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ABSTRACT Building the security mechanism for Controller Area Network (CAN) to defend against attack
has drawn substantial attention recently. Fingerprinting ECUs to provide the ability of authentication based
on the physical characteristics can protect the CAN network effectively. The clock skew which is unique
and stable can be exploited to pinpoint the attacker and detect intrusion. However, a common downside
of existing clock-skew-based approaches is that the estimation process can be affected by the message
scheduling or arbitration. In our work, a novel intrusion detection system (IDS) that exploits the inherent
difference in the clock of devices for automotive CAN network is designed. The estimation process of clock
skew in our approach relies only on the time measurement of a single CAN frame. Thus, the disturbance
from the data-link layer can be avoided. Since the performance of our IDS depends heavily on the accuracy
of estimated clock skew, our approach is evaluated on CAN networks with different settings to simulate cases
in which the sampling rate is sufficient or not. The feasibility as well as the limitation of our approach are
presented in our work. The evaluation shows that our IDS can identify the sender and detect attacks with an
average identification rate of more than 99.7%when the sampling rate is sufficient. Besides, the performance
degradation as low sampling accuracy is shown and feasible measures for improvement are also discussed.

INDEX TERMS Attack identification, automotive security, controller area network, intrusion detection.

I. INTRODUCTION
Nowadays, the vehicles are gradually becoming an mobile
computing platform with various external connection chan-
nels. The increasingly number of communication techniques
applied to vehicles, such as Wifi, Bluetooth, 5G, on-board
diagnostics ports and so on, has made the vehicle no longer
a closed unit. However, the internal communication systems
of vehicles fail to adapt to the challenges brought by the
connected vehicles. More and more automotive networks
have been the target of security attack as reported. The
malicious adversaries can manipulate the vehicle’s behaviors
and even control the safety-critical function via intruding the
automotive network.Miller andValasek [1] have successfully
demonstrated how to compromise the internal communica-
tion systems on a production vehicle of Jeep Cherokee and
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make it stop regardless of driver’s input while running on
a highway. This has made an recall of 1.4 million cars by
Chrysler. For the sake of safety and cost, there is no sig-
nificant update of internal communication systems of vehi-
cle so far particularly the CAN network. CAN is still the
most popular communication protocol for in-vehicle network
which bears important role for safety-critical functions such
as power train and transmission. Researchers [2] have eval-
uated the security and explored the vulnerabilities of CAN
bus of a production vehicle. The Tencent Keen Security
Lab [3] has demonstrated that it is feasible to compromise the
Electronic Control Units (ECUs) on the CAN network over
a wireless connection. Once any ECU on the CAN network
has been infiltrated, it is enough for attackers to manipulate
the safety-critical functions [4]. It is very important to design
defense mechanism for CAN to protect vehicles.

CAN is a well-developed communication protocol which
have been proven effective and in use over 30 years.
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Many important topics about CAN such as real-time anal-
ysis [5]–[7] and task scheduling [8] are well studied.
Nowadays, there are much research which focus on the
security concerns of CAN network. The intrinsic shortcom-
ings of CAN protocol, such as lacking of mechanism for
authenticity verifying, low available bandwidth and short
data payload of CAN frames, limit the traditional security
mechanism such as message authentication and encryption
[9]–[11] to be applied on automotive CAN network. Intru-
sion Detection System (IDS) is an popular alternative
[12], [13]. Our work focuses on the IDSs which utilize the
unique difference between physical characteristics in devices
to provide the ability of intrusion detection and attacker iden-
tification. The IDSs of this kind can defend some sophisti-
cated attacks such asmasquerade attack [14] effectively while
another popular IDS called frequency-based IDS [15]–[17]
cannot handle.

Constructing fingerprints for identifying ECUs and detect-
ing attacks based on the differences of signal characteristics
has been successfully demonstrated in [18] firstly. Work done
by Choi et al. [19] measures the voltage level of signal
to design the IDS for automotive CAN network. However,
it is required to measure an predefined bit string located in
the identifier of extended frames which makes the approach
practically difficult for real vehicles. As an optimization,
the signal shape as well as the voltages are combined to
provide more comprehensive characteristics for constructing
fingerprint [20], [21]. In [20], an oscilloscope with sampling
rate of 2.5 GS/s is adopted to collect data.

Besides voltage, the timing of signal is another physical
characteristic which can be exploited for automotive IDS. The
fundamental of approaches [14], [22]–[24] is based on the
fact that the clock skew exists in the clocks of different ECUs
which is unique and stable thus can be exploited as fingerprint
to detect attack and pinpoint the source sender in automo-
tive networks. The clock skew represents the difference in
frequency among different ECUs. Due to lack of built-in
mechanism to synchronize clocks of devices on CAN bus,
the behavior of timing of ECU on the bus depends only on
local clock, which shall result in difference of time of signal
transmitted on the bus. The clock skew can be estimated by
calculating the difference between actual arrival time and
expected value of periodic CAN frames [14], [22]. However,
the actual arrival time of CAN frames can be affected by
scheduling, queuing and arbitration delay [22] which might
result in wrong computed clock skews. As pointed out in [22],
the skews of frames with different period sent by the same
ECU computed by the original approach [14] could be differ-
ent which is incorrect. Besides, the computing process cannot
be applied to aperiodic CAN frames.

To address the limitations discussed above, a novel
approach to estimate the clock skew is proposed. It mea-
sures the duration of CAN frames directly to compute the
skew. The estimation process only relies on the measurement
of single CAN frame, thus it can avoid the impact intro-
duced by message arbitration, queuing or scheduling. The

IDS then extracts statistical features from measurements to
construct the fingerprint for ECUs. Two detection methods,
single-feature detection and multi-features detection respec-
tively, which are responsible for cases with different set-
tings are proposed to pinpoint the transmitter of frames and
detect intrusion in our work. For intrusion detection, dynamic
threshold approach [25] is applied for improving the perfor-
mance. To evaluate our method, four kinds of classification
algorithms are employed to compare with each other. From
our evaluation, it shows that our approach can detect the
attack and identify the sender effectively when the sampling
rate of data collector is enough. Since our approach relies
heavily on the measurement of clock skew which depends
on the sampling rate, the performance of our method might
be degraded with low sampling rate. To compensate for this,
the limitation and feasible measures for improvement are also
discussed in our paper. Our contributions can be summarized
as below:

• An novel IDS based on the clock skew of devices is
proposed to identify the sender and detect intrusion. The
process of clock skew estimation is effective and robust,
which can avoid the disturbance from data-link layer
such as message queuing or arbitration.

• Two detection methods which can be applied to CAN
networks with different settings are proposed in our
work.

