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ABSTRACT Regenerative braking is the key to achieve efficient use of energy and extend the driving
range in pure electric vehicles. This study proposes a new predictive control method integrating adaptive
cubic exponential prediction and dynamic programming to address the problem of efficient energy recovery
during the regular braking process of four-wheel pure electric vehicles. The method considers the dynamic
characteristics of an electro-hydraulic combined braking system. The adaptive cubic exponential prediction
is adopted to predict the vehicle velocity and braking intensity. The dynamic programming is employed to
optimize the motor braking torques and wheel cylinder pressures under the condition of braking regulations,
road constraints, and vehicle constraints. To verify the effectiveness of the new predictive control method,
the ideal and multi-stage braking force distribution methods are employed for comparison. The results
confirm that, under gradual braking conditions, the energy recovery efficiency achieved via the proposed
method is improved by 1.55% and 6.40% considering the ideal and multi-stage braking force distribution
methods, respectively.

INDEX TERMS Pure electric vehicle, energy recovery, dynamic characteristics, adaptive cubic exponential,
dynamic programming.

I. INTRODUCTION
As the development of zero-emission pure electric vehicles is
beneficial to the global environment [1]–[3], they are being
increasingly developed and deployed worldwide [4].

Some researchers have conducted in-depth studies on elec-
tric vehicles, including handling stability control [5], yaw
stability control [6], and inertial estimation [7]. However,
the short driving range of these vehicles hinders their pro-
motion and application. Research indicates that 50% of the
energy of pure electric vehicles is wasted in the form of
heat by a conventional braking system during deceleration
in urban conditions [8]. Therefore, studies on the regener-
ative braking energy recovery of pure electric vehicles are
necessary [9]–[11].
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The existing studies aiming to improve the energy recov-
ery of regenerative braking mainly focus on two groups:
system design and control [12]–[15]. Regarding system
design, supercapacitors [16] or flywheels [17] are added
in some studies to increase energy recovery, which can
improve energy conversion efficiency. Regarding system con-
trol, in [18], model predictive control was applied to distribute
braking energy for battery and supercapacitors, and a satisfac-
tory control effect was obtained. However, these approaches
increase both the complexity of the system and the cost of
the entire vehicle owing to the addition of supercapacitors or
flywheels. Thus, the recovery of kinetic energy by the motor
becomes the best choice in all types of vehicles, as a trade-off
between performance and cost [19].

The energy recovery is closely related to the braking con-
trol method when only the motor recovers the braking kinetic
energy. An adequate braking control method can improve the
energy recovery efficiency, whereas an inadequate method
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may cause the energy recovery effect to deteriorate, and
even threaten the braking safety of the vehicle. In recent
years, an increasing number of studies has focused on the
energy recovery by motor braking. The methods can be
further divided into two aspects: rule- and optimization-
based control [20]–[23]. Regarding rule-based control, early
research mainly considered the regulations of the Economic
Commission for Europe (ECE) and ideal braking force dis-
tribution [24]. Although this can improve the energy recov-
ery efficiency, it does not consider the driver’s intention
recognition. To address driver’s intention recognition, fuzzy
logic [25] was adopted and a better energy recovery effect was
obtained. To approximate to the actual control situation, sys-
tem dynamics and driver intention recognition [26], [27] were
considered, but only in terms of system modeling and not in
terms of method formulation. The above methods are all rule-
based, and the energy recovery effect can be further improved
through optimization. Fuzzy logic optimized by genetic algo-
rithm [28] was adopted to obtain electro-hydraulic braking
force distribution rules. Although this method did not con-
sider the driver’s intention recognition, other studies con-
sidered this aspect [29] [30], obtaining an improvement in
energy recovery efficiency, However, the dynamic character-
istics of the system were neglected, as well as the future state
information of the vehicle.

