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ABSTRACT Fine-grained entity typing, which aims to assign specific types to entity mentions in text,
is attracting increasing attention in the field of natural language processing (NLP). However, it is quite a
challenging problem due to the highly ambiguous nature of many entity mentions. Most existing entity
typing methods based on attention mechanism generally extract the salient features separately from the
entity mention and the contextual words. However, these approaches suffer from two main limitations:
(1) They ignore the rich information contained by entity mentions when applying the attention mecha-
nisms. (2) They do not consider the diversity of attention processes which can be beneficial in finding
the discriminative features. To address these issues, we propose the diversified semantic attention model
(DSAM) for fine-grained entity typing, and the main novelties are: (1) It explicitly pursues the diversity of
attention and is able to maximally gather discriminative information. (2) It integrates two level attentions—
the mention-level attention and the context-level attention—to jointly capture the rich information from
mentions and contexts to enhance their mutual promotions. (3) It combines the attention maps constraint
and the attention segments constrain to exploit the subtle semantic differences for distinguishing the
subtypes. Importantly, the proposed DSAM approach can be trained end-to-end without employing ad-hoc
features or post-processing. Extensive experiments using three benchmark datasets demonstrated that our
DSAM approach achieves competitive performance compared to the current state-of-the-art methods used
for fine-grained entity typing.

INDEX TERMS Fine-grained entity typing, diversified semantic attention model (DSAM), long shot-term
memory (LSTM), mention-aware attention mechanism.

I. INTRODUCTION
A. RESEARCH BACKGROUND
Named entity recognition (NER) [1]–[4] is a basic task in nat-
ural language processing (NLP), aiming to jointly resolve the
boundaries and types of named entities in a document. In this
paper, we focus on the task of named entity typing, which is to
assign types or labels to the detected entitymentions. Existing
studies related to entity typing can be categorized into two
groups: the coarse-grained entity typing and the fine-grained
entity typing. Fine-grained entity typing is a challenging task
which aims to classify entity mentions into a large set of fine-
grained subtypes. However, the coarse-grained entity typing
only needs to label the entity with a more general type, such
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as Person, Location, Organization and Time. In most cases,
coarse-grained typing is too general and not exact enough
for many tasks. An example of a question answering task is
shown in Fig. 1. The candidate answers to the question ‘‘Who
is the author of the bestselling Harry Potter series?’’ are
‘‘J.K. Rowling’’, ‘‘James Cameron’’ and ‘‘Albert Einstein’’,
which is difficult to make a choice if they are all classified
as the coarse-grained type Person; it would be much easier to
draw the answer as ‘‘J.K. Rowling’’, if the candidate answers
are fine-grained classified into Author, Artist, and Scientist
respectively. Although the coarse-grained types have been
extended to around one hundred in recent works, they are still
in different levels with extremely uneven granularity.

Typically, fine-grained entity typing contains several hun-
dreds of types that are arranged into a hierarchical struc-
ture. In addition, entity mentions can be set into different
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FIGURE 1. Coarse-grained entity typing vs. fine-grained entity typing.

types based on their local contexts. As shown in Fig. 2,
three sentences mention the same entity ‘‘Stephen Hawking’’
which actually belongs to three different fine-grained types.
Our goal is to classify the first entity mention ‘‘Stephen
Hawking’’ to Person/Author, the second one to Person, and
Person/Scientist for the third case. The fine-grained types of
the entity mentions can be a great asset for many high-level
NLP applications, such as question answering [5], entity link-
ing [6], relation extraction [7], reading comprehension [8],
and knowledge completion [9].

FIGURE 2. An illustration of fine-grained entity typing.

The main difficulty for fine-grained entity typing comes
from the fact that entity mentions with different local contexts
may have subtle semantic differences which are difficult to
identify. Traditional methods solve this problem by carrying
out extensive feature engineering, such as hand-crafted fea-
tures and external resources [10]. However, these methods
rely heavily on hand-crafted features, which limits their capa-
bilities of generalizing uncommon or unseen entity mentions.
To eliminate the use of hand-crafted features, researchers
begin focusing on learning representations of entity mention
and its context. Previous methods [11], [12] generally learn
feature representations with pre-trained fixed word embed-
dings, such as Word2Vec and GloVe. Despite of achieving
compelling results by using fixed word embeddings, these
methods still suffer from limitations for their incapability in
capturing word semantic meanings in different contexts. This
is the first limitation.