• Evaluation on a set of experiments with different settings
have demonstrated the feasibility of our approach.

• The limitation of our approach that the decreased accu-
racy might result in the degradation of performance is
pointed out and evaluated in our work. Related discus-
sion and feasible measures for improvement are also
presented in our work.

The organization of my paper is as follows. Section II
introduces the automotive CAN protocol and related work on
IDS which exploits the signal characteristics. In Section III,
we give an overview of the systemmodel where our approach
can be applied and what kind of adversaries we can defend.
In Section IV, it describes how our IDS is designed and how
it works. In the next Section V, the results of our approach
on sender identification and intrusion detection are evalu-
ated and discussed. Finally, our work is concluded in the
Section VI.

II. BACKGROUND AND RELATED WORK
In this section, the CAN protocol is briefly introduced firstly.
Next, the related work about intrusion detection system based
on the signal characteristics for automotive CAN bus is dis-
cussed.

A. PRIMER ON CAN
1) AUTOMOTIVE CAN BUS
CAN is critical for in-vehicle communication system, par-
ticularly the powertrain system [26]. Nowadays, the CAN
communication system is implemented on every production
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vehicle as required [21]. There are usually several CAN bus
employed in a single vehicle, which can be used for different
function such as powertrain, body control and infotainment.
The bit rates of different CAN bus can be customized (typical
settings such as 500 kbps, 125 kbps or 33 kbps) according to
its function and requirement for data transmission. Multiple
CAN bus can be interconnected via a central node like gate-
way. The internal communication system can be accessed by
a Standardized interface called OBD-II.

2) CAN FRAME FORMAT
The CAN bus utilizes two signals, which are CAN high and
CAN low, to generate the differential signal to transmit data.
The logical 1 transmitted on CAN bus is called recessive
bit, while the logic 0 is called dominant bit. Data in CAN is
transmitted in the unit of frames. The format of the CAN data
frame is as follows: SOF (Start of Frame); Arbitration field;
Control; Data, in which the payload can only be 1 to 8 bytes;
CRC (Cyclic Redundancy Check), ACK (Acknowledgement)
and EOF (End of Frame), which is depicted in Figure 1. The
identifier is included in the arbitration field of data frame.
There are two kinds of data frame according to the length of
identifier. The standard frames is equipped with a identifier
of 11-bit, while the extended frames are with a identifier
of 29-bit.

FIGURE 1. CAN data frame format [23].

3) MESSAGE-ORIENTED PROTOCOL AND BROADCAST
NATURE
In the CAN protocol, the frames do not carry any informa-
tion about which ECU the frame is come from or sent to.
Besides, there is no any mechanisms provided in CAN to
verify the authenticity of CAN frames. As CAN is broadcast
protocol, the frames sent from one node can be received by
all nodes on the bus. The receiver decides whether to further
process the received frame or not by checking the identifier
only.

4) IDENTIFIER ASSIGNMENTS
The identifier of CAN frame indicates the priority of CAN
frame, which is responsible for arbitration process. The lower
the value of identifier is, the higher priority the frame is.
To eliminate potential error and ambiguity, the identifier is
required to be unique which can only be allocated to one and
only one ECU on a single CAN bus [26]. Each ECU can be
assigned with a set of identifiers and the ECU is regarded
as the legitimate sender of these identifiers. In normal case,
the ECU can only transmit the data with identifiers which
have been assigned to it. The assignment would be finished
during design phase.

5) ARBITRATION AND ACKNOWLEDGEMENT
When multiple ECUs try to publish the data to the bus simul-
taneously, an collision occurs and the arbitration process
called bit-wise arbitration starts. During the arbitration field,
the frame with the minimum value of identifier (i.e. the frame
with the highest priority) shall eventually win the arbitration
and is able to keep transmitting the rest of the data until the
ACK slot. During the ACK slot, all ECUs but the sender
which have correctly received the frame shall transmit a
dominant level simultaneously on the bus to notify the sender
no error detected.

B. RELATED WORK
It is critical to provide security mechanism to protect auto-
motive network from malicious adversaries. By exploiting
the inherent variations of physical characteristics in devices
introduced by imperfect production process to provide the
ability of authentication has been proved effective for such
as PUF (Physical Unclonable Function) [27]–[30] as well as
source identification and intrusion detection for automotive
networks [31].

To our best knowledge, the study [18] is the first work
which exploits the physical characteristics of signal to iden-
tify the sender for automotive CAN bus. It has proved that the
differences of the signal characteristics can be distinguished
among devices and stable for several months which is suitable
for fingerprinting electronic devices. Based on the observa-
tions, a set of researches which utilize the characteristics of
the physical signal in frame bits to construct the intrusion
detection system for automotive CAN bus are proposed. Cho
and Shin [32] uses the minor intrinsic differences of voltage
level of the dominate bits between ECUs for identification
of the attacker. Choi et al. [19] measures the voltage level
of an predefined bit string located in the second part of the
identifier of extended frames to source the sender and detect
intrusion. To improve performance of IDS, it introduces the
machine learning algorithms to determine which ECU the
received CAN frames belong to. The sampling rate used is
up to 2.5 GSPS, and identification rate can reach to 96.48 %.
The approach requires that the predefined bit string shall be
identical and embedded to all monitored CAN frames which
means that the modification on software of all existing ECUs
is needed. Besides, the CAN frames which the identifier B
field is already in use cannot apply this approach. These
shortcomings greatly limit its application on real vehicles. In
order to avoid the burden of modifying the CAN bus protocol
and existing ECUs, studies [20], [21] have optimized the
approach. The shape, as well as the voltage levels of the
signal of dominant bits are taken into consideration together
for detection of attacks. In Scission [21], the signal of CAN
dominate bits are divided into three parts, which are the rising
edge, the falling edge, and the holding edge between the rising
and falling edge, to extract more distinct and unique features
for improving classification performance. Thus, the signal
of any bit sting instead of a predefined and fixed bit string
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can be extracted sufficient features for constructing the fin-
gerprint of ECUs. It should be noted that the measurements
on arbitration field are discarded since the signal during
arbitration field might be the expression of combination with
outputs of multiple ECUs. For further improvement, another
voltage-based IDS SIMPLE [33] is proposed to mitigate the
impact of environmental conditions such as supply voltage
and temperature on fingerprint generation by compensating
the drifts of extracted features.