With the development of vehicle electrification and intel-
ligence, energy recovery is an important research focus,
whether it is a manually driven vehicle or an intelligent vehi-
cle [31]. This study mainly focuses on the energy recovery
of manually driven vehicles. It is well recognized that the
dynamic characteristics of the electro-hydraulic combined
braking system have an important influence on the con-
trol of the vehicle. However, regarding the formulation of
regenerative braking methods, the dynamic characteristics of
the braking system are rarely considered in existing studies.
Neglecting these characteristics may worsen the recovery
efficiency. In addition, the future of vehicle state informa-
tion such as vehicle velocity and braking intensity has also
important influence for vehicle energy recovery. If the state
of the vehicle is known in advance, it may help to improve
the energy recovery. To solve the mentioned issues, a pre-
dictive control method (PCM) that centers on the future of
vehicle state information and dynamic characteristics of the
electro-hydraulic combined braking system is proposed for
four-wheel pure electric vehicles to improve energy recovery
efficiency. Three vital advantages of the PCM are presented
in the study:
• An adaptive cubic exponential prediction is integrated
into PCM to solve the problem of obtaining future
vehicle state information, such as vehicle velocity and
braking intensity;

• A dynamic programming is integrated into PCM to con-
sider dynamic characteristics of the electro-hydraulic
combined braking system and obtain the front and rear
motor braking torques, and front and rear wheel cylinder
pressures;

• A predictive optimization framework of PCM that
includes adaptive cubic exponential prediction and
dynamic programming is presented for the first time.

The remainder of this paper is organized as follows. Section 2
illustrates the system structure and model of the vehicle, and
Section 3 describes the vehicle PCM. The verification and
discussion are presented in Section 4, and conclusions are
presented in Section 5.

II. SYSTEM STRUCTURE AND MODEL
A. VEHICLE SYSTEM STRUCTURE
The power system of the four-wheel pure electric vehicle is
a centralized arrangement of front and rear axle dual motors.
The vehicle system, which includes the battery, front and rear
motors, main reducers I and II, wheel cylinders, and braking
unit are displayed in Figure 1. The battery and the motors
are electrically connected. The motors, main reducers, and
wheels are mechanically connected, and the wheel cylinders
and the braking unit are connected by pipelines.

FIGURE 1. Schematic diagram of the vehicle system structure.

B. VEHICLE MODEL
Because only a longitudinal braking analysis is performed
in this study, the vehicle model is simplified to a left-right
symmetrical model (i.e., the left and right wheel param-
eters are explained using a single wheel as an example).
The established vehicle models include the vehicle dynamics
model, efficiency and dynamic models of the motors, internal
resistance model of the battery, transmission system, tire, and
wheel cylinder models.

1) VEHICLE DYNAMICS MODEL
The vehicle driving equation is important for simulating vehi-
cle driving. According to Newton’s second law, the driving
equation during vehicle braking is established as

Fb + Ff + Fw + Fi = δma (1)

where Fb, Ff , Fw, and Fi denote the vehicle braking force,
rolling, wind, and ramp resistances, respectively. δ denotes
the vehicle rotation mass conversion factor. m denotes the
vehicle curb mass and a denotes the vehicle acceleration.
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The vehicle braking intensity is a key parameter of the
vehicle and is represented by

z = −a/g (2)

where z denotes the braking intensity of the vehicle and g
denotes the acceleration of gravity.

The load on the front and rear axles for a vehicle changes
with modifications in the braking intensity, which is closely
related to the generation of tire force. The corresponding
mathematical model is as follows:{

Fz1 = mg(b+ zhg)/L
Fz2 = mg(c− zhg)/L

(3)

where Fz1 and Fz2 denote the front and rear axle loads,
respectively. c and b denote the distance from the center of
gravity to the front and rear axles, respectively. hg denotes
the height of gravity center and L denotes the wheelbase.

2) MOTOR MODEL
The motor is an essential component for the energy recovery
of a four-wheel pure electric vehicle. In this study, the motor
model is divided into motor efficiency and dynamic models.
The front and rear motors efficiency models are displayed
in Figures 2(a) and (b), respectively.

The transfer function and state space methods are com-
monly used for the modeling of motor dynamic character-
istics. The transfer function initial state value is zero; it is
difficult to realize the dynamic simulation of a nonzero initial
state motor. The torque in the actual control process of the
motor is primarily from one torque (nonzero) to another
torque (nonzero). In addition, the state-space method can
easily set the initial state value. Therefore, this study adopts
the state space method to establish the dynamic models of the
motors.

