is traditionally implemented offline in a cen-
tralized manner with static and deterministic assumptions.
These offline methods are often ineffective and need to be
updated periodically when applied in a dynamic environment
(e.g., abrupt changes in market demands, an increasing num-
ber of product variants, or smaller order sizes). For exam-
ple, mass customization entails diverse design specifications
and personalized products from customers. Indeed, the new
paradigm shift from mass manufacturing to low-volume-
high-mix production brings a higher level of disturbances and
uncertainties, which may come from internal (e.g., machine
failures, operator absence), external (e.g., urgent workorders,
limited availability of raw materials), and other extraneous
factors (e.g., temporal variations of market demand, resource
uncertainty) in real industrial conditions.

To handle disturbances in manufacturing shops, early
studies periodically update and reschedule the resources to
achieve newly adaptive results. This is, however, not suitable
to realize the full potential of data for smart manufactur-
ing. Traditional offline scheduling methods are limited in
the ability to handle low-volume-high-mix workorders with
diverse design specifications. With the increasing availability
of data, simulation-based methods (e.g., multi-agent system)
leverage the historical data and empirical rules for distributed
scheduling of manufacturing jobs. A variety of manufactur-
ing agents (e.g., workorder agent, machine agent, transport
agent) are modeled to interact with others for production
scheduling. Nonetheless, simulation methods tend to be lim-
ited in the ability to handle real-time data flows and uncer-
tainty factors for dynamic scheduling. Recently, artificial

intelligence (AI) fuels increasing interests to solve dynamic
scheduling problems in the manufacturing setting. However,
it’s difficult to utilize high-dimensional data for production
schedulingwhile consideringmultiple practical objectives for
smart manufacturing (e.g., minimize the makespan, reduce
production costs, balance workloads). Indeed, the system
complexity and rich data environment pose significant chal-
lenges to the development of new AI methods and tools for
multi-objective dynamic scheduling in a smart factory.

This paper presents a new AI scheduler with compos-
ite reward functions for data-driven dynamic scheduling
of manufacturing jobs under uncertainty in a smart fac-
tory. We design an AI scheduler to learn, adapt, and make
scheduling decisions by interacting with the factory. After
a workorder is received in the cloud platform, it will be
decomposed into a series of manufacturing jobs by process
planning. A novel manufacturing value network is designed
to take high-dimensional data as the input and then learn
the state-action values for real-time decision making. Fur-
ther, a composite reward function is designed to account for
multiple production objectives (i.e., minimize the makespan,
reduce production costs, balance workloads) for training the
AI scheduler. The proposed methodology is evaluated and
validated with experiments in a smart manufacturing set-
ting. We benchmark the performance of the AI scheduler
with a variety of traditional scheduling methods. Experi-
mental results show that the new AI scheduler not only
improves the multi-objective performance metrics in the
production scheduling problem but also effectively copes
with unexpected events (e.g., urgent workorders, machine
failures) to achieve an optimal balance between efficiency
and energy consumption. The proposed AI scheduler shows
strong potential for general applicability in a smart factory.

The remaining sections of this paper are organized as
follows. Section II presents a review of relevant litera-
ture in production scheduling. Section III presents the pro-
posed methodology of an AI scheduler with manufacturing
value networks, composite rewards, and online reinforcement
learning (RL) methods. Section IV provides the details of the
experimental design to evaluate the performance of the AI
scheduler. Section V shows experimental results and makes
comparison with different scheduling methods. Section VI
concludes this paper and discusses potential topics for future
research.

II. RESEARCH BACKGROUND
A. PRODUCTION SCHEDULING
Production scheduling optimizes the allocation of manufac-
turing assets and resources to fulfill workorders received
in manufacturing shops. Typically, the scheduling problem
involves a set of workorders to be completed. Each workorder
comprises a set of jobs, and each job needs to be performed
on certain machines that meet with requirements on resources
and specifications. There are also other factors to be con-
sidered such as workorder timeliness, machine attributes,
material availability, and cost effectiveness.
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Production scheduling is known to be a complex problem.
The computing loads to derive optimal schedules increases
exponentially with respect to the job sizes. Conway et al. [1]
pioneered the study of production scheduling in 1967 and
significantly contributed to the modeling and optimization
of manufacturing systems. In the past few decades, manu-
facturing systems have been transformed from large-batch to
low-volume-high-mix production, which demands the con-
tinuous improvement of scheduling approaches [2]. In the
literature, there exist a variety of methods and tools (e.g.,
optimization models, knowledge-based methods, heuristic
algorithms) for production scheduling. Classical optimiza-
tion models for production scheduling use the mathemati-
cal programming approach to achieve optimal solutions [3].
The scheduling objective is formulated in a programming
function, whose critical solution represents optimal sched-
ules under constraints. Naive optimization models are limited
in solving a scheduling problem with numerous variations
and multiple constraints. Thus, the knowledge-based method
(i.e., expert system) is proposed to simulate a scheduling
system with human expertise that is a primitive form of
AI. Kumara et al. [4] introduced a framework to develop
such an expert system for job-shop scheduling and fault
diagnosis. Further, Lawrynowicz [5] proposed the use of
scheduling rules to achieve higher efficiency, which inte-
grates an expert system with heuristic algorithms to solve the
scheduling problem under the constraints of supply chains.
As the manufacturing systems become more complex and
stochastic, Bellman et al. [6] applied dynamic programming
in production scheduling by converting a combinatorial opti-
mization problem into an analytic one. There are also pre-
vious studies that introduced the biomimetic method [7] or
swarm intelligent algorithms [8] for production scheduling
with a large action space.

From simple dispatching rules to basic intelligence,
scheduling algorithms become more efficient and effective
so as to handle a large number of workorders. However,
most traditional methods are operated offline for production
scheduling.While optimal policies can be achieved for offline
and stationary scheduling problems, they tend to be limited in
the ability to handle nonstationarity in the real-world environ-
ment. When the order variety and size increase, the compu-
tational complexity increases exponentially. In addition, data
is not fully utilized in these traditional scheduling methods.
When a large number of heterogeneous workorders arrive at a
manufacturing shop, traditional offline methods are deemed
as one-shot optimization that is limited in the ability to han-
dle newly emerged uncertainties and low-volume-high-mix
workorders with diverse design specifications.