In addition to voltage-based IDS, the timing of signal is
another characteristics which can be exploited to construct
fingerprint for ECUs. The work done by Yang et al. [34]
employs more comprehensive physical characteristics of sig-
nal including both voltage and time. It provides a system
ensembled with two kinds of classifier and a total of six clas-
sification algorithms to construct stable detector for attacks.
However, it makes the system too complicated and increases
the computational overhead. The CIDS which exploits the
clock skew of electronic devices to fingerprint ECU is pro-
posed in reference [14]. The clock skew is estimated by
measuring the difference between expected and actual arrival
time of consecutive periodic CAN frames. Ji et al. [35]
evaluate the performance of clock skew-based detection
method compared with information entropy detection algo-
rithm. However, the estimation process of clock skew as
discussed above can be easily compromised by modifying
the transmission of frames as demonstrated in [24]. Besides,
Kulandaivel et al. [22] point out that the calculation pro-
cess of clock skew proposed in [14] can be affected by the
period of CAN frames. It might result in incorrect estimated
clock skews and therefore cannot identify the sender cor-
rectly either. To mitigate the limitation that the estimation
process is period-dependent, another time-based IDS called
BTMonitor [23] is proposed. The BTMonitor measures the
bit time of dominant bits and recessive bits separately and
extracts the statistical features to generate the fingerprint of
ECUs. The measurements are taken for every single CAN
frame. Thus, the BTMonitor can be applied to both periodic
and aperiodic CAN frames, while the modification on arrival
time of transmitted frame does not affect its performance.
Same as voltage-based IDS [20], [21], the measurements
on arbitration field are excluded. Similarly, our approach
estimate the clock skew based on the measurements from
single CAN frame which can overcome the shortcomings
of CIDS [14]. Compared with BTMonitor, the process of
data collection in our approach is improved which can gen-
erate less data and facilitate the deployment on automotive
network.

III. SECURITY AND THREAT MODELS
This section provides a description of security and
threat models considered by our system. The sys-
tem model is introduced firstly followed by adversary
model to explain which scenarios our system can be
applied.

A. SYSTEM MODEL
The deployment of our system on existing automotive net-
work is non-destructive. The fingerprint used by our IDS
is constructed from the physical characteristics of signal
directly. The connection to CAN bus wires is required for
our system. Beyond that, any modification on CAN protocol
or existing ECUs’ software and hardware is unnecessary for
deploying our system on the network, which can significantly
reduce the effort for deployment and is critical for application
on real vehicles. Thus, our IDS can be added to the monitored
CAN network as an additional device, as well as a part
integrated into other node such as gateway.

The structure of today’s automotive network varies
between different manufactures and models. For some car
models, the automotive network is more complex which con-
sists of several sub-networks. Each sub-network is usually
responsible for different functions, such as powertrain, body
control or multimedia, and is possibly connected with oth-
ers via gateway. Since the fingerprint of ECUs is extracted
by analyzing the electrical signal directly, the frames sent
from ECUs on another sub-network are indistinguishable and
regarded as transmitted by gateway node from the perspective
of our system in one sub-network. In this case, our IDS can
either be included into the central gateway which can monitor
multiple sub-networks simultaneously, or be added to each
sub-network that needs to be monitored as an additional
node. It is assumed that our system is enhanced by security
mechanism from being compromised by adversaries.

B. ADVERSARY MODEL
Any kinds of attack launched by malicious CAN frames that
are NOT from their legitimate sender can be defended against
by our system. That is, from the perspective of our IDS,
if the actual sender of the transmitted CAN frames on the
bus is inconsistent with its legitimate sender, an intrusion is
reported. The actual sender can be predicted by our system,
and the legitimate sender can be derived by its identifier.
These kinds of attack are collectively referred as imperson-
ation attack. The adversary model can be seen in Fig. 2. The

FIGURE 2. Adversary model.
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adversary is assumed to be smart that can learn the patterns of
network traffic such as timing or voltage to impersonate the
victim ECU more accurately. Some state-of-the-art attacks
on automotive network such as masquerade attack [14] and
cloaking attack [24], [36] can be classified as impersonation
attack.

The adversary tries to disguise its identity and impersonate
the targeted ECU to manipulate the behavior of vehicle. The
impersonation attack can be launched easily after compro-
mising an ECU, while the damage on the automotive network
can be fatal. The reasons are explained as follows. The identi-
fiers of CAN frames are pre-assigned to corresponding ECUs
during the design phase. It is required that one identifier can
only be assigned to one and only one ECU (i.e. the legitimate
sender) [26] to eliminate potential conflict and ambiguity
during communication process. Hence, our system have the
knowledge of which ECU is allowed to transmit which iden-
tifiers. Since there is no any mechanisms specified in CAN
to verify the authenticity of CAN frames, the bus participant
cannot determine whether the received frames are from their
legitimate sender. Thus, the adversary can imitate any avail-
able identifiers of CAN frames and launch the impersonation
attack to cause automotive network malfunction after intru-
sion. It has been demonstrated that the infiltration of any ECU
on the monitored CAN network is enough for the attacker to
control the safety-critical functions [4].

Another common type of attack on vehicles is frequency-
related attack such as fabrication attack and suspension
attack [14]. The adversary aims to cause malfunction on
vehicles by injecting extra malicious frames or stopping the
transmission of existing frames, by which the frequency of
transmitted frames shall be influenced. The frequency-related
attack can be detected effectively by existing approaches
[14]–[17] considering the frequency of frames under attack
shall deviate from their expected behaviors significantly. The
DoS Attack on automotive network as discussed in [37],
which dominate the CAN bus and paralyze normal commu-
nication by injecting a large number of frames with higher
priority (smaller identifier), can also be detected easily by
monitoring the network traffic. Thus, these kinds of attack
are out of the scope of our system.

IV. OUR METHOD
This section describes how our method works.

A. OVERVIEW OF OUR METHOD
In automotive networks, all ECUs are equipped with clocks
which consist of a electronic oscillators that runs at a nominal
frequency. Due to the imperfection of manufacturing process,
subtle deviations from the actual frequency to nominal fre-
quency exists in electronic oscillators, called clock skew. It
has been demonstrated that the clock skew can be utilized
as fingerprint for identifying automotive ECUs in previous
work [14], [22]–[24]. Due to the absence of global clock in
CAN protocol, the CAN frame timing is determined only by
the the local clock. Thus, the timing of CAN frames will

inherit the clock skew of the transmitter node. Our basic idea
is to estimate the clock skew from the CAN frame timing and
design our IDS for attack detection and sender identification
based on the estimated skews.

A clock-skew-based source identification and intrusion
detection method is proposed. More specifically, the clock
skew of sender ECU is computed by comparing the single
CAN frame’s actual length with its nominal length. The
nominal length is the product of the nominal bit time and
the number of bits. And the actual length is measured from
the electrical signal of single CAN frame. Compared with
previous clock-skew-based work [14], [22], our approach
for clock skew estimation is more straightforward, effective
and robust by which the disturbance introduced by message
scheduling, queuing and arbitration process can be avoided.