[
·
x1i
·
x2i

]
=

[
0
−a2i

1
−a1i

][
x1i
x2i

]
+

[
0
1

]
ui

yi =
[
b2i b1i

] [ x1i
x2i

]
, i = 1, 2

(4)

where x11, x21, and x12, x22 denote the states of the front
and rear motors, respectively. ẋ11, ẋ21 and ẋ12, ẋ22 denote
the differentials of the states for the front and rear motors,
respectively. u1 and u2 denote the input and y1 and y2 denote
the outputs of the front and rear motors, respectively. a11,
a21, b11, b21, a12, a22, b12, b22 are constants and reflect the
dynamic characteristics of the front and rear motors. Note
that these parameters can be obtained through the transfer
function. x1i and yi represent motor output torques.
The power delivered by the motor to the battery in the

process of braking is
Pb = Pb1 + Pb2
Pb1 = Tp1np1ηm1/9550
Pb2 = Tp2np2ηm2/9550

(5)

FIGURE 2. Motor efficiency models.

where Pb denotes the power transferred from the motor to
the battery during braking. Pb1 and Pb2 denote the power,
Tp1 and Tp2 denote the actual braking torque, np1 and np2
denote the speed, and ηm1 and ηm2 denote the braking effi-
ciency of the front and rear motors, respectively.

3) TRANSMISSION SYSTEM MODEL
The transmission system of the vehicle is important for vehi-
cle torque transmission. The relationship between the torque
and rotation speed of the motor and wheel ends is{

Tpj = 2ηjTmdj/ij
npj = wjij/(2π ), j = 1, 2

(6)

where η1 and η2 denote the transmission system efficiency
of the front and rear axles, respectively. i1 and i2 denote the
transmission ratio of main reducers I and II, respectively. w1
andw2 denote the angular speeds of the front and rear wheels,
respectively. Tmd1 and Tmd2 denote the braking torque gener-
ated by the front motor at the front wheel end and the rear
motor at the rear wheel end, respectively.
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4) BATTERY MODEL
The battery model adopts the common internal resistance
model, as indicated in Figure 3. In this model, the battery is
simplified into a system composed of a voltage source and
internal resistance. According to Kirchhoff’s voltage law,

E = U + Ir (7)

FIGURE 3. Battery internal resistance model.

where E is the battery open circuit voltage, U is the charging
voltage, I is the charging current, and r is the battery charging
internal resistance

The amount of battery energy recovery is an evaluation
index to measure the effect of braking control. It is |Pb| = |EI | + I

2r

Q = −
∫
|EI |dt

(8)

where Q denotes the energy recovery of the battery.

5) WHEEL CYLINDER MODEL
The wheel cylinder is directly related to the generation of
mechanical braking force. The relationship between the front
and rear wheel hydraulic braking torques and wheel cylinder
pressure can be obtained using{

Tphf = ppw1πD2
f Rf Kf /4

Tphr = ppw2πD2
rRrKr/4

(9)

where Tphf and Tphr denote the actual hydraulic brak-
ing torques of the front and rear wheels, respectively,
ppw1 and ppw2 denote the actual pressures of the front and
rear wheel cylinders, respectively, Kf and Kr denote the
braking factors of the front and rear axle brakes, respectively,
Df and Dr denote the wheel cylinder diameters of the front
and rear wheels, respectively. Rf and Rr denote the effective
radius of the front and rear wheel brake discs, respectively.

To more accurately reflect the dynamic characteristics of
the hydraulic braking system, the wheel cylinder model is
regarded as a first-order inertial link [32], and the dynamic

characteristics can be described using the state space method
as {

·
xki = akixki + uki
yki = bkixki, i = 1, 2

(10)

where xk1 and xk2 denote the states, ẋk1 and ẋk2 denote the
differential states, uk1 and uk2 denote the inputs, and yk1 and
yk2 denote the outputs of the front and rear wheel cylinders,
respectively. ak1, bk1, ak2, and bk2 are constants related to
the dynamic characteristics of each wheel cylinder. Note
that these parameters can be obtained through the transfer
function and that xki and yki represent wheel cylinder braking
torques.

6) TIRE MODEL
The tire model in this study includes the wheel dynamics
model and magic model.

In the process of vehicle braking, the wheel dynamics
model is described by

jwiẇi = Tdi − 0.5uxiFziRt − 0.5FzifRt , i = 1, 2 (11)

where jw1 and jw2 denote the inertia, Td1 and Td2 denote the
braking torque, and ux1 and ux2 denote the adhesion coeffi-
cients of the front and rear wheels, respectively.Rt denotes the
wheel radius. The four wheels of the vehicle have the same
radius. ẇ1 and ẇ2 denote the angular acceleration of the front
and rear wheels, respectively. f denotes the rolling resistance
coefficient. i is equal to ‘‘1’’ or ‘‘2’’, representing the front or
rear wheel, respectively.