To address the limitation of fixed word embeddings,
the contextualized word representations (e.g., ELMo) were
proposed by Peters et al. [13] and have been extensively
used in recent works [14]–[16]. Following this elegant
recipe, we employ contextualized word representations to
better represent out-of-vocabulary words as well as capture
context-aware word semantics. Besides the contextualized

word representations, local semantics of sentences often play
a significant role in distinguishing subtypes of entity men-
tion. Attention mechanism has been widely used in existing
neural-based methods [17]–[19] to learn the most relevant
semantic information in text. However, these methods only
apply attention mechanism to the context but ignore the
rich information in the entity mention. This is the second
limitation.

Meanwhile, in the annotating process, assigning labels
to entity mentions can be regarded as a two-step attention
process: human annotators generally first focus their attention
on decisive words in text, instead of processing the entire
text at once, and then different decisive words over time are
combined to build up the global semantics of the text. An intu-
itive idea is to convert the problem of finding different atten-
tive words simultaneously to finding them multiple times.
Recently, many attentive methods [11], [12], [18], [19] have
achieved promising performance. Shimaoka et al. [18] intro-
duced an attention-based Long Short-TermMemory (LSTM)
network to allow the model focusing on relevant expressions.
Moreover, they [19] incorporated hand-crafted features into
the attention-based neural models, and the performance on
the FIGER dataset and OntoNotes dataset was improved.
However, it is still difficult for existing attention-based meth-
ods to find multiple discriminative words simultaneously.
This is the third limitation.

To address the above three limitations, we propose a diver-
sified semantic attention model (DSAM) to classify entity
mentions into fine-grained subtypes. Particularly, the pro-
posed DSAM initially generates multiple attention segments
to extract the diversified features for attention. Furthermore,
the long short-term memory (LSTM) network integrated
with a mention-aware attention mechanism is imposed to
the sequential attention segments from coarse to fine res-
olution. Then, a dynamic feature representation is built up
by incrementally combining the information from different
contexts and lengths of the sentences. Finally, the general
and the local semantic features of the sentence are captured
with this representation to facilitate the fine-grained entity
classification.

Fig. 3 presents the research motivation of this work. The
first example shows the impact of mention attention. Existing
method misclassifies the entity mention ‘‘British Defense
Ministry’’ as Location probably because ‘‘British’’ usually
appears in location mentions, while it can be correctly clas-
sified as Organization when higher weights are assigned
to ‘‘Defense Ministry’’. In Example #2 and #3, although
‘‘Tim Breene’’ and ‘‘WCRS’’ occur in the same sentence,
the model should use ‘‘chief executive officer’’ to help clas-
sify ‘‘Tim Breene’’ as Person, but focus on ‘‘executive’’ and
‘‘new agency’’ to determine that ‘‘WCRS’’ should be an
Organization.

B. CONTRIBUTIONS
The main novelties and contributions of our DSAM approach
can be summarized as follows:

2252 VOLUME 9, 2021



Y. Hu et al.: Diversified Semantic Attention Model for Fine-Grained Entity Typing

FIGURE 3. Mention and context attention visualization. Darker
background color indicates higher attention score.

• Diversified Semantic Attention Model. Most existing
studies ignore the diversity of attentive features for
fine-grained entity typing, while the diversified attentive
features are highly beneficial to capturing the discrimi-
native semantic information. For addressing this prob-
lem, we propose the DSAM approach to discover the
global semantics as well as the discriminative nuances
from a sentence to enhance entity type identification.
It integrates two types of features: the coarse-grained
global feature focuses on the whole representation of a
sentence and the fine-grained diversified attention fea-
ture focuses on the distinguishing semantic differences.
By combining the two types of features, an incremental
sentence representation with various attention features
is dynamically built up, from which subtle semantic
differences can be captured accurately. As far as we
know, the proposed DSAM is the first method to exploit
the diversity of the semantic attention for fine-grained
entity typing.