A solution consisting of two detection methods is pro-
vided to deal with different situations. They are single-feature
detection and multi-features detection respectively. Only one
detection method is required during running process. Our
system selects an appropriate detection method according
to its performance on training datasets and other metrics
(such as computing overhead and response time). During the
selection process, the single-feature detection is first eval-
uated. If the detector cannot discriminating different ECUs
well due to insufficient sampling rate of ADC or noise like
CAN bit jitter [38], the multi-features detection is picked as
the detection method for the monitored network. Since our
method is based on the physical characteristics of clocks in
devices, the selection process can be done as long as the setup
of the network to be monitored is ready. The overall process
of our method can be seen in Algorithm 1.

Algorithm 1 Overall Process of Our Method
1: for i = msg1,msg2,msg3 . . . do F Data Collection
2: Clock Skew Estimation
3: end for
4:

5: Call Single-feature Detection F Selection Process
6: if Detection Accuracy >= Threshold then
7: Select Single-feature Detection
8: else
9: Select Multi-features Detection
10: end if

B. CLOCK SKEW ESTIMATION
This section describes the details of estimation process of
clock skew based on single CAN frame. Related concepts is
introduced firstly.

Clock Related Concepts Two clocks C1 and C2 are dis-
cussed as an example.
• Clock Offset: The difference in time between clocks,
i.e., C1(t) − C2(t) is the clock offset of clock C1 to C2
at time t .

• Clock Frequency: It indicates the speed at which the
clock runs, which is denoted by C′1(t) for C1 at time t .
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• Clock Skew: Similar to clock offset, it is the difference
in frequency between clocks, i.e., C′1(t) − C′2(t) is the
skew of clock C1 relative to C2 at time t .

Bit Timing Related Concepts

• Nominal Bit Rate (NBR): The bit rate is to indicate the
speed of CAN. The NBR is the number of bits sent by
an ideal node in one true second. The bit rate is required
to be uniform and fixed a one given CAN bus.

• Nominal Bit Time (NBT): The ideal duration for one
bit, defined as the reciprocal of NBR. That is, NBT =
1/NBR.

Primer on CAN Transceiver To participate in a CAN
network, an ECU is required to be equipped with a CAN
protocol controller and a CAN transceiver, as shown in Fig. 3.
The CAN controller implements the functions prescribed by
the CAN specification. It can work as a standalone device or
be integrated into the micro-controller. The CAN transceiver
(transceiver stands for transmit and receive) works as an
interface between the CAN protocol controller and the bus
line and converts the logical level of the CAN controller to
electrical representation of the bus [26].

FIGURE 3. Architecture of CAN bus.

1) HIGH-LEVEL IDEA
Due to the effect of hardware characteristics in ECUs such as
skew in clock, CANbit jitter [38] or noise in CAN transceiver,
the actual bit time shall deviate from the nominal bit time.
Since there is no global clock in CAN network, the actual
bit time will inherit the physical characteristics of transmitter
node.

The difference between the measured time and true time
shall be increased linearly over time since the clock skew is
constant. Thereby, the slope of the increase of time difference
is the skew of clock. Due to lack of the built-in mechanism
for synchronizing the clock, the time duration of CAN frames
sent from different ECUs might be different [23]. Based on
this, our IDS measures the length of electrical signal of CAN
frames and compare the measured length with nominal length
(defined as the product of NBT and the number of bits) of
CAN frames to estimate the clock skew of the sender ECU.
The derived clock skew is then utilized to fingerprint the
ECU. It should be noted that our measurement is based on
the differential signal (the difference between CAN high and

FIGURE 4. Timing diagram of TXD of CAN transceiver.

CAN low) which can resist electromagnetic interference and
provide a more stable and accurate electrical signal.

2) PROCESS OF CLOCK SKEW ESTIMATION
The process of clock skew estimation is as follows. Our IDS
first measures the length for one received CAN frame. There
are two adjustments in our measurement instead of measuring
the whole CAN frame: (i) Our measurement starts from one
rising edge and ends at another rising edge instead of from
rising edge to falling edge. (ii) The ACK field is excluded
from ourmeasurement. That is, ourmeasurement begins from
the rising edge of Start-of-frame (SOF) field and ends at the
last but one rising edge of one complete frame, as shown
in Fig.5.

FIGURE 5. An example of the measured length of received frame.

The first adjustment is to ensure more stable and accurate
measurement on electrical signal. More specifically, the tim-
ing diagram of transmit data (TXD) for CAN transceiver can
be seen in Fig.4. It can be seen that the output of electrical sig-
nal by CAN transceiver shall reflect the timing characteristics
of high-level hardware. The td(TXD−BUSon) and td(TXD−BUSoff )
refer to delay TXD to bus active and inactive respectively.
These two values are not necessarily equal and the differ-
ence between them varies on different transceivers. Thus,
the measurement of time elapsed in our method is between
two rising edges of CAN electrical signal to minimum the
effect of these delays. The start and end point of rising edge
in our measurement are set as 0.9 V.

The second adjustment is necessary due to the acknowl-
edgement mechanism prescribed by CAN protocol. As dis-
cussed in Section II-A, during the ACK slot, the bus is driven
by all nodes except the transmitter which have correctly
received the frame. Hence, the measurements should exclude
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the ACK filed since it does not represent the signal character-
istics of the transmitter.

Meanwhile, the number of bits during the duration is
counted based on the nominal bit rate of CAN bus. Thus,
the nominal length of the received frame is computed as
the product of nominal bit time and number of bits. Then,
our IDS calculates the difference by subtracting the actual
length of the received CAN frame from the nominal length.
The estimated clock skew by our method is the ratio of
the difference to the measured length (actual length) of the
received CAN frame. The estimation of clock skew can be
expressed as:

Skew =
NBT ∗ n− S

S
In the equation, NBT , S and n refer to Nominal Bit Time,

the measured length and the corresponding number of bits
respectively.

C. FEATURE EXTRACTION
Firstly, the clock skew for every single received CAN frame
is computed. Then, every N calculated results (i.e. clock
skews) with same identifier are grouped together as one data
sample for further detection. There are two detectionmethods
proposed in our work. They are single-feature detection and
multi-features detection which can be applied on different
situations. The main difference between these two detection
methods is the feature extraction, while the general process
of them is similar. The details of feature extraction of these
two detection methods are as follows.