As the magic tire model is a semi-empirical model that can
reflect the interaction with the road surface, it is suitable for
the dynamic simulation panel of the vehicle [33] and was
adopted in this study. Using a single tire as an example, its
form is

Y (x) = Dsin(Carctan(Bs− E(Bs− arctan(Bs)))) (12)

where Y (x) denotes the output variable: longitudinal force,
and s denotes the slip ratio. B, C , D, and E refer to the
stiffness, shape, peak, and curvature factors, respectively.

The slip rate is an important parameter of the tire model;
its expression is

si = (vx − wiRt )/vx , i = 1, 2 (13)

where s1 and s2 denote the front and rear wheel slip rates,
respectively, and vx denotes the vehicle velocity.

The motor and hydraulic braking torques are coupled at the
wheel. The coupling model is{

Td1 = Tphf + Tmd1
Td2 = Tphr + Tmd2

(14)

The schematic diagram of the vehicle simulation model is
displayed in Figure 4. The simulation model includes six
parts: the wheel cylinder, motor, transmission system, battery,
vehicle dynamics, and tire models. The red dotted enclosure
represents the predictive vehicle model (the first four parts).
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FIGURE 4. Schematic diagram of the vehicle simulation model.

Tm1 and Tm2 are the required torques of the front and rear
motors, respectively. pw1 and pw2 are the wheel required
cylinder pressures of the front and rear wheels, respectively.
Y (x)1 and Y (x)2 are the longitudinal forces generated by the
front and rear wheels, respectively. The motor model and
wheel cylinder model accept commands (pw1, pw2Tm1,Tm2),
generate braking torques (Tp1,Tp2) and wheel cylinder pres-
sures (Tphf ,Tphr ), and transfer the relevant parameters to the
transmission systemmodel (Tp1, np1,Tp2, np2), batterymodel
(Pb1,Pb2), and tire model (Tphf ,Tphr , Tmd1,Tmd2). The tire
model also accepts the parameters (vx , Fz1, Fz2) from the
vehicle dynamics model and transmits the longitudinal force
(Y (x)1,Y (x)2) to the vehicle dynamics model.

III. PCM DESIGN
Performing data prediction based on the historical data of a
vehicle to provide data support for its operation is essential
to improve the efficient energy recovery during the brak-
ing process of the vehicle. In this study, the adaptive cubic
exponential prediction is used to predict the key parameters
of the vehicle operation. Based on the dynamic program-
ming, the braking torques and wheel cylinder pressures are
optimized under the constraints of ECE braking regulations,
vehicle constraints, and motor maximum braking torque to
achieve efficient energy recovery. As the adaptive cubic expo-
nential prediction has a better prediction effect on gradual
data, the prediction of sudden change data is not ideal. There-
fore, this study is suitable for gradual braking intensity condi-
tions. Note that the PCM in this study is employed when the
battery state of charge (SOC) does not exceed the specified
upper limit.

A. ADAPTIVE CUBIC EXPONENTIAL PREDICTION
The adaptive cubic exponential prediction optimizes the
smoothing coefficient based on the cubic exponential
smoothing method, obtains the prediction data model with
the smallest error, and predicts the future data [34], which has
an acceptable prediction effect on time-varying and nonlinear
data. The ability of the cubic exponential smoothing method

to adapt to time-varying data is not sufficient. However,
the adaptive cubic exponential prediction method overcomes
this shortcoming, thus, it was selected. Themodel of the cubic
exponential smoothing is

S(1)k,t = λkXk,t + (1− λk )S
(1)
k,t−1

S(2)k,t = λkS
(1)
k,t + (1− λk )S

(2)
k,t−1

S(3)k,t = λkS
(2)
k,t + (1− λk )S

(3)
k,t−1

(15)

where t = 2, 3, 4, . . . . S(1)k,t , S
(2)
k,t , and S

(3)
k,t are the first, second,

and third exponential smoothing values of the k-th prediction
t period data, respectively. Xk,t is the k-th prediction t period
of the actual data. λk is the k-th prediction smoothing coeffi-
cient (0 < λk < 1).