B. SIMULATION-BASED PRODUCTION SCHEDULING
Traditional offline scheduling methods are limited in the
ability to fully utilize the potentials of data for the model
formulation. Hence, computer simulation was increasingly
used to increase the decision-making abilities in manufac-
turing systems [9]. Simulation-based production scheduling

is used to model and evaluate the scheduling system for a
manufacturing shop. With the rapid advances of new tech-
nologies such as internet of things (IoT), big data analytics,
cloud computing, the use of ‘‘digital twin’’ was proposed for
production scheduling [10]. Simulation models describe the
factory rules of system operations and run scenario analysis
of scheduling policies to derive optimal solutions. Discrete-
event simulation (DES) and multi-agent simulation (MAS)
are commonly used to build complex scheduling models.
DESmodels the operation of amanufacturing system as a dis-
crete sequence of events in time. Chong and Sivakumar [11]
built DES models of a manufacturing system with historical
data and evaluated different alternatives to determine the opti-
mal schedule. Bang and Kim [12] proposed a two-level hier-
archical method for production planning by combining linear
programming with priority-rule-based scheduling to identify
scheduling policies, then evaluated the results with DES.
Note that the manufacturing system consists of many discrete
units and agents (e.g., workorders, machines, and material
handling systems). Agent-based methods are proposed to
equip discrete manufacturing units with more intelligence.
MAS provides a natural and simple way to model and analyze
a manufacturing system [13]. An agent is a computer system
that is capable of taking autonomous actions in its environ-
ment to meet the objectives [14]. The MAS includes frame-
works, interactive mechanisms, decision-making algorithms.
Lee et al. [15] discussed some key issues in the development
of agent-based manufacturing systems such as system archi-
tectures, distributed production scheduling. Lots of social-
ized interactive mechanisms, such as contract net protocol
(CNP) [16], game theory [17], auction mechanism [18], are
used for the coordination of machines in MAS. The rational
scheduling policies are generated autonomously based on
MAS models [19]. Also, RL methods are used to interact
with simulation models, which are built based on historical
data for the production scheduling with a single optimization
objective [20].

However, most simulation-based methods for production
scheduling are established based on empirical rules and
historical data, and are less concerned about real-time and
high-dimensional data from sensor networks. The real-time
statuses of the factory and ‘‘manufacturing things’’ are not
captured in simulation models. As the new paradigm of mass
customization brings lots of uncertainties (e.g., workorder
variation, machine variation, machine failures, and urgent
workorders), traditional simulation-based methods are lim-
ited in the ability to realize the full potentials of real-time data
for multi-objective production scheduling.

C. DYNAMIC SCHEDULING UNDER UNCERTAINTY
In a dynamic environment, stationary schedules will become
invalid due to an unexpected event in the factory [21]. For
example, if a machine breaks down in the manufacturing
process, workorders assigned to the failed machine will be in
the waiting queue and may be rescheduled to other machines.
It is common that real-world manufacturing plants may
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experience internal disturbances (e.g., machine failures, oper-
ator absence), external uncertainties (e.g., urgent workorders,
limited availability of raw materials), and other extraneous
factors (e.g., temporal variations of market demand, resource
uncertainty). As such, any stationary schedule is difficult to
stay optimal in a dynamic manufacturing setting [22].

Dynamic scheduling is aimed at dealing with unexpected
events and uncertainty factors in real time. Traditional
offline scheduling methods adjust the primitive schedules
when some unexpected events occur [23]. Simulation-based
methods are offline but are increasingly efficient for peri-
odic updates of schedules due to the availability of high-
performance computing [24]. These offline methods rely
heavily on central databases and computational efficiency
when facing the need to dynamically update production
schedules, but are less concerned about the utilization of
real-time sensor data.MAS is popular for distributed schedul-
ing [25], but common MAS with simple interactive pro-
tocols (e.g., CNP) has limited decision-making abilities
due to the lack of AI algorithms. With the recent suc-
cesses of deep learning [26], AI fuels increasing interests to
solve the dynamic scheduling problem in the manufactur-
ing setting. AI methods provide attractive features such as
self-organizing operation, dynamic adjustment, online learn-
ing, and real-time decisionmaking. This provides an unprece-
dented opportunity to handle unexpected events in real time,
and improves the decision-making abilities of schedulers in
the manufacturing processes. Zhang et al. [27] developed an
RL method for unrelated parallel machine scheduling with
the consideration of a single objective of mean weighted-
tardiness, but are less concerned about other important fac-
tors such as unexpected events, order details, and reward
mechanisms. Shahrabi et al. [28] proposed to consider ran-
dom order arrivals and machine failures in the design of RL
methods to enhance the performance of dynamic scheduling.
Shiue et al. [29] investigated the design of an offline learning
module and a Q-learning module for RL-based scheduling
with multiple dispatching rules. However, it’s difficult for
RL methods (e.g., Q-learning) to take high-dimensional data
as inputs and solve problems with large state-action spaces.
Chen et al. [30] used an RL-based assigning policy to obtain
the non-dominated solution set in the action space that helps
yield a better performance than Q-learning. Wang et al. [31]
used correlated equilibrium to propose a multi-agent RL
algorithm for makespan and cost optimization to guide the
scheduling of multi-workflows over clouds.

With rapid advances in sensing technology, manufacturing
plants become data-rich environments that provide a great
opportunity to develop sensor-based dynamic scheduling of
manufacturing jobs under uncertainty in a smart factory.
The high-dimensional data may come from machine states
(e.g., type, machining speed, energy efficiency, buffer level),
the states of material handling systems, and workorder states
(e.g., type, initialization time, target completion time, pro-
cess plan). Traditional RL methods either consider a sin-
gle objective (e.g., makespan or cost) or only interact with

historical data for learning instead of real-time data from a
smart factory. There is an urgent need to design new neural
networks that can take high-dimensional data as the input
and then learn the state-action values for real-time decision
making. In addition, new composite reward mechanisms are
indispensable to consider multiple practical objectives for
smart manufacturing (e.g., minimize the makespan, reduce
production costs, balanceworkloads). The system complexity
and rich data environment pose significant challenges to the
development of newAI methods and tools for multi-objective
dynamic scheduling in a smart factory.