1) SINGLE-FEATURE DETECTION
Here only ONE feature, expected value of data sample,
is used to construct our intrusion detection system for the
automotive network. When the sampling accuracy of ADC
is high enough, the clock skew can be estimated accurately
and precisely within length of single CAN frame. In this case,
our IDS can distinguish which ECU the received CAN frame
comes from by only the estimated clock skew. The expected
value is taken to reduce the influence of measurement devia-
tion or noise (such as CAN bit jitter [38]).

2) MULTI-FEATURES DETECTION
The performance of our method can be affected by the sam-
pling rate of ADC and relative clock skew between ECUs.
The single-feature detection can work well when the sam-
pling rate of ADC is enough to tell the minimum difference
of average clock skew between ECUs. The Multi-features
detection is called if the detection accuracy of single-feature
detection is less than the preset threshold. More features are
extracted from calculated clock skews of data sample as fin-
gerprint to represent the sender ECU in multi-features detec-
tion. Multiple features can provide more details of sender
ECU than single feature. That is, multiple features usually
can characterize sender ECUs better. To construct finger-
print for electronic devices based on the statistical features

has been proved effective in previous work [19]–[21], [23],
[25]. Besides, comparing to previous work [19]–[21] which
exploits features on both time and frequency domain, our
approach only adopts the features in the time domain and
avoids the complexity of frequency domain transformations.
For every newly received data sample, the required features
are extracted firstly. The selected features which used to con-
struct ECU fingerprint and generate the classification model
are shown in table 1.

TABLE 1. Selected features in time domain for constructing the
fingerprint. x represents the estimated clock skew. N indicates the
number of the data.

D. SENDER IDENTIFICATION
The problem of sender identification, as well as intrusion
detection, can be regarded as a classification problem, where
frames sent from one node on the CANnetwork can be seen as
from one class. Any CAN frames sent by the same ECU shall
be considered as from the same class since they inherit the
clock skew and variations of the same sender. It is a multino-
mial classification problem since the number of nodes in an
automotive network is usually more than two. In our work,
any received frame that its actual sender is inconsistent with
its legitimate sender (derived from its identifier) is considered
as malicious message, marked as intrusion.

Our IDS uses the supervised learning algorithm to generate
the classification model and classify the newly received data
to distinguish which ECU the received CAN frame belongs
to. There are two phases in this step. In the training phase,
the training data with label which indicates the sender ECU
is fed into the classifier to generate the classification model
firstly. Then the classifier predicts which ECU it comes from
for every newly received data sample during the testing phase.
The predicted ECU is considered as the actual sender of the
received data sample by our system. Specifically, in the test-
ing phase, the classifier first predicts an array of probabilities
that indicates how likely the received data sample belongs
to for every single class. Then the ECU with the highest
probability is selected as the sender for the received data
sample. It is important to make sure that the training process
is done under a trustworthy environment, such as during pro-
duction or in authorized workshop. Otherwise, the generated
classificationmodel would be corrupted bymalicious training
data.
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E. INTRUSION DETECTION
If the actual sender (i.e. the predicted label) of CAN frame
is inconsistent with its claimed sender (derived by identi-
fier), an alarm is triggered and the data sample is marked
as intrusion. Instead of selecting the ECU with the highest
probability as the actual sender as usual, an intrusion detec-
tion approach with dynamic thresholds [25] is introduced
in our work to detect intrusion. The process is as follows.
Considering the number of malicious CAN frames is sig-
nificantly lower than the total number of CAN frames in
automotive network, our system employ a lower threshold
Thresmin by which it can reduce the computational over-
head and increase the robustness against the electromagnetic
interference. Our system computes the probability that the
received data sample belongs to the corresponding ECU of
the obtained identifier firstly. If the probability is no less than
the threshold Thresmin, the legitimate ECU of the identifier is
considered as its actual sender (i.e. the received data sample
is considered as normal). Only if the probability is lower
than the threshold Thresmin, our system then computes the
probabilities of the remaining ECUs. By this way, unnec-
essary computation can be avoided thus improve efficiency.
The highest probability of the remaining ECUs is selected to
compare with another threshold Thresmax . If it is greater than
the threshold Thresmax , the data sample is marked as intrusion
and the corresponding ECU of the highest probability is
considered as the source of the malicious CAN frames. If the
highest probability is less than the upper threshold Thresmax ,
the received data sample is marked as suspicious. In our work,
the suspicious messages is regarded as normal messages that
the legitimate sender of the identifier is taken as the actual
sender instead of the predicted sender (i.e. the computed label
with the highest probability). It should be noted that, the fur-
ther investigation and detection method is needed for suspi-
cious CAN frames. The performance of sender identification
and intrusion detection is evaluated in Section V. Several
popular classification algorithms are adopted in our work.
By introducing the dynamic thresholds detection approach,
the false positive (FP, i.e. those normal data samples but
incorrectly marked as intrusion) which is a very important
criteria for deployment on real vehicles can be reduced. Since
as the false positive (FP) decreases, the unnecessary reactions
or alarms of automotive protection system can be avoided
thus improve the overall driving experience.

V. EVALUATION
A CAN bus prototype which consists of six nodes is set up to
evaluate our proposed method. Our experimental settings fix
the sampling rate of the ADC and vary the bit rate of CAN bus
to simulate different situations that our detection methods can
be applied. Three typical kinds of CAN bus bit rate which are
widely used in production vehicles are selected to simulate
situations in which the sampling rate is sufficient or not to
estimate the clock skew directly within length of one CAN
frame. These three selected kinds of CAN bus bit rate are

500 kbps, 125 kbps and 33 kbps, which are served as high
speed, medium speed and low speed CAN bus respectively
in automotive network. In our work, the sampling rate of our
data collector is set as 500 MSPS. From our evaluation, it can
be found that the detection accuracy of our method shall be
affected by the sampling accuracy and relative clock skew
between ECUs. By a series of experiments, the results have
demonstrated that our proposed method can identify ECUs
and detect intrusion well in Controller Area Network. The
evaluation shows the promising prospect of our method for
deployment on real vehicles.

A. EXPERIMENTAL SETTINGS
1) CAN BUS PROTOTYPE
The CAN bus prototype consists of six nodes (ECUs) to
simulate the CAN bus communication. It includes two kinds
of CAN development boards produced by different manufac-
turers. One kind of ECUs is composed by an Arduino UNO
board and a CAN bus module designed by Seeed Studio.
The CAN controller and transceiver of the CAN module
are MCP2515 and MCP2551. The other kind of ECU is
developed by MCU STM32F103VET6 which provides CAN
interfaces itself (function as CAN controller) and TJA1050 as
CAN transceiver. The number of both kinds of ECU is three.
In order to simulate application scenarios which our differ-
ent detection methods can apply, the baud rates of CAN
bus prototype are set as 500 kbps, 125kbps, and 33 kbps
respectively, which are widely adopted in vehicles as high-
speed, medium-speed and low-speed CAN bus. The CAN bus
prototype is shown in Figure 6.