To forecast future data, let T be the number of periods
predicted forward from time t , and let ak,t , bk,t , and ck,t be
the prediction coefficients of the k-th prediction

ak,t = 3S(1)k,t − 3S(2)k,t + S
(3)
k,t

bk,t = λ((6− 5λ)S(1)k,t − (10− 8λ)S(2)k,t

+(4− 3λ)S(3)k,t )/(2(1− λ)
2)

ck,t = λ2(S
(1)
k,t − 2S(2)k,t + S

(3)
k,t )/(1− λ)

2

(16)

The t + T period predicted value of the k-th is

Yk,t+T = ak,t + bk,tT + ck,tT 2 (17)

where T is the prediction step, that is, the interval between
the target prediction period and current period. T = 1,2,3. . . .
Yk,t+T is the t + T period predicted value of the k-th
prediction.

The prediction accuracy is the basis for evaluating the
quality of the prediction. This study adopts the sum of squared
errors as the basis for evaluation.

ff = min
N∑
i=4

(Yk,i − Xk,i)2 (18)

where ff represents the sum of the squared errors. Yk,i rep-
resents the i-th data prediction value of the k-th prediction.
Xk,i represents the i-th data actual value of the k-th prediction.
N is the number of data samples.
The adaptive cubic exponential prediction refers to the

optimization of the smoothing coefficients using the car-
pet traversal search algorithm to obtain dynamic smoothing
coefficients

εk,t =
_

λk/(1− (1−
_

λk )t ) (19)

where εk,t is a function of time t , which represents the
dynamic smoothing coefficient at the k-th prediction.

_

λk is the
smoothing coefficient after the k-th prediction optimization.

The prediction flow chart of the adaptive cubic exponen-
tial prediction is displayed in Figure 5. This prediction first
collects the historical data (braking intensity zk and vehicle
velocity vxk ) derived from the vehicle simulation model. The
carpet traversal searchmethod is used to optimize the smooth-
ing coefficient of the cubic exponential smoothing with the
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FIGURE 5. Prediction flow chart of adaptive cubic exponential prediction.

smallest square error as the goal (refer to [34] for details).
The dynamic smoothing coefficient is updated according to
Equation (19). Subsequently, the one-step prediction data
(braking intensity zk+1 and vehicle velocity vx(k+1)) are out-
put, followed by data collection for the next data prediction.
For adaptive cubic exponential prediction, one-step predic-
tion results are the most accurate [34], thus they are adopted.
In this study, the data predicted by the adaptive cubic expo-
nential prediction and current data are combined into vectors
([zkvxk ; zk+1 vx(k+1)]) to provide parameters for the dynamic
programming.

B. DYNAMIC PROGRAMMING
The dynamic programming is suitable for linear and nonlin-
ear systems, and adopted to obtain the optimal motor braking
torques and wheel cylinder pressures for the vehicle control.

The dynamic programming must determine parameters
such as decision variables, state variables, and index func-
tions. The required braking torques of the front and rear
motors and the required cylinder pressures of the front and
rear wheels are selected as the decision variables, that is,
the decision variables are [Tm1, Tm2, pw1, pw2]T. The decision
variables must respect the legal requirements. The braking
force distribution coefficient is closely related to the decision
variable. The relationship among the braking force distribu-
tion coefficient, front and rear axle braking torques, and total
braking torque is

Tf = pw1πD2
f Rf Kf /2+ Tm1i1/η1

Tr = pw2πD2
rRrKr/2+ Tm2i2/η2

Tt = Tf + Tr
β = Tf /Tt

(20)

where β is the braking force distribution coefficient.
Tf and Tr are the braking torques at the front and rear wheel
ends, respectively, and Tt is the total braking torque provided
by the wheel ends.

The braking torques of the front and rear axles are con-
strained by the maximum braking torque on the ground.{

Tf ≤ µ0mg(b+ zhg)Rt/L
Tr ≤ µ0mg(c− zhg)Rt/L

(21)

FIGURE 6. Schematic diagram of the dynamic programming optimization
process.

where µ0 is the road adhesion coefficient. The right end of
the equation represents the maximum braking torques (wheel
ends) that the ground can provide.

In the process of vehicle braking, the braking force distri-
bution coefficient must respect the requirements of the ECE
regulations.