III. RESEARCH METHODOLOGY
As shown in Figure 1, a typical manufacturing shop is com-
posed of machines, material handling systems (e.g., auto-
mated guided vehicles (AGVs), robots), and inventory zones.
The material handling system transports workorders among
machines, as well as between machines and the inventory
zones. Each machine has a buffer area for workorders. First,
customers place workorders via the cloud, which are then
transmitted to a database in the manufacturing shop. Process
planning decomposes a workorder into a sequence of manu-
facturing jobs. Second, advanced sensing systems collect the
states of machines and workorders in real time, which are
then used as inputs of the AI scheduler. Third, a new com-
posite reward function is designed to enable the AI scheduler
for multi-objective learning and optimization of production
schedules. Finally, a series of experiments are designed to
benchmark the performance of the AI scheduler with a variety
of traditional scheduling methods.

FIGURE 1. Flowchart of the proposed methodology.

A. REINFORCEMENT LEARNING AND MANUFACTURING
VALUE NETWORKS
RL is a straightforward framework of learning from interac-
tion to achieve optimal objectives [32]. As shown in Figure 2,
a typical RL model of a manufacturing shop is dependent on
the sensors for data collection and state estimation. The AI
scheduler interacts with the factory to learn and decide what
to do according to the rewards received from state transitions
of machines and jobs. After an action is taken, sensors will
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FIGURE 2. The interaction between a scheduler and the manufacturing
shop in an RL model.

observe the changes of a factory and feed the data to analytical
modules to estimate the new state. The new state will incur
a reward to the scheduler. As such, the AI scheduler keeps
interacting with the factory to learn and improve the decision-
making abilities for production scheduling.

In an online scheduling system, schedulers should make
decisions as soon as jobs are created in real time. This
is highly dependent on real-time states of manufacturing
shops, and therefore turns a conventional production schedul-
ing problem to online learning. The analogous relationships
between RL and production scheduling models are listed
in Table 1. RL modeling is the logical next step to solve
production scheduling problems.

TABLE 1. The relationships between RL and production scheduling.

1) MODEL FORMULATION
Process planning: As shown in Figure 3, a workorder is
denoted by oi, i = 1, . . . , I , where I is the total number
of workorders. The jth job of a workorder oi is denoted by
bi,j, j = 1, . . . , Ji, where Ji is the total number of jobs of
workorder oi. If there are a total of I workorders, then the
total number of jobs will be J = J1 + . . . + JI . Scheduling
moments are at the start and end time of each job. When a
job is completed, the next job of the same workorder will
be initialized and appended to the job list. If there is no
available machine for the current job, it will wait for the
next scheduling moment. If two or more jobs are initialized
at the same time, the scheduler will prioritize the one with
more rewards. Production scheduling coordinates jobs and
machines to create optimal sequences in the job list.
Assumptions:This paper holds the following assumptions

during the development of an online scheduling model for
smart manufacturing. First, each machine can handle one
specific type of manufacturing jobs (e.g., milling, drilling,
or lathing); a workorder contains one or more jobs. Each job
can be completed in one machine, and the chosen machine
should be capable of undertaking the corresponding job,

FIGURE 3. The workorder and job lists for production scheduling. E.g.,
workorder o1 is composed of two jobs (b1,1 and b1,2); job b1,1 is

initialized at time T (A)
1,1 and completed at time T (C)

1,1 ; job b1,2 is initialized

at time T (A)
1,2 and completed at time T (C)

1,2 . The workorder list is sequenced
by the creating time of workorders, and the job list is sequenced by the
initialization time of jobs.

i.e., machine type matches job type. Second, the scheduling
moment is at the start and end time of each job and cannot
be in the middle of a job. Third, the next scheduled job
can be machined instantly when the current job is finished.
Also, the job sequence should satisfy design requirements.
In other words, a job cannot be processed until prior jobs of
the workorder are finished. The total number of jobs assigned
to a machine should be no more than the capacity.

2) MANUFACTURING VALUE NETWORKS
To address the high dimensionality of jobs and machines,
we propose a manufacturing value network to learn optimal
scheduling policies according to the job-machine states that
are characterized by real-time sensor data.
Network inputs: The state space consists of attributes of

schedulable jobs and machines in the manufacturing shop.
When workorders are created, the target completion time
will be provided to customers through the order system. This
estimate of completion time is computed based on empirical
data and the current condition of the manufacturing shop.
The attributes for job bi,j can be described as (s1, . . . , sd1)i,j,
where d1 is the dimension of job attributes. The attributes
for machine m (m = 1, . . . , M , where M is the total number
of machines) can be described as (s1, . . . ,sd2)m, where d2 is
the dimension of machine attributes. As shown in Table 2,
in the present study, a job includes four attributes, including
job type, initialization time, nominal operating time, target
completion time, then d1 = 4; amachine is assignedwith five
attributes (i.e., d2 = 5), including machine type, machining
speed, energy efficiency, remaining workloads, remaining
buffer length. There are C types of machines that can take C
different types of jobs. The total number of machines in type c
is denoted byMc, where c = 1, . . . ,C andM1+. . .+MC = M .
If there are J jobs to be scheduled and M machines are
available, the state of the manufacturing shop at time t will
be:

S̃t = [(s1, . . . ,sd1)i,j , . . . ;

(s1, . . . ,sd2)m , . . .]1×(d1·J+d2·M ) (1)
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FIGURE 4. The manufacturing value network for selecting an optimal action At according to the
states St .

TABLE 2. The attributes of jobs and machines in a manufacturing shop.

Note that very few jobs will be initialized at the same time.
There is an urgent need to standardize the state space for the
improvement of learning efficiency and robustness of the RL
model. Thus Equation (1) is reduced into Equation (2) with
a one-dimensional tuple with d1 + d2 · M elements, which
only keeps the current job to reduce the dimensionality of
state space. In this way, the dimensionality of network inputs
St is consistent with the current job and the attributes of all
machines in the shop.