FIGURE 6. CAN Bus prototype.

2) DATA COLLECTOR
In our evaluation, the signals are collected by a PicoScope
5244D at a sampling rate of 500 MS/s and a resolution
of 8 bit. The two signals of CAN bus, CAN high and CAN
low, are recorded by two oscilloscope probes respectively.
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For processing, the two signals are first converted to a dif-
ferential signal. Then the differential signal is fed into the
detector for further processing.

3) CLASSIFICATION ALGORITHM
In our work, we test the performance of four different clas-
sification algorithms which are adopted and proved effective
in previous work [19], [25]. These classification algorithms
we exploited are Support Vector Machine (SVM), Multi-
nomial Logistic Regression (MLR), Naive Bayes (NB) and
Bagged Decision Tree (BDT). We performed the default
implementations of these classification algorithms provided
by MatLab R2017b. For Support Vector Machine, the linear
kernel was adopted as kernel function. For Bagged Decision
Tree, the number of decision trees was set as 30. To evaluate
how well the predictive model trained on particular data set
generalizes to an independent data set, the 10-fold cross vali-
dation test is performed. In 10-fold cross validation, the initial
data set is randomly divided into ten folds equally firstly.
Then, nine of the ten folds are utilized as training data set to
generate the classification model. The remaining one fold is
retained for testing the model as validation data. This process
is repeated ten times so that each fold is taken as validation
data in turn. Finally, the results are combined to produce a
single estimation in our work.

B. SENDER IDENTIFICATION
This section evaluates the ability of our approach for sourc-
ing the sender of CAN frames. For sender identification,
the ECU with the highest predicted probabilities is regarded
as its actual sender. By comparing the predicted sender
with its actual sender based on ground truth, the identifi-
cation rates for each ECU are computed. The results are
shown by confusion matrix. Our work evaluates the ability of
the proposed method for sender identification on low-speed
CAN bus, medium-speed CAN bus and high-speed CAN bus
respectively.

1) LOW-SPEED CAN BUS
The performance of single-feature detection on low-speed
CAN bus is evaluated firstly. The speed of CAN bus is
33 kbps. The confusion matrix for the identification rate of
different classification algorithms is shown in Table 2. The
average, as well as the minimum identification rates of the
six ECUs are shown in the table. The results with different
size N of data sample are also demonstrated. Our system sets
N = 5 and N = 10 here. It can be seen that, the average
identification rates of all four classification algorithms are
always higher than 99.8% when N = 5. All the minimum
identification rates of six ECUs are also higher than 99.7%.
When the size of data sample becomes larger, e.g. N = 10,
the identification rates of Naive Bayes and Bagged Decision
Tree even reach 100 percent during our evaluation. It should
be noted that the 100% identification rate does not mean that
no misclassification can occur. From our evaluation, the per-
formance of single-feature detection on low-speed CAN bus

TABLE 2. Identification rate of single-feature detection on low-speed
CAN [Unit:%].

can reach very high even when the size of data sample N is
small. Thus, multi-features detection here is unnecessary for
low-speed CAN bus.

2) MEDIUM-SPEED CAN BUS
The bit rate of medium-speed CAN bus set in our evaluation
is 125 kbps. The performance of single-feature detection is
evaluated firstly to see if it is effective to identify the sender
on medium-speed CAN. The size of data sample is set as 20
and 50, i.e. N = 20 and N = 50. The results are shown
in Table 3.

TABLE 3. Identification rate of single-feature detection on medium-speed
CAN [Unit:%].

From the observations, there is a significant decrease of
performance on all four classification algorithms. The mini-
mum identification rate of Support Vector Machine (SVM)
when N = 20 drops to 30.84% which means the
single-feature detection on medium-speed CAN bus cannot
source the sender correctly. This is because the bit time
becomes shorter as the bit rate of CAN bus increase, which
makes the length of single CAN frame shorter. The shorter
the length of single CAN frame becomes, the less accurate
the estimated clock skew is. Thus, our system might not
distinguish clock skews from different ECUs by only the
expected value of estimated clock skews since the measure-
ment error dominates the differences between ECUs. Here the
performance of multi-feature detection is evaluated to see if
it can be improved by introducing more features. The results
are demonstrated in Table 4.

Compared with single-feature detection, the performance
of multi-features detection has increased significantly. When
N = 20, the average identification rate of Multinomial
Logistic Regression increased from 83.62% to 96.64%, while
the minimum identification rate increased from less than 50%
to over 92%.WhenN = 50, the accuracy on both average and
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TABLE 4. Identification rate of multi-features detection on
medium-speed CAN [Unit:%].

minimum can get a high precision, which both exceed 99%.
The results of other algorithms similar to this. It means that
more features can provide more details of hardware which
favors the problem of sender identification.

3) HIGH-SPEED CAN BUS
The performance of our method on high-speed CAN is eval-
uated in this section. Only the results of multi-features detec-
tion are shown in Table 5. The size of data sample N is set
as several different values here to see if the performance
can be affected by the size of data sample. That is, N =
{50, 100, 150, 200, 250, 300}. As shown in the results, as the
size of data sample N increases, the performance increases
steadily. When N is larger than 200, the rate of increase on
performance slows down. However, a larger N shall result in
a longer response time of intrusion detection. Thus, the size of
data sample is not the larger the better. It is suggested that the
size of data sampleN on high-speed CAN is set as 200 during
our evaluation to balance the performance and response time
for our system. Besides, it can be seen that the difference in
the identification rates among the selected machine learning
algorithms is not significant. As shown from the results, there
is a performance degradation on high-speed CAN comparing
with results on low-speed andmedium-speed CAN.However,
our approach can still be effective for identifying ECUs in real
vehicles. The reasons are discussed in the following section.

4) DISCUSSION ON RESULTS OF HIGH-SPEED CAN
From the results shown in Section V-B3, the average and
minimum identification rate for SVM is 90.06% and 69%
respectively when N = 200. To further analyze the results
of high-speed CAN, the confusion matrix of multi-features
detection using SVMwhenN = 200 is shown in Table 7. The
confusion matrix describes how many CAN frames from a
certain ECU are correctly or incorrectly classified. For exam-
ple, the number on the first row and first column indicates the
ratio of CAN frames from ECU0 that are identified correctly,
while the number on the first row and third column indicates
the ratio of CAN frames from ECU0 that are misclassified to
ECU2.