β ≤ (z+ 0.07)(b+ zhg)/(0.85zL), z ∈ [0.1, 0.61] (22)

β ≥ 1− (z+ 0.05)(c− zhg)/(zL), z ∈ [0.3, 0.45] (23)

β ≥ (b+ zhg)/L, z ∈ [0.15, 0.8] (24)

Equation (22) is the upper limit required by the ECE when
the braking intensity is between 0.1 and 0.6, to prevent
the front axle from distributing an excessive braking force.
Equation (23) is the lower limit required by the ECE when
the braking intensity is between 0.3 and 0.45 to prevent
the rear axle from distributing an excessive braking force.
Equation (24) is the middle limit required by the ECE when
the braking intensity is between 0.15 and 0.8.

In the process of vehicle braking, the motor torques are
also constrained by the vehicle transmission system itself.
If the braking torques are overly large, the vehicle produces an
abnormal noise. The vehicle transmission system constraints
(referred to as the vehicle constraints) are{

|Tm1| i1η1/Rt ≤ γ1δmg
|Tm2| i2η2/Rt ≤ γ2δmg

(25)

where γ1 and γ2 are the maximum proportional coefficients
of the vehicle front and rear axle transmission systems that
do not emit abnormal noise, respectively.

The braking torque of the motor is also constrained by the
motor itself. {

|Tm1| ≤
∣∣Tmf max

∣∣
|Tm2| ≤ |Tmr max|

(26)

where Tmfmax and Tmrmax are the maximum braking torques
of the front and rear motors, respectively.

The selection of the index function in the dynamic pro-
gramming is extremely important for its optimization. The
energy recovery by the battery is selected as the index func-
tion, which can be obtained by combining Equations (5)
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FIGURE 7. Framework of PCM.

and (8):

Q=−
∫ (∣∣Tp1np1ηm1/9550+ Tp2np2ηm2/9550∣∣− I2r)dt

(27)

Front and rear motor efficiencies ηm1 and ηm2, respec-
tively, are related to the speeds (np1 and np2) and torques
(Tp1 and Tp2) of the motors, which can be obtained by con-
sulting the table (motor efficiency maps). The current I can
be obtained by Equation (8).

The selection of the state variables should be combined
with the control object. This study considers the dynamic
characteristics of the front and rear motors and the braking

wheel cylinders. The means of the interferogram call are used
for the simulation test. Therefore, the motor braking torques
and wheel cylinder pressures are used as state variables, that
is, the state variables are [Tm1, Tm2, pw1, pw2]T. Because
the state variables are consistent with the decision variables,
the decision process of the dynamic programming is the state
transition process.

The schematic diagram of the dynamic programming opti-
mization process is shown in Figure 6. This study adopts
two-stage dynamic programming, as one-step forecast of
adaptive cubic exponential prediction is the most accurate.
The [zkvxk ] and [zk+1vx(k+1)] act on the stages I and II,
respectively. The SOC is considered approximately constant
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FIGURE 8. Gradual braking conditions.

FIGURE 9. Braking force distribution coefficients.

throughout the process. Qfn and Qgm represent the index
function values of states Fn and Gm, respectively, which are
obtained by the predictive vehicle model. When min (Qfi +
Qgj) (i = 1,2, . . . n; j = 1,2, . . .m), the stage I optimal decision
variable vector is obtained [Tm1, Tm2, pw1, pw2]T.

C. PCM FRAMEWORK
The PCM integrates adaptive cubic exponential prediction
and dynamic programming. In this study, the operating condi-
tion information is set to the gradient braking intensity, which
is obtained from the driver’s model and simulated via a sine
function [35].

z = abs(sin(t/2))/2 (28)

A framework of the PCM is displayed in Figure 7. The
PCM is indicated by the red dotted line. First, the model is

initialized with the battery SOC, vehicle velocity vxk , braking
intensity zk , front and rear wheel required cylinder pressures
pw1 and pw2, respectively, front and rear motor required
torques Tm1 and Tm2, respectively.

The dynamic programming calls the predictive vehicle
model to optimize Tm1, Tm2, pw1, and pw2 under the constraint
conditions (Equations (21), (22), (23), (24), (25), (26)) to
maximize the battery energy recovery.