St = [(s1, . . . ,sd1)i,j ;

(s1, . . . ,sd2)1 , . . . , (s1, . . . ,sd2)M ]1×(d1+d2·M ) (2)

Network architecture: As shown in Figure 4, the manufac-
turing value network, parameterized by w, is composed of
an input layer, a hidden layer, and an output layer. The input
layer is constituted by d1+ d2 ·M neurons. The output layer
includes 1+M actions, i.e., a0, a1, . . . , aM , where a0 denotes
‘‘waiting’’ and am is the assignment of a current job to the
mth machine. The machine states are updated in real time
for online scheduling of manufacturing jobs. The input layer
takes high-dimensional data St from sensors, then regularizes
the sensor data by batch normalization. After being processed
by interconnected neurons in the neural network, a tuple
(Q(St , a0), Q(St , a1), . . . , Q(St , aM )) is obtained. The output
layer provides the action to the scheduler. The optimal action
At can be obtained from theQ (St , ·) in the output tuple by an

ε-greedy policy. The scheduler selects a random action with
the probability ε, and an action with the maximum Q (St , ·)
with the probability 1-ε. After an action is chosen for the
current job, a new state St+1 and rewardRt+1 are generated by
the manufacturing shop. The performance of an AI scheduler
depends on the state transitions and the definition of reward
functions. The formulation of composite reward functions is
detailed in Section III-B.
Reinforcement learning: An AI scheduler provides real-

time scheduling policies via the training of the proposed
manufacturing value network. The smartness of an AI sched-
uler is improved continuously by interacting with the factory
and learning from the experiences. The manufacturing value
network is trained by optimizing the differential equations
of reward functions. Q-learning, developed by Watkins [33],
is an off-policy temporal difference (TD) algorithm to get
optimal policies of an RL model. Here, Q-learning is utilized
to interact with the factory with stochastic state transitions for
the derivation of optimal policies as

Q′ (St ,At) = Q (St ,At)

+α[Rt+1 + γ max
At+1

Q(St+1,At+1)−Q(St ,At )]

(3)

where γ is a discount factor for future rewards; α is the
learning rate. Q (·) is a state-action value function, which is
sequentially updated during the training period; At denotes a
chosen action from the action space at time t; Rt+1 is a reward
for the state transition from St to St+1. A scheduling experi-
ence of the AI scheduler is denoted by (St ,At ,Rt+1,St+1),
and all the experiences are stored for training purposes. Such
scheduling experiences can be from not only this manufac-
turing shop but also other shops. When a large number of
experiences are accumulated to train the manufacturing value
network, the AI scheduler will be more reliable and robust.
RL for training the manufacturing value network: If there

are onlyQ(St+1,At+1) andQ(St ,At ) from the samemanufac-
turing value network, the iteration function in Equation (3)
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tends to be insufficient for training the network. There is a
need to circumvent the correlations between Q(St+1,At+1)
and Q(St ,At ) for more effective parameter updating. There-
fore, Q(St+1,At+1) will be derived from a target network
denoted by Q̂ (·), while Q(St ,At ) is still obtained from the
manufacturing value network, i.e., evaluation network. The
target network has the same architecture and initial param-
eters as the evaluation network. The evaluation network is
trained and updated constantly with stochastic rewards and
transitions, while parameters w′ of the target networks are
replaced with parameters w of the evaluation network in
periodic steps. Equation (3) is then divided into two parts: ŷ =
Rt+1 + γ max

At+1
Q̂(St+1,At+1) with target-Q value Q̂(·), and

evaluation-Q valueQ(St ,At ). Random samples of experience
are drawn to perform minibatch learning. Network param-
eters are updated by the mean of minibatch samples. The
manufacturing value network is trained by tuning parameters
w and minimizing the loss function as follows:

L(w) = E[
(
ŷ− Q (St ,At)

)2] (4)

B. COMPOSITE REWARD MODELING
Production scheduling focuses on the performance
improvement of a smart factory from various aspects such as
efficiency (e.g., makespan, tardiness), cost (e.g., energy con-
sumption, workorder urgency levels), and other metrics (e.g.,
workload balance, customer satisfaction). A single objective,
e.g., minimizing the makespan, is often not enough. Indeed,
workload balance and energy consumption should be con-
sidered along with shortening the makespan. Multi-objective
formulation can not only meet customers’ satisfaction, save
energy for more profits and cost-reduction, but also balance
the workload to reduce the machine failures.

1) MINIMIZING THE MAKESPAN OF WORKORDERS
The initialization time, starting time, completion time, target

completion time of a job bi,j are respectively denoted by T
(A)
i,j ,

T (S)
i,j , T

(C)
i,j , T̂

(C)
i,j . As shown in Figure 5, the first job of a

workorder is initialized at time T (A)
i,1 . The second job is ini-

tialized when the first job is completed at T (C)
i,1 . A workorder

is completed when its last job bi,Ji is completed at T (C)
i,Ji . Each

job has a target completion time T̂ (C)
i,j . The target completion

time of a workorder is determined by its last job with T̂ (C)
i,Ji ,

which could be before or after the actual completion time
T (C)
i,Ji .

FIGURE 5. The timeline of workorder oi and its component jobs:
scheduling moments are marked by red circles.

The target completion time T̂ (C)
i,j is estimated by multi-

plying nominal operating time T̃i,j with the urgency factor
of a workorder Ki, as shown in Equation (5). The nominal
operating time T̃i,j of a job bi,j is obtained by multiplying
workload time Ti,j with a factor whose value is assigned with
3 in this paper (i.e., T̃i,j = 3Ti,j). The urgency factor Ki of
a workorder oi is specified by customers. If a workorder is
urgent, then Ki decreases so that T̂

(C)
i,j is smaller. In this inves-

tigation, Ki ranges from 2/3 to 4/3. The workorders (urgent,
normal, and delayed) are assigned with the Ki’s of 2/3, 1, 4/3
respectively.

T̂ (C)
i,j = T (A)

i,j + Ki · T̃i,j, 2/3 ≤Ki ≤ 4/3 (5)

If a workorder is completed before the target completion
time, the AI scheduler will get a positive reward. Otherwise,
the reward is negative. Therefore, we define the first reward
function RD based on the tardiness level of workorders as
follows:

RD(oi) =
1

e1+T
(tard)
i

(6)

where T (tard)
i is the tardiness level of a workorder oi, formu-

lated by

T (tard)i =
T (C)
i,Ji − T̂

(C)
i,J i

T̂ (C)
i,Ji − T

(A)
i,1

, 0 <T (A)
i,1 < T (C)

i,Ji , T̂
(C)
i,J i

(7)

If a workorder is completed before the target completion
time, T (tard)i is negative. Otherwise, T (tard)i is positive. The
target completion time of workorder oi is

T̂ (C)
i,Ji = T (A)

i,1 + Ki

Ji∑
j=1

T̃i,j,Ki> 0 (8)

2) REDUCING PRODUCTION COSTS
The profit margin comes from the difference between prices
and costs. To increase profits, it is critical formanufacturers to
reduce production costs, which are influenced by workloads,
machining speed, and energy efficiency. Therefore, we for-
mulate the profit reward as