It can be seen that, the drop in overall performance is
mainly explained by the ECU0 and ECU2. The CAN frames
from other ECUs excluding ECU0 and ECU2 can still be
well identified with very high probability. From the per-

spective of our intrusion detection system, the difference
between clock skews of ECU0 and ECU2 is indistinguishable
which can be called as birthday paradox [14]. In our work,
the birthday paradox is mainly caused by that the clock
skew and associated statistical features of different ECUs
extracted by our method overlap each other thus the classi-
fier cannot discriminate them. In our evaluation, the ECU0,
ECU2 and ECU4 are identical development boards composed
of Arduino UNO and CAN bus shield (use Arduino for
short below), while the rest of ECUs are the same devices
developed byMCU STM32F103VET6 (use STM32 for short
below). Due to ECU0 and ECU2 are identical in construction,
and their clock skews are near-equivalent to each other, our
method cannot distinguish ECU0 from ECU2 well based on
currently adopted sampling rate. It leads to the performance
degradation. Next, the ways to improve the performance and
deployment on real vehicles are discussed.

1) The performance of our evaluation can be improved by
upgrading the hardware. In ourmethod, the clock skew is esti-
mated by measuring the length of single CAN frame. As the
bit rate of CAN bus increases, the length of single CAN frame
becomes shorter. The accumulated clock offset during single
CAN frame becomes shorter. Thus, higher sampling rate of
ADC is required to tell the minor differences between differ-
ent ECUs for faster CAN bus. From our evaluation, there is
a significant drop in performance of single-feature detection
when the bit rate is increased from low-speed (33 kbps)
to medium-speed (125 kbps), as well as the performance
of multi-features detection from medium-speed (125 kbps)
CAN to high-speed (500 kbps). Hence, the performance of
high-speed CAN bus shall be further improved when using
higher sampling rate, while the performance during our eval-
uation is limited since the maximum sampling rate of our data
collector for two-channel (i.e. CAN high and CAN low) is
500 MSPS.

2) From our observations, the chance for birthday paradox
on vehicular CAN bus from the perspective of our intrusion
detection system is not strong. The clock skews of our six
ECUs by measurements on low-speed CAN bus is shown
in Table 6. On low-speed CAN, the measurements by ADC
are more accurate and precise, thus the estimated clock skew
is closer to the true clock skew. The first row shows the
estimated clock skew in unit of ppm (part per million), while
the second row shows the difference from the skews of former
ECU. The third and fourth row describe the number and
base board used by the ECU. It should be noted that the
data is listed in ascending order of clock skew instead of
from ECU0 to ECU6, by which the minimum difference
between clock skews can be easily targeted. It can be seen that
the difference of clock skews between ECU0 and ECU2 is
around 5.41%. The results are based on the measurements on
low-speed CAN. As the bit rate increases, the length of single
CAN frame reduce. On high-speed CAN, our data collector
cannot get the clock skew precisely. Hence, the estimated
clock skews of ECU0 and ECU2 may overlap each other,
which leads to a significant drop in identification rate as
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TABLE 5. Identification rate of multi-features detection on high-speed CAN [Unit:%].

TABLE 6. Estimated clock Skews of ECUs on Our CAN bus prototype.

FIGURE 7. The clock skews of one CAN prototype and several car model presented in [14] and difference between skews. In the figure, the bars are clock
skews of ECUs presented in ascending order. The value on the polyline represents the difference of skew of current ECU from the skew of the former one.

TABLE 7. Confusion matrix for multi-features detection using SVM when
N = 200 [Unit:%].

shown in Table 7. Besides, it can be noticed that the difference
of skews between ECU1 and ECU4 is only 4.51% which
is the minimum difference on our prototype. However, our
IDS can discriminate the ECU4 and ECU1 very well. This
is because despite the average estimated clock skew may
overlap between ECU1 and ECU4, other extracted statistical
features (such as variations of clock skew) may have big
difference considering the ECU1 and ECU2 are different in
construction and therefore can favor the classification.

Similarly, the nodes on automotive networks are usually
produced by different manufacturers and OEMs for real vehi-
cles. The nodes are different in construction, as well as the
differences in clocks between ECUs may be more obvious

which can be demonstrated by results in [14]. The authors
of [14] reveal the clock skews of their CAN bus prototype
and several common car models as shown in Fig 7. In the
subfigure, the bar graph shows the clock skews in ascending
order, while the broken-line graph shows the difference of
clock skews between one ECU and its former one. From the
results, except for the clock skew of the 6th ECU (The value
is 345.3 ppm) in Toyota Camry 2010 which is different from
clock skew of the 5th ECU (The value is 334.1 ppm) of only
by 3.35%, others are far greater than the minimum difference
which our system can identify effectively. Therefore, our
method can be a promising and effective way for identifying
ECUs on real vehicular CAN bus.

3) The ECUs, which cannot be distinguished by our sys-
tem, can be regarded as one superclass. Despite the birthday
paradox is considered as a rare case as discussed above.
However, when it happens, one solution for improving the
performance is to increase the sampling rate to get more accu-
rate and precise measurements for calculating clock skews. If
it is not feasible by upgrading the hardware, an alternative
is to consider these two ECUs with near-equivalent clock
skews as one node (superclass). The CAN frames sent from
these two ECUs are regarded as one class for model training
and predication. When there is any misbehavior found in

VOLUME 9, 2021 2675



J. Zhou et al.: Clock-Based Sender Identification and Attack Detection for Automotive CAN Network

CAN frames from the superclass, our system can trigger an
alarm and simply treat the two ECUs as one node for further
processing. Further investigation and advanced detection can
be introduced if necessary.

C. INTRUSION DETECTION
In this section, the performance of the dynamic thresh-
old detection approach for intrusion detection is evaluated.
Besides false positive rate (FPR) which indicates the ratio of
normal samples but incorrectly marked as malicious, the false
negative rate (FNR) is another important criteria for intrusion
detection system. The false negative rate is an error rate that
indicates the ratio of malicious CAN frames but incorrectly
marked as normal. For convenience, our system also adopts
the metrics sensitivity and specificity to evaluate the perfor-
mance of intrusion detection of our system. The sensitivity
and specificity are defined as:

Sensitivity = 1− FNR

Specificity = 1− FPR

To evaluate false negative rate of our system, only a frac-
tion of collected data samples is handled as malicious CAN
frames since the number of malicious CAN frames is signif-
icantly lower than the one of normal frames for attacks in
automotive network. In our evaluation, 10% of the data sam-
ples from the test sets are selected randomly to simulate the
attack. The identifiers of those data samples that are selected
are modified to those identifiers which are authorized to use
by another ECU (i.e. the victim). To better evaluate the effect
of attack, the 10% of the CAN frames sent by all six ECU
in test sets are handled as attack. The victim ECUs of the
attacks are changed to other five ECUs continuously for each
attacker. This ensures that each ECU can be the target of
attack by every other ECU. In our evaluation, our IDS sets
the upper threshold Thresmax = 0.5 and the lower threshold
Thresmin as 0.2 for all settings. The results of our evaluation
are as follows.