Then, the vehicle simulation model outputs vxk . Next, vxk
is evaluated: if it is lower than kk (kk is a constant), the
simulation terminates; otherwise, the vxk is output to the
adaptive cubic exponential prediction. This prediction relies
on vxk and zk to obtain the predicted vectors [zk+1 vx(k+1)],
and then sends them to the dynamic programming for the
next optimal control. This is repeated until vxk becomes lower
than kk. It is important to note that the adaptive cubic expo-
nential prediction must collect information (several sampling
points) before making a prediction. Only the stage I optimiza-
tion is performed in dynamic programming at the first few
sampling points.

IV. SIMULATION VERIFICATION AND DISCUSSION
The effectiveness of vehicle control can be verified via sim-
ulation. This study verifies the PCM using a simulation test.
When the vehicle velocity is low, energy recovery is not per-
formed to protect the motors. The main technical parameters
of the vehicle are listed in Table 1.

TABLE 1. Main technical parameters of the vehicle.

The PCM is compared with the multi-stage braking force
distribution method (MBFDM), commonly used in engi-
neering, and the ideal braking force distribution method
(IBFDM). The initial vehicle velocity was set to 75 km/h,
the battery SOC was set to 70%, and a road with acceptable
conditions was used as the simulated road; the road adhesion
coefficient was 0.82. The gradual braking conditions [35]
change as indicated in Figure 8.
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The braking force distribution coefficients of theMBFDM,
IBFDM, and PCM are displayed in Figure 9. The constraints
for the above methods were the same. In Figure 9, the shaded
area is the feasible region of the braking force distribution
coefficient prescribed by the ECE regulations. The brak-
ing force distribution coefficients of the three methods are
within the feasible range. The blue dotted, pink, and red lines
represent the curve of the braking force distribution coeffi-
cient used by the IBFDM, MBFDM, and PCM, respectively.
Among these, the braking force distribution coefficients of
the IBFDM and MBFDM are only related to the braking
intensity, whereas that of the PCM is zero at the initial stage
of braking, and then changes in the direction of the arrow,
indicating that the braking force distribution coefficient is
related to the braking intensity and also to the vehicle velocity.

The changes in the front and rear motor braking
torques under the three control methods are indicated in
Figures 10(a) and (b), respectively, including a comparison of

FIGURE 10. Braking torque changes of motors.

the required and actual braking torques. PCMD, MBFDMD,
and IBFDMD are the required braking torques and PCDA,
MBFDMA, and IBFDMA are the actual braking torques of
the PCM, MBFDM, and IBFDM, respectively. The braking
torque changes of the three control methods under the same
braking intensity are not exactly the same, and the maximum
braking torque attains the vehicle constraint (refer to the
limit Equation (25) for the transmission system not to emit
an abnormal noise). The enlarged sections indicate that the
actual braking torques of the front and rear motors are not
exactly the same as the required braking torques. However,
they are consistent with the required braking torques at the
end of the control duration. The braking torque is higher
than zero owing to overshoot during the torque change of the
motor.

The changes in the front and rear wheel cylinder pres-
sures under the three control methods are presented in
Figures 11(a) and (b), respectively, including also a

FIGURE 11. Wheel cylinder pressure changes of front and rear wheels.

1402 VOLUME 9, 2021



J. Zhang et al.: Regenerative Braking Control Method Based on Predictive Optimization

comparison of the required and actual wheel cylinder pres-
sures. PCMDp, MBFDMDp, and IBFDMDp are the wheel
required cylinder pressures and PCMAp, MBFDMAp and
IBFDMAp are the actual wheel cylinder pressures of the
PCM, MBFDM, and IBFDM, respectively. The wheel cylin-
der pressure changes of the three control methods under the
same braking intensity are not exactly the same. From the
enlarged section in Figure 11, we can observe that the actual
and required wheel cylinder pressures are not completely
consistent. However, at the end of the control duration, they
are consistent with each other.

The changes in the battery SOC of the three control meth-
ods are displayed in Figure 12. The SOC started to increase
from 70%. The final SOC of the PCM,MBFDM, and IBFDM
were 70.104%, 70.095%, and 70.102%, respectively. The
SOC under the PCM increased the most.

FIGURE 12. Battery SOC changes.

FIGURE 13. Vehicle velocity changes.

The changes in vehicle velocity are displayed in Figure 13.
Combining Figure 10 we can see that when the vehicle
velocity is low, the motors are off.