RP(bi,j) = 1− eK
(E)
m K (T )m −K

(P)
i,j (9)

where K (P)i,j is a price factor for the job bi,j, K
(E)
m is the energy

efficiency factor of a machine, and K (T )m is the speed factor of
the machine. The profits of a job bi,j is then formulated by

Pi,j = f
(
Ti,j,K

(P)
i,j ,K

(E)
m ,K

(T )
m

)
= P̂i,j − Ei,j

= K (P)i,j Ti,j − K
(E)
m K (T )m Ti,j (10)

where the price P̂i,j is determined by the multiplication of
K (P)i,j and workload time Ti,j. The cost Ei,j is defined as the

multiplication of energy efficiency factor K (E)m , speed factor
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K (T )m , and the workload time Ti,j. Note that the price factor
K (P)i,j increases if a workorder is urgent. Hence, the price factor

K (P)i,j is formulated with respect to the urgency factor Ki as

K (P)i,j = 3(e−
3
2Ki+1), 2/3 ≤Ki ≤ 4/3 (11)

A high-performance machine can finish jobs with less
machining time (i.e., smallerK (T )

m ) and consumemore energy
per second (i.e., larger K (E)

m ). Thus, K (E)
m is formulated as

a function of K (T )
m by Equation (12). The speed factor K (T )

m
varies from 0.4 to 2.

K (E)
m = 2e−

1
2K

(T )
m , 0.4 ≤K (T )

m ≤ 2 (12)

3) BALANCING WORKLOADS IN THE MANUFACTURING
SYSTEM
A manufacturing shop includes different kinds of machines
with varying performance levels. If the workload is imbal-
anced, there may be more workorders assigned to a specific
machine. This will not only cause system congestion but
also increase the probability of machine failures. There is
an urgent need to improve the average utilization rate and
balanceworkloads amongmachines. Therefore, we formulate
the reward functions of machine utilization and workload
balance as

RU =
1
Mc

∑
m

um,machine m ∈ type c (13)

RV = e−Uc (14)

whereMc is the total number of machines of type c; um is the
utilization rate of machine m in type c that is calculated as

um =
1
T

∑
i,j

K (T )m T i,j, job bi,j ∈ machine m (15)

where T denotes the duration of production, K (T )m Ti,j is the
machining time of job bi,j on machine m. The standard devi-
ation of utilization rates Uc, formulated by Equation (16),
is used as the metric of workload balance among machines.

Uc =

√
1
Mc

∑
m

(um − ū)2,machine m ∈ type c (16)

where ū is the mean of um’s in the type c machine.

4) COMPOSITE REWARD MODELING
Acomposite reward function integratesmultiple optimization
objectives to make the AI scheduler more efficient, energy-
saving, and robust.When a scheduler takes an action at time t ,
the composite reward Rt+1 is a weighted function formulated
as shown in Equation (17). The weighted average ofN reward
functions helps regulate the behaviors of an AI scheduler and
account for multiple optimization objectives.

Rt+1 =
N∑
i=1

wi · R
(i)
t+1,

N∑
i=1

wi = 1 (17)

where w1, w2, . . . , wN are the weights, and R(1)t+1,R
(2)
t+1, . . . ,

R(N )
t+1 are different reward functions. Specifically, this paper

considers a composite reward function that includes RD for
tardiness, RP for profits, RU for machine utilization, and RV
for workload balance as shown in Equation (18) and Figure 6.
At each scheduling moment, the reward R is derived from the
statuses of jobs, workorders andmachines between t and t+1.

R = w1 · RD + w2 · RP + w3 · RU + w4 · RV (18)

The weights w1, w2, w3, w4 can be either uniform or adjusted
for specific requirements. For example, if the management
is more concerned about tardiness and utilization, then the
weights of w1 and w3 can be increased for more contributions
to the composite reward. As a result, the AI scheduler is more
adaptive to new requirements and manufacturing conditions.

FIGURE 6. The components of composite rewards for multi-objective
optimization.

C. THE AI SCHEDULER
The proposed AI scheduler leverages RL to formulate pro-
duction scheduling into a multi-step decision problem. It is
common that manufacturing shops face uncertainties and
unexpected events (e.g., urgent workorders, machine fail-
ures). As such, schedules by traditional methods need to
be updated and adjusted. For some time, rescheduling may
cause disruptions to a manufacturing process. In the era of
low-volume-high-mix manufacturing, online and dynamic
scheduling becomes indispensable to gain competitive advan-
tages in the market. In this investigation, transportation time
and preparation time are assumed to be much smaller than
machining time. However, this does not preclude others from
relaxing the assumption and considering small time inter-
vals for job transportation and preparation in the workshop.
As shown in Figure 7, the AI scheduler is embodied with the
following components:
Process planning: After a workorder is received from a

customer, it will be decomposed into a series of jobs. The first
job will be initialized after process planning. Job attributes
are stored in the radio frequency identification (RFID) tag
of the workorder. When a job is completed on a machine,
the next job of the same workorder is initialized and waits
to be scheduled. If there is no machine available for this
job, the action a0 (i.e., ‘‘waiting’’) will be chosen and wait
for the next scheduling moment. As illustrated in Figure 5,
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FIGURE 7. Online scheduling and learning procedures of the AI scheduler.

schedulingmoments are marked by red circles when new jobs
are initialized at T (A)

i,j or the workorder is completed at T (C)
i,Ji .

A completed workorder will be transported to the inventory
without further scheduling.
State characterization: The job list for the AI scheduler

contains all the initialized jobs, including the first job of each
workorder in the inventory and the current unscheduled job
of a workorder in the machine buffer. At each scheduling
moment, the AI scheduler derives the attributes of the cur-
rent schedulable job from its corresponding RFID tag and
obtain the real-time statuses of related machines by sensors.
As specified in Equation (2), the state dimension of the
manufacturing shop is d1 + d2 · M , which determines the
input layer of the manufacturing value network.
Production scheduling: At scheduling moments, the AI

scheduler makes scheduling policies for the current job based
on real-time attributes of the job and related machines. After
an action At is selected from the action space, the workorder
will be transported to the target machine or wait for the next
scheduling moment. States of machines are updated to St+1
and a reward Rt+1 for the state transition is given. Schedul-
ing experiences (St , At , Rt+1, St+1) are stored for periodi-
cally training the manufacturing value network specified in
Section III-A-2). Between two scheduling moments, the AI
scheduler does nothing but monitors the system as machines
process jobs.
Updating neural networks: The manufacturing value net-

work is updated in smaller steps with higher frequency. For
example, we can choose thirty samples from the experiences
and update the parameters of the network every five steps

until the convergence of Q function. Meanwhile, the manu-
facturing target network is trained in more steps with lower
frequency. For example, we can update the target network
with the parameters of manufacturing value network every
two hundred steps. The training procedures based on RL are
specified in Section III-A-2). If there is no job to do or all
the workorders are completed, the AI scheduler andmachines
will be in a standby mode and take no action. If all machine
buffers are occupied, schedulable jobs have to wait until a
buffer is available (i.e., when a job of aworkorder in the buffer
is completed).
Figure 8 shows a real-time Gantt chart to illustrate the