• Mention-aware Attention Mechanism. Most attentive
methods fail to consider the potential information of
entity mentions when performing an attention mech-
anism, while some words in the entity mention may
provide more useful information for entity typing. For
addressing this problem, a two-step mention-aware
attention mechanism is proposed to capture the rich
information frommentions and contexts as much as pos-
sible. Particularly, it calculates the attention scores for
contexts in a mention-aware manner, allowing the model
to grasp different information for different entity men-
tions. Two levels of attentions are jointly considered: the
mention-level attention and the context-level attention,
both of which are highly useful in capturing important
information and are complementary in improving the
performance of fine-grained entity typing.

• Diversity Constraint Model. To ensure the diver-
sity in the attention process, we propose an atten-
tive feature generation approach driven by a diversity

constraint model. It highlights the saliency of attentive
features and enhances their discrimination to ensure that
the generated attention maps are highly representative.
It combines two types of constraints: the attention maps
constraint enforces that the generated attention maps
are highly representative, and the attention segments
constraint reduces the overlapping proportions among
the segments as well as highlights the saliency of the seg-
ments, which eliminates the redundancy and enhances
the discrimination of the generated segments. Combi-
nation of these two constraints not only significantly
promotes the selection of discriminative feature, but also
achieves a notable improvement on fine-grained entity
typing.

• End-to-end Trainable Model. Another superiority of
our model lies at its end-to-end framework. It is jointly
trained, from scratch, by optimizing the probability of
the output using a variant of loss function. In summary,
we propose an elegant neural-based model that attempts
fine-grained entity typing end-to-end without providing
ad-hoc features or employing post-processing.

C. PAPER ORGANIZATION
The rest of the paper is organized as follows: Section II
discusses the studies related to fine-grained entity typing;
Section III elaborates the details of the proposed DSAM
approach; Section IV presents our experimental settings and
results; Section V provides a conclusion of our paper.

II. RELATED WORK
Fine-grained entity typing has been widely studied in recent
years. Existing methods can be categorized into three groups:
distant supervision-based methods, neural-based methods,
and attention-based methods.

A. DISTANT SUPERVISION-BASED METHODS
For most existing fine-grained entity typing methods, they
often use distant supervision to generate training examples
and assume that all candidate types generated in this manner
are correct. Ling et al. [7] were the first to adopt distant
supervision method [20] for fine-grained entity typing. They
derived 112 types from Freebase and automatically created
the training data from Wikipedia. From then on, many works
begin to focus on reducing label noise induced by distant
supervision. Gillick et al. [21] proposed three types of prun-
ing heuristics to constrain label noise. Ren et al. [10] designed
a novel partial-label loss to further reduce the label noise.
Moreover, Xu et al. [22] introduced a method of normaliza-
tion of hierarchical loss to reduce specific types of noise.
A recent study [23] introduced a penalty term in the opti-
mization process to effectively diminish the side effect of
the label noise and confirmation bias. However, these distant
supervision-based methods aggressively filter training exam-
ples and may cause performance degradation. To address
this problem, recent studies converted fine-grained typing
into the task of a graph-based semi-supervised classification.
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For example, Jin et al. [24] used links between entities to
construct an entity graph, and jointly utilized entity features
and a graph structure to make an entity type inference. Later,
they further proposed a novel architecture [25] consisting of
three graph convolutional networks to capture different kinds
of semantic correlations between entities to refine entity
types. Although distant supervision-based methods provide
an efficient way to annotate training data, they ignore the local
contextual information associated with entities and limit its
usage in context-aware applications.

B. NEURAL-BASED METHODS
In recent years, thanks to the rapid development of deep learn-
ing methods and artificial intelligence, many neural-based
methods have been proposed and achieved pleasant results.
Thesemethods usedmultiple neural networks to learn seman-
tic information of entities from local context for a better
entity classification. Dong et al. [26] first proposed a hybrid
neural network architecture comprised of a mention model
and a context model. The mention model obtains the vector
representations of entity mentions by using recursive neural
network (RNN), while the context model derives the hid-
den representations of context words by employing multi-
layer perceptron. After that, Karn et al. [27] introduced an
encoder-decoder neural model to infer entity types, which can
be trained end-to-end. Different from previous methods that
obtained the entity context information through a fixed win-
dow, Liu et al. [28] introduced a novel entity typing method
with slidingwindow context and dynamic global information.
Despite of achieving promising results, these neural-based
methods are still limited by ignoring type hierarchy in infer-
ring process. Therefore, Ren et al. [23] employed a neural
network, called hierarchical inference model, to infer entity
types layer by layer, in order to maximally capture entity
information, the mention as well as its context aspects.