The vehicle energy flow is displayed in Figure 14. The
braking energy is converted into four parts of energy, which
are wind resistance loss, rolling resistance loss, ramp resis-
tance loss, and recoverable energy. Recoverable energy (red
dotted part) is stored from the wheel through the reducers to
the motors and even to the battery, but the battery is the key
to improving energy conversion efficiency. During the energy
conversion process, energy loss occurs at the wheels, main
reducers I and II, front and rear motors, and battery.

FIGURE 14. Vehicle energy flow.

The effective energy of the components, shown in
Figure 15, refers to the energy flowing out of the component
or the energy stored. It can be seen from Figure 15 that under
different control methods, the energy stored by the battery

FIGURE 15. Effective energy of component.
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is different. The recovered energies via PCM, IBFDM, and
MBFDM during the entire braking process were 281.63 kJ,
275.25 kJ, and 255.25 kJ, respectively. When compared with
the IBFDM and MBFDM, PCM increased energy recovery
efficiency by 1.55% and 6.40%, respectively.

The changes in the front and rear motor braking effi-
ciencies under the three control methods are indicated in
Figures 16(a) and (b), respectively. Among the three control
methods, the front and rear motor efficiency of PCM is not
always the most efficient. At the initial stage of braking,
the front motor under PCM and rear motor under MBFDM
are not working (when efficiency is equal to zero, it means
that the motor is off). The enlarged sections show that
the motor efficiencies are different under different control
methods.

FIGURE 16. Changes in motor efficiency.

The battery efficiency change, shown in Figure 17,
indicates that, among the three control methods, battery

FIGURE 17. Changes in battery efficiency.

efficiency of PCM is the smallest, and the MBFDM, which
recovers the least energy, has the highest battery efficiency
for a long time. Combining Figures 16 and 17, we can see
that it is difficult to achieve maximum energy conversion
efficiency for dual-motor-driven vehicles simply by aiming
for maximum efficiency of a single component.

Figure 18 shows the changes in the total efficiency of the
vehicle (which includes the efficiency of the motors, battery,
and transmission system) under the three control methods.
The total efficiency of the vehicle under PCM is the largest,
whereas that under MBFDM is the smallest for a long-term
in the entire braking process. This indicates the superiority of
PCM.

FIGURE 18. Changes in total efficiency.

In summary, simulations of the three control methods were
conducted under a gradual braking condition, and the changes
in braking force distribution coefficients are displayed
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in Figure 9. The changes in the front and rear motor torques,
presented in Figures 10(a) and (b), respectively, indicate that
the actual braking torques of the front and rear motors are
not exactly the same as the required braking torques. The
pressure changes of the front and rear wheel cylinders under
the three methods, presented in Figures 11(a) and (b), respec-
tively, indicate that there is no hydraulic pressure on the rear
wheels to participate at the early stage of braking. As seen
in Figure 12, the SOC under the PCM increased the most. The
changes in vehicle velocity are displayed in Figure 13. The
vehicle energy flow and effective energy of the components,
displayed in Figures 14 and 15, respectively, indicate that
the PCM provides a higher energy recovery. The changes
in the front and rear motor braking efficiencies, displayed
in Figures 16(a) and (b), respectively, indicate that the front
and rear motor efficiencies of PCM are not always the best.
The changes in battery and total vehicle efficiencies, shown
in Figures 17 and 18, respectively, indicate that the total
efficiency of the vehicle under PCM is the largest in the entire
braking process.

V. CONCLUSION
Energy recovery is a key technology to improve the driv-
ing range of pure electric vehicles. To improve the energy
recovery efficiency during vehicle braking, the vehicle lon-
gitudinal control method under regular braking conditions
is studied, and a PCM based on adaptive cubic exponen-
tial prediction and dynamic programming is proposed. The
predictive optimization framework of PCM is presented for
the first time. The adaptive cubic exponential prediction
uses the historical data of the vehicle, predicts future key
parameters such as vehicle velocity and braking intensity,
and provides parameter support for the dynamic program-
ming. The dynamic programming optimizes the front and
rear motor braking torques, and front and rear wheel cylin-
der pressures to provide control parameters for the vehicle.
To verify the superiority of the proposed method, simulations
were performed under gradual braking conditions. The results
indicated that the energy recovery of the proposed PCM
increased by 1.55% and 6.40%, compared with the IBFDM
and MBFDM, respectively. Moreover, this study provides
new ideas for regenerative braking energy recovery.
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