AI scheduler’s actions. Each job is scheduled separately.
If there are six machines in a manufacturing shop, i.e., three
lathes and three millers. Each machine has a buffer with
a capacity of four jobs. In the Gantt chart, the horizontal
axis is a timeline and the vertical axis represents machines.
Jobs that have been scheduled are marked by rectangles with
black boundaries. Jobs to be scheduled are marked by red
boundaries. The job list is below the timeline in Figure 8. Job
b1,1 is initialized at moment T (A)

1,1 . Job b1,1 will be completed

at moment T (C)
1,1 on Lathe 1. The next job b1,2 is created at

moment T (A)
1,2 = T (C)

1,1 after the completion of job b1,1, but
cannot be processed until previous jobs in the waiting buffer
of Miller 2 are completed at moment T (S)

1,2 .

FIGURE 8. A Gantt chart for illustrating the relationships among
scheduling moments, timeline, jobs, and machines.

IV. EXPERIMENTAL DESIGN
As shown in Figure 9, a smart factory testbed is established
to verify the performances of different scheduling meth-
ods. There are three millers (m = 1, 2, 3), three lathes
(m = 4, 5, 6), and a warehouse (m = 0) in the manufacturing
shop. Each machine has a buffer area which can hold four
workorders. AnAGV transports workorders among the buffer
areas, while two robots handle workorders between machines
and their corresponding buffer areas. Workorders are gen-
erated in the cloud system and their attributes are written
on corresponding RFID tags and updated by machines. The
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FIGURE 9. The layout of a smart factory testbed. ‘‘O’’ is the exit for the
unprocessed workorders, and ‘‘I’’ is the entrance for the completed
workorders.

FIGURE 10. Design of experiments for performance evaluation of
different AI scheduling models.

AI scheduler processes production scheduling based on real-
time attributes of workorders and machines, and shares the
statuses of the manufacturing shop with the cloud system.

As shown in Figure 10, four-factor layout experiments are
designed to evaluate the performance of AI schedulers. The
four-factor groups are described as follows:
Reward functions: We evaluate not only the composite

reward R but also each component RD, RP, RU , RV to com-
pare the learning performance and convergence speed of AI
schedulers. In the experiments, we generate 1,000 random
workorders to train the proposed AI scheduler.
Workorder variations: The workorders are also created

with different attributes, e.g., job type c, initialization time
T (A)
i,j , nominal operating time T̃i,j, urgency factor Ki ∈ [2/3,

4/3]. The workorders with various urgent levels are created to
benchmark the performance of different scheduling methods.
Machine variations: The machines are also varied by

machine type c, machining speed K (T )
m , energy efficiency

K (E)
m and failures. Machine failures cause uncertainty in the

manufacturing processes. The machine variations are used to
benchmark the performance (e.g., makespan, profits, work-
load balance) of different scheduling methods.
Scheduling methods: We have also benchmarked the per-

formance of AI schedulers with a variety of traditional
scheduling methods. The global optimal results are obtained
by analytical methods assuming that the statuses of jobs and
machines are known beforehand. A traditional RL scheduling
method is also used to consider only a single objective, i.e.,

the energy consumption in Section V-B and the tardiness level
RD of machines in Section V-C. The CNP method is con-
sidered with greedy algorithms such as shortest waiting time
first (SWTF), first come first serve (FCFS). At scheduling
moments, CNP managers schedule workorders on available
contractors with greedy algorithms.

The parameters of an AI scheduler are set as: learning
rate α =0.01, discount rate of rewards γ =0.9, greedy
rate ε =0.9. As shown in Table 3, there are six machines
denoted by 1, 2, . . . , 6, three lathes and three millers. Each
machine has a buffer with a capacity of four jobs. Machining
speed (i.e., (s2)m) and energy efficiency (i.e., (s3)m) are static
attributes for machines. The variations of machining speed
factor K (T )

m , and the energy efficiency factor K (E)m are shown
in Table 3. The state dimension for dynamic attributes of
jobs and machines is 34, which is derived from Equation (2),
where d1 =4, d2 =5, M = 6. The manufacturing value
network has an input layer with 34 neurons, a hidden layer
with 200 neurons and an output layer with 7 neurons. The
workorder can be either shafts or panels in the experiments.
A shaft is decomposed into two jobs of lathing and milling,
and a panel has only one job of milling. Workorders arrive
at the manufacturing shop at random time T (A)

i,1 . The nominal
operating time of a milling job ranges from 15s to 90s and a
lathing job is in the range from 60s to 180s. The AI sched-
uler monitors the statuses of jobs, workorders, and machines
in real time. Each machine is equipped with an industrial
computer for data collection and communication with the AI
scheduler.

TABLE 3. The variations of machine types, speed factor, and energy
efficiency factor.