C. ATTENTION-BASED METHODS
Inspired by recent advances in neural machine transla-
tion [29], attentionmechanism has been widely used in neural
fine-grained entity typing methods [11], [18], [19], [30] to
weight context words. Choi et al. [11] presented an neural
architecture that resembles the Attentive NER model [19]
to improve the sentence and mention representations; they
also introduced a new multitask objective to handle multiple
sources of supervision. Xin et al. [12] introduced a knowl-
edge attention mechanism to capture important context words
and improve the quality of context representation; they used
the entity representation obtained from the external knowl-
edge base as the attention query. While these attention-based
methods outperform previous methods which only use sparse
binary features [7], [21] or distributed representations [31],
they suffer from that the attention on context is computed
solely upon the context, considering no alignment to the
entity. To overcome this drawback, Zhang et al. [32] pro-
posed a neural architecture which learns more context-aware
representations by using a better attention mechanism and

taking advantage of semantic discourse information available
in the document as well as sentence-level contexts. Recently,
the graph-based algorithm combining with attention mech-
anism is developed to integrate entity feature and structural
information. Xiong et al. [33] encoded both global label
co-occurrence statistics and word-level similarities by using
a graph-enhanced model equipped with an attention-based
matching module. Unlike Xiong et al. [33] operating under
Euclidean assumption, López et al. [34] imposed a hyper-
bolic geometry to enrich the hierarchical information, and
applied a self-attentive encoder to get the context represen-
tation. Furthermore, Lin et al. [19] developed a hybrid model
that incorporates latent type representation in addition to
binary relevance, which is able to capture inter-dependencies
between entity types. Unlike above mentioned attention-
based methods, we propose a diversified semantic attention
model to pursue the diversity of attention and collect distin-
guishing contextual information to improve the performance
of fine-grained typing.

III. THE PROPOSED APPROACH
The overview of our DSAM approach is shown in Fig. 4.
It includes three components: attention segments generation,
diversified semantic attention, and classification. First, our
DSAM approach divides the input sentences into several
segments of different lengths through the attention segments
generation component. Then, these segments are fed into
the following diversified semantic attention component to
predicted the attention maps. This highlights import words or
phrases within each segment and maximizes the information
gained across multiple attention segments. Furthermore, a
two-step mention-aware attention mechanism is proposed to
focus on important information in mentions and contexts.
Different from previous attentive methods that focus on a
single distinguishing feature, our DSAM approach jointly
extracts diverse features by a novel loss function. Meanwhile,
the attentive features are dynamically pooled from the gen-
erated attention maps and accumulated into the diversified
attention model. Finally, the type of entity mention will be
predicted at each time step, and all the prediction results will
be merged in an average manner to get the final prediction
results.

A. DIVERSIFIED ATTENTION SEGMENTS GENERATION
To make the attentive features diversified, an attention seg-
ments generation method is proposed for dividing the input
sentences into multiple attention segments with each segment
containing different words and being of different lengths.
Some of the attention segments contain entity mentions,
while others include only some of the context words. These
attention segments provide abundant candidates of the orig-
inal sentence, which is beneficial for capturing multiple dis-
criminative semantic features to achieve better fine-grained
accuracy of entity typing.

The generation of attention segments with different lengths
and strides is shown in Fig. 5, where the ‘‘stride’’ refers to
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FIGURE 4. An overview of the proposed diversified semantic attention model (DSAM) approach.

FIGURE 5. An illustration of our method for generating the attention
segments.

the number of words that moves in each step on the original
sentence, and ‘‘length’’ refers to the number of words that
contained in each step. The length and stride jointly deter-
mine the number of attention segments to be generated. The
attention segments will be cropped according to the defined
length and stride along the direction of the input sequence.
Clearly, for a long length, a long stride will produce a small
number of segments. Inversely, given a shorter length, a short
stride will generate more local segments.