1) LOW-SPEED CAN BUS
The resulting confusion matrices of intrusion detection on
low-speed CAN bus is shown in Table 8. It can be seen
that, both the false negative rate (FNR) and false positive
rate (FPR) can reach very low. That is, our system is able
to detect intrusion very accurately and avoid false alarms
with a very high probability. For SVM, our approach can
achieve an identification rate of on average 99.89% when
N = 5 and 99.71% when N = 10 as shown in Table 2
with a false positive rate of 0.11% and 0.29% respectively,
which means that every 1000 and 400 frames a false alarm
occurs for N = 5 and N = 10 respectively. By intro-
ducing dynamic threshold approach, the false positive
rate (FPR) of SVM is significantly reduced to 0.04% and 0%
respectively.

TABLE 8. Confusion matrices of intrusion detection on low-speed CAN
for single-feature detection.

2) MEDIUM-SPEED CAN BUS
This section evaluates the performance of dynamic thresh-
old approach on medium-speed CAN. The new detec-
tion approach is only applied to the data extracted
by multi-features detection method since it is proved
that the single-feature detection does not work well for
medium-speed CAN as demonstrated in Section V-B2. The
false positive rates (FPR) of our system on medium-speed
CAN without introducing the threshold approach can be
calculated by subtracting the identification rate, which can
be seen in Table 4, from the total probability 1. Comparing
with them, the performance of all four classification algo-
rithms has been improved by applying the threshold detection
approach, which can be seen in Table 9. When N = 20,
the false positive rates (FPR) on average have been decreased
by at least 0.64% (which is NB) for all four classification
algorithms. For MLR, the false positive rate has been reduced
significantly by 2.21%. Except for NB, the false negative
rates (FNR) of the other classification algorithms are slightly
higher than the false positive rates (FPR). The specificity of
NB can reach to 99.15% when N = 20. When N = 50,
although a very high identification rate has been reached in
Section V-B2, the overall performance can still be improved
by introducing the dynamic threshold detection approach.

3) HIGH-SPEED CAN BUS
For high-speed CAN, the performance of sender identifica-
tion is not satisfying. It can be explained by that the very
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TABLE 9. Confusion matrices of intrusion detection on medium-speed
CAN for multi-features detection.

tiny difference of skews between ECUs in same construction
cannot be distinguished by our current system. The discussion
can be referred in Section V-B4.When the size of data sample
N is set as 200, the average false positive rate (FPR) of
four classification algorithms without applying the threshold
detectionmethod is around 10.50%. It means that there would
be plenty of false alarms during driving and make a really bad
driving experience without further measures. When N = 50,
the average false positive rate can be up to 19.86%, which
is far from acceptable. This section evaluates how much the
performance of our system can be improved by introducing
the dynamic threshold detectionmethod for high-speed CAN.

The FPR and corresponding suspicious rates when apply-
ing dynamic threshold approach comparing with FPR with-
out the threshold approach are shown in Fig 8. As can
be seen, there is a significant improvement of FPR for all
classification algorithms by introducing the dynamic thresh-
old approach. When N = 200, the false positive rate of
SVM drops by around 7.78% to 2.16%. When N is set as
50, the false positive rate for SVM can be reduced around
16.59%. Except for NB, the variation of FPR when applying
the threshold approach is slight when N varies. That is, these
three classification algorithms can reach a stable and low false
positive rate even when N is small. For NB, the false positive
rate decreases whenN increases, and the curve is flatten from
N = 200. Besides, the suspicious rates of all algorithms stay
at a low level and stable.

Similarly, the FNR and corresponding suspicious rates of
four classification algorithms are shown in Fig 9. The false

FIGURE 8. The false positive rate (FPR) w and w/o dynamic threshold
approach (abbreviated as DTA in figure) and suspicious rate for
high-speed CAN.

FIGURE 9. The false negative rate (FNR) with dynamic threshold approach
(abbreviated as DTA) and suspicious rate comparing with false positive
rate (FPR) w/o DTA for high-speed CAN.

positive rate (FPR) without the dynamic threshold approach
is also adopted as a reference to compare. From the obser-
vations, the performance of all classification algorithms have
been improved (The FPRs have been reduced.). Unlike the
results shown in Fig 8, the false negative rates (FNR) can
be reduced significantly as the size of data sample increases.
When N takes a smaller value, the suspicious rates is a little
high. From N = 200, the suspicious rates are reduced down
to a stable and low level.

In summary, from the evaluation shown above, the overall
performance of our system can be always improved by apply-
ing the dynamic threshold approach. Especially when a high
false positive rates appears due to the insufficient sampling
accuracy (i.e. the case of high-speed CAN in our evalua-
tion),the overall performance of our system can be improved
significantly. From the observations, the false positive rate is
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reduced a lot to a low level which can be very helpful for
comfortable driving experience.

VI. CONCLUSION
Building security mechanisms for automotive CAN network
is urgent and full of challenges. Due to the broadcast nature
and no built-in mechanism for verifying the authenticity of
frames in CAN, some sophisticated attacks like the imper-
sonation attack which have the ability to manipulate the
safety-critical functions of vehicles can be easily launched.
Intrusion Detection Systems based on signal characteristics
are a promising technology to mitigate the issue. In our paper,
a novel IDS which utilizes the inherent difference in clock of
devices is proposed for source identification and detection of
attacks. Our approach computes the clock skew of devices
via a straightforward and effective way. Thus, the computing
process can neglect the effect of message queuing or arbitra-
tion and reduce the intermediate data which needs to be stored
comparing to the state-of-the-art IDSs.

Since the performance of our IDS relies heavily on the
measurements of clock skew which depends on the sampling
rate, our approach is evaluated on CAN networks with differ-
ent settings. Our evaluation shows the feasibility and limita-
tion of our method. The results show that the average iden-
tification rate on four selected classification algorithms can
achievemore than 99.7%when the sampling rate is sufficient.
The case when the sampling accuracy is not enough is also
discussed and feasible measures for mitigation are proposed.
Additionally, our approach is non-destructive which can be
well deployed on the automotive CAN network without any
modification on the hardware or software of CAN protocol
and nodes on the bus. Therefore, it can concluded that our
approach is an effective and feasible solution for securing
automotive network.
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