V. EXPERIMENTAL RESULTS
A. LEARNING PERFORMANCE OF AI SCHEDULERS WITH
DIFFERENT REWARD FUNCTIONS
In this study, we evaluate the learning performance of the
composite reward R = w1RD + w2RP + w3RU + w4RV
with different weight distributions (w1,w2,w3,w4), including
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (0.25, 0.25,
0.25, 0.25). The weights (w1, w2, w3, w4) can be adjusted to
meet different production requirements. For example, com-
panies can increase the weights of w2 and w4 to save pro-
duction costs, whereas they can increase the weights of w1
and w3 to complete workorders as soon as possible. In this
current paper, we aim at proposing a general AI scheduler
that can online achieve a good performance among minimiz-
ing makespan, maximizing profits, and balancing workloads.
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Thus, we assign the weights with (0.25, 0.25, 0.25, 0.25)
for the following experiments w.r.t. unexpected events (i.e.,
workorder and machine variations). The AI schedulers with
five different types of reward functions are trained by interact-
ing with themanufacturing shop. A total of 1,000workorders,
including 500 shafts and 500 panels, are generated at random
with different nominal operating time and urgency factors.
The ranges of job attributes are specified in Section IV. In the
manufacturing shop, there are six machines, three lathes and
three millers, and their attributes are detailed in Table 3.
Figure 11 shows the training of AI schedulers with five dif-
ferent reward functions (i.e., time savings RD, energy profits
RP, machine utilization RU , workload distribution RV , and
composite reward R). As the AI schedulers interact with more
and more workorders, the rewards per workorder increase
with the training progresses. It is worth noting that the con-
vergence rate of the composite reward is located in the mid-
dle. Although AI schedulers converge at different speeds for
five reward functions, all of them converge to approximately
0.75 after the training with 900 workorders. The composite
reward function, however, considers four different objectives
simultaneously and does not show slower convergence than
the schedulers with a single objective.

FIGURE 11. The performance comparison of AI schedulers with five
different reward functions.

Figure 12 shows the comparison of learning curves, i.e.,
the differences between ŷ and Q, derived from Equation (4)
for AI schedulers with five different reward functions. Before
2,000 steps, the discrepancy between ŷ andQ is large because
AI schedulers are learning to handle random workorders.
With more and more experiences accumulated, the decision-
making capabilities improve significantly after 10,000 steps.
As shown in Figure 12, AI schedulers with a single reward
RD, RP, RU , or RV converge after 30,000 steps, and their
convergence points are near step 22,500, step 27,500, step
26,000, step 17,000, respectively. Notably, the composite
reward R converges after approximately 10,000 steps, which
is much faster than other component reward functions. Also,
when the reward functions are different, scheduling outcomes
will vary. The next sections will show the composite reward
yields better results than a single reward. If an AI scheduler
with composite rewards needs fewer steps in the training

FIGURE 12. The comparison of learning curves for AI schedulers with five
different reward functions.

process, it will learn faster and the time to deployment can
be reduced significantly.

B. SCHEDULING PERFORMANCE W.R.T. WORKORDER
VARIATIONS
Although the AI scheduler is trained with a large number
of workorders, there is a need to evaluate the scheduling
performance with new workorders. As shown in Figure 13,
four scheduling methods (i.e., optimum, AI, RL, and CNP,
described in Section IV) are evaluated to handle 50 new
workorders (i.e., urgency factor Ki =1) after the train-
ing. All workorders are generated before 600s. Although
the profit curves fluctuate with the variation of worko-
rders, four scheduling methods (i.e., optimum, AI, RL,
and CNP) yield the profit mean and standard deviation as
110.8±5.06, 104.6±6.61, 98.6±11.94, 62.2±12.05, respec-
tively. Note that ‘‘optimum’’ assumes that the statuses of
jobs and machines are known beforehand, thus achieves the
global optimal results. This is however unlikely to happen
in the real-world manufacturing shop. The schedulers of AI,
RL, CNP achieve 94.4%, 89.0%, 56.1% performance of the
‘‘optimum’’ scheduler. The AI scheduler is closer to the
global optimal results than ordinary RL and CNP, due to
the data utilization and experiences accumulated during the
training. The AI scheduler and ordinary RL yield comparable
performances in terms of profits, but ordinary RL has a
relatively lower mean and a much bigger standard deviation
(i.e., almost doubled from 6.61 to 11.94). On the contrary, the
AI scheduler can not only earn more profits but also balance
the profits among workorders. Also, the CNP scheduler is
based on greedy algorithms and does not use the data, and
thereby yields the inferior performance (i.e., lowest mean and
highest standard deviation). The AI scheduler shows a stable
profit curve to handle new workorders.

Then, the total number of workorders that are generated
during the same period as the 50workorders (i.e., 600s) varies
from 10 to 100 at an interval of 10. The profit means of 10,
20, . . . , 100 workorders are shown in Figure 14. If only ten
workorders are generated within 600s, the profit means are
119.4, 117.3, 104.6, and 86.7 for four scheduling methods of
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FIGURE 13. Profits from 50 new workorders by four scheduling methods
(i.e., optimum, AI, RL, and CNP).

FIGURE 14. Profit means of different numbers of workorders that are
generated during the same period of time.

optimum, AI, RL, and CNP. If 100 workorders are generated
within 600s, the profit means decrease by 10.7%, 14.6%,
16.3%, and 36.1% respectively, and the AI scheduler earns
14.4% and 80.9% more profits than other online scheduling
methods (i.e., RL and CNP). Therefore, the AI scheduler
shows good performance in handling the variations in worko-
rder numbers.

Further, Table 4 shows the comparisons of standard devi-
ations of utilization rates Uc for lathes and millers after
scheduling 50 random workorders. The AI scheduler lever-
ages the composite reward function and thus yields the small-
est standard deviations of utilization rates among machines.
In other words, workloads are well balanced amongmachines
by the AI scheduler. However, the ‘‘optimum’’ formulation
focuses more on the minimization of makespan and the max-
imization of profits, but is less concerned about the balance
of workloads among machines. Similarly, ordinary RL and

TABLE 4. The comparison of standard deviations of utilization rates
among machines by four scheduling methods (i.e., optimum, AI, RL, and
CNP).

FIGURE 15. Profit distributions for four scheduling methods (i.e.,
optimum, AI, RL, and CNP) for two cases: (a) 50 normal workorders
(N50U0); (b) 40 normal workorders and 10 urgent workorders (N40U10).

CNP schedulers do not specifically consider the workorder
balancing, thereby yielding higher standard deviations.

In addition, it is not uncommon that the manufacturing
shop receives urgent workorders. Therefore, we evaluate and
compare the performance of these four schedulers with a mix
of 40 normal workorder and 10 urgent workorders (N40U10).
The normal workorder is with the urgency factor Ki =1, and
the urgent workorder is with the urgency factor Ki =2/3.
Figure 15 shows the comparison of scheduling results for
N40U10, which are benchmarked with 50 normal workorders
(N50U0). The profitmeans (µ) of the N40U10 case are 116.6,
109.4, 100.8, 63.4 for optimum, AI, RL, CNP, which are
increased by 5.2%, 4.6%, 2.2%, 1.9% in comparison with
the N50U0 case. The standard deviations of profits (σ ) for
the N40U10 case are 5.71, 7.29, 13.82, 14.23, which are
increased by 12.8%, 10.3%, 15.7%, 18.1% in comparison
with the N50U0 case. Note that the AI scheduler is much
closer to the ‘‘optimum’’ than RL and CNP in terms of profit
mean and standard deviation. The ‘‘optimum’’ is assumed to
know the urgent workorders beforehand. Therefore, the AI
scheduler yields higher profits and smaller deviations in the
handling of urgent workorders.