Following the strategy above, the multiple attention seg-
ments generated will cover most of the information in the
input sentence. Each attention segment will contain differ-
ent words and be of different lengths. All of the generated
attention segments will be jointly organized into a sequence,
with the long segments placed ahead of the short segments.
In this way, the global semantic information of sentences will

first be focused on, and then the local semantic differences of
sentences will be subsequently captured.

B. DIVERSIFIED SEMANTIC ATTENTION MODEL
Most existing attention-based methods [18], [19], [22] devote
much to the learning of the discriminative features, but ignore
the diversity in the attention process. The diverse attentions
are important in simultaneously finding multiple semanti-
cally discriminative words to learn meaningful and represen-
tative features of the entity mentioned. To solve this important
problem, a novel diversified semantic attention model is pro-
posed in this paper. It converts the problem of simultaneously
extracting different attentive features into extracting them at
multiple times throughout the process. As shown in Fig. 6, the
proposed diversified semantic attentionmodel consists of two
components: the attention map prediction and the attentive
feature integration.

1) ATTENTION MAP PREDICTION
In this stage (see Fig. 7), the pre-trained contextualized word
representations [13] are first adopted to represent an input
sentence. Then, a two-step mention-aware attention mecha-
nism is employed to extract the most relevant features from
the sentence to form the attentive features.
Attention Segment Encoder: Since we often need to deter-

mine the types, and especially the subtypes, according to the
context, it is indispensable to collect contextual information
for making the correct decision on a classification. There-
fore, instead of using the fixed word embeddings, we adopt
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FIGURE 6. An illustration of the diversified semantic attention model.

FIGURE 7. An illustration of the prediction of the mention-aware
attention map.

contextualized word representations which can cap-
ture word semantics in different contexts. Let Rt ={
rt,1, rt,2, . . . , rt,L

}
∈ RL×dr denotes the contextual-

ized word representations of an attention segment St ={
wt,1,wt,2, . . . ,wt,L

}
at time step t , where rt,i ∈ Rdr is the

dr -dimensional representation corresponding to the i-th word
wt,i and L is the length of the attention segment St .
Mention Representation: Previous attentive

models [18], [19], [22] only apply attention mechanism to
the context. However, some words in an entity mention, such
as ‘‘Defense Ministry’’ in Figure 7, may provide more useful
information for determining the type. In order to focus on
more informative words, we represent an entity mention m
consisting of M words with an attention mechanism as
follows:

m =
M∑
i

ami ri (1)

where ri is the contextualized representation of the i-th word
in the entity mention m, and the attention score ami of the
entity mention m is computed as follows:

ami = soft max(emi ) =
exp(emi )∑N
j=1 exp(e

m
j )

(2)

emi = v tanh(Wmri) (3)

where Wm
∈ Rda×dr and v ∈ Rda are the trained parameters,

and da is the dimension of the hidden attention layer.
Mention-aware Context Representation: Given the con-

text ct of an entity mention m in an attention segment St ,
we form its representation with a mention-aware attention
mechanism as follows:

ct =
∑C

i=1
act,irt,i (4)

where C is the number of contextual words, and the attention
map act,i is defined as follows:

act,i =
exp(W h

i ht−1 +W
C
i (rt,i ⊕ m))∑C

j=1 exp(W
h
j ht−1 +W

C
j (rt,j ⊕ m))

(5)

where W h
i denotes the connection weights from the previous

LSTM hidden state ht−1 to the i-th score of the attention map,
and ⊕ represents concatenation. Similarly, WC

i represents
the weights from the contextualized word vectors ri,t to the
i-th score of the attention map.