C. SCHEDULING PERFORMANCE W.R.T. MACHINE
VARIATIONS
For some time, machines fail and bring disruptions to
the manufacturing process. Therefore, we compare the
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FIGURE 16. The comparison of cumulative ahead-of-schedule times by
four scheduling methods (i.e., optimum, AI, RL, and CNP) under machine
failures.

performance of the proposed AI scheduler with other
scheduling methods under the condition of machine fail-
ures. Among six machines specified in Table 3, a miller
breaks down during operations at 200s and the repair takes
100s to restore the operation. In other words, a miller
fails between 200s and 300s in the manufacturing process.
Four scheduling methods (i.e., optimum, AI, RL, and CNP)
face the same machine failure and are used to schedule
50 workorders with the urgency factor Ki =1. The per-
formance metric is the cumulative ahead-of-schedule times,

i.e.,
i′∑
i=1

(
T̂ (C)
i,Ji − Ti,Ji

(C)
)
, i = 1, . . . , i′ when T (C)

i,Ji < t . In

other words, at a particular time t , the performance metric
counts how many workorders (i.e., i′) have been completed
and then computes the cumulative summation of the differ-
ences between estimated completion time and actual comple-
tion time of a workorder oi.

As shown in Figure 16, the manufacturing system handles
workorders that arrive at random. A miller fails at 200s,
which demands scheduling methods to be adjusted for this
new condition. The milling jobs should be rescheduled to
functional millers. Because there are only two millers avail-
able, the cumulative ahead-of-schedule time does not increase
as fast as before. Notably, the ‘‘optimum’’ assumes that
the failure is known when it happens, rather than before-
hand. Therefore, the ‘‘optimum’’ is delayed 25s to reschedule
workorders based on the newly available conditions. When
the miller restores the operation at 300s, it will then take
another 25s to run the optimization algorithms for the global
optimal solution. The AI, RL, and CNP schedulers respond
to the failure and restoration in real time with minimal dis-
ruptions. The ‘‘optimum’’ can obtain optimal schedules for
workorders, but at the expense of time delay for adjustment
and rescheduling under machine failures. In this small-scale
case study, ordinary RL and CNP yield worse performance
than the AI scheduler because of the limited ability to utilize
the data and perform multi-objective optimization. The AI
scheduler achieves as good performance as the global optimal
solutions and slows the ability to handle machine failures in
real time.

FIGURE 17. The comparison of makespans by four scheduling methods
(i.e., optimum, AI, RL, and CNP) under both normal conditions and
machine failures.

Figure 17 shows the comparison of makespans for four
scheduling methods (i.e., optimum, AI, RL, and CNP) under
both normal conditions and machine failures. If a miller
breaks down from 200s to 300s, the makespan is 785s, 807s,
872s, and 1,021s for optimum, AI, RL, and CNP, respec-
tively. If all six machines are in good condition when pro-
cessing 50 workorders, the makespan will be 590s, 594s,
603s, and 635s, respectively. The makespan is increased by
33.1%, 35.9%, 44.6%, 60.8% respectively when machine
failures occur. Note that the AI scheduler yields a compa-
rable performance with the optimum solutions. Note that
there is only one miller failed in this experiment. The time
delay is only 25s for the ‘‘optimum’’ to make adjustment
and rescheduling. In a real-world workshop, there may be
more failures and a bigger time delay for computation and
update the schedule with offline methods. However, the AI
scheduler can perform online learning in the process and deal
with unexpected events (e.g., machine failures) in real time.
Also, most traditional scheduling methods are designed with
the primary concerns about workorder sequence, lead time,
and makespan. Nonetheless, there is a need to consider not
only makespan, time constraints, but also production costs,
energy efficiency, and workload balancing. The AI scheduler
realizes the full potentials of real-time data feeds, training
experiences, and online learning for the generalization of new
workorders and the effective handling of unexpected events
(e.g., machine failures).

VI. CONCLUSION AND FUTURE WORK
This paper presents an AI scheduler for online and dynamic
scheduling of manufacturing jobs in a smart factory. The RL
method equips the proposed system with self-organizing and
self-learning capabilities under uncertainty. A new formula-
tion of composite reward function is developed to enable the
AI scheduler for multi-objective learning and optimization
of production schedules. A series of experiments are con-
ducted to evaluate how different reward functions influence
the scheduling results, including rewards for time savings
RD, energy profits RP, machine utilization RU , workload
distribution RV .
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The proposed AI scheduler utilizes a manufactur-
ing value network to estimate state-action values from
high-dimensional sensor data of manufacturing things and
then learns real-time policies according to the states of
available machines and pending jobs. The ‘‘smartness’’ of
AI schedulers is improved from streamed data feeds, training
experiences, and online learning, which has shown strong
potentials for the generalization of newworkorders. It may be
noted that the proposed method is capable of handling simul-
taneously created workorders and uncertainty factors such as
machine failures. The proposed composite reward function
effectively tackles the urgent workorders, while maintain-
ing a balance between efficiency and profits. The proposed
methodology is evaluated and validated with experimental
studies in a smart manufacturing setting. Experimental results
show that the new AI scheduler not only improves the multi-
objective performance metrics in the production scheduling
problem but also effectively copes with unexpected events
(e.g., urgent workorders, machine failures) in manufacturing
systems.

Further, there are more challenges to be considered in
future research, such as AGV route planning and manufac-
turing process planning in the smart factory. Future inves-
tigations will focus on the reward-scheduling mechanisms,
computational efficiency of AI schedulers, distributed learn-
ing with AI agents resides in each manufacturing thing. This
paper makes an attempt to improve the AI for smart manufac-
turing, but realizing a smart factory depends on the significant
improvements of ubiquitous ‘‘smartness’’ in manufacturing
things that span in every corner of the manufacturing factory.
We hope this work will help catalyze more in-depth investi-
gations and multi-disciplinary research efforts to advance the
AI for smart manufacturing.
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