Finally, by concatenating the mention representationm and
the context representation ct , the attentive feature xt is formed
as the input of LSTM unit:

xt = m⊕ ct (6)

2) ATTENTION FEATURE INTEGRATION
In this stage, a LSTM network is adopted to integrate the
attentive features, since it can solve sequential modelling by
learning patterns with a wider range of temporal dependen-
cies. As shown in the first row of Fig. 6, a basic LSTM
unit consists of a single memory cell, an input activation
function, and three gates (input gate it , forget gate ft , and
output gate ot ). The input gate it allows an incoming signal
to alter the state of the memory cell or to block it. The
forget gate ft controls what to be remembered and what to
be forgotten by the cell and somehow can avoid the gradient
from vanishing or exploding when back propagating through
time. Finally, the output gate ot allows the state of thememory
cell to have an effect on the other neurons or to prevent it.
Basically, the memory cell and gates in a LSTM block are
defined as follows:

it
ft
ot
gt

 =

σ

σ

σ

tanh

Z
(
ht−1
xt

)
ct = ft � ct−1 + it � gt
ht = ot � tanh (ct) (7)

where ct denotes the cell state, ht denotes the hidden state,
the operator � denotes element-wise multiplication, and
Z denotes the parameters of the LSTM. We use σ and tanh
to denote the sigmoid activation function and the hyperbolic
tangent activation function, respectively.
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3) ATTENTION MODEL INITIALIZATION
By using a Multi-Layer Perceptron (MLP), the cell and the
hidden states of LSTM are initialized as follows:

c0 = finit,c(
1
TL

T∑
t=1

L∑
i=1

rt,i) (8)

h0 = finit,h(
1
TL

T∑
t=1

L∑
i=1

rt,i) (9)

where finit,c and finit,h refer to the functions employed by
two MLPs, respectively. T is the total number of time steps.
Specifically, the initial values c0 and h0 are used to predict
the first attention map ac1 for computing the initial attentive
feature x1.

4) FINAL PREDICTION
The hidden state ht in Eq. (7) is used as the feature to predict
the types of entity mentions. Meanwhile, it also has a guiding
effect on the prediction of the attention map at next time
step. Through the newly predicated attention maps, the new
attentive features will be dynamically merged. Over time
steps, the predict process will be recursively implemented.
Finally, we average the prediction results over all time steps
to obtain the final prediction result.

C. DIVERSITY CONSTRAINT MODEL
The proposed diversified semantic attention model has been
demonstrated that it is capable of exploiting the local and
subtle discrimination to distinguish the subtypes, and uses
neither prior knowledge nor external resources. However,
when the input segments at different time steps are the same,
the attention maps produced at each time step may be quite
similar. This leads to the result that the attention across
different time steps will not gain additional information for
improved accuracy of the classification.

To illustrate this issue more intuitively, the attention maps
of a sentence generated at different time steps are visualized
in Fig. 8, in which vanilla (i.e., non-diversified) attention
model and diversified semantic attention model are used
separately. Given the same input sentence, the non-diversified
attention model always focuses its attention on the same
words of the sentence across all time steps (see Fig. 8(a)).
Although the attentive words, such as ‘‘action-movie’’ and
‘‘star’’, are discriminative for recognizing the type of ‘‘Arnold
Schwarzenegger’’ from other types, they are insufficient to
differentiate it from other semantically similar types such as
director and actress, since the semantic differences among
these types are subtle. In addition, it is difficult to learn useful
discriminative information for classification as there are few
attentive words. Fig. 8(b) shows the diversified semantic
attentionmaps after imposing the multiple attention segments
generation and diversity penalty. The semantic attention map
at each time step is diversified, from global to local, which is
very reasonable for fine-grained entity mentions.

FIGURE 8. Attention maps generated by non-diversified semantic
attention model versus diversified semantic attention model.

On the other hand, existing attention-based methods
only consider minimizing the classification loss during the
attention process, but fail to take the information gain
into account. The classification loss function is defined as
follows:

Lc = −
N c∑
i=1

yi log ŷi (10)

where yi indicates whether the entity mention belongs to
type i, N c is the number of types and ŷi is the probabil-
ity of type i. Although such a strategy performs well in
classifying entities with significant semantic differences, its
performance is reducedwhen the semantic differences among
the entities become quite subtle. For addressing this prob-
lem, it is necessary to collect sufficient semantic information
from multiple features for making the correct decisions on
the classification, which requires the attention process to be
diverse. Therefore, we propose a diversity constraint model
to ensure the diversity of attentive features. Two constraints
are jointly considered: the attention maps constraint defines
the correlation between temporally adjacent attention maps,
and the attention segments constraint defines the overlapping
proportions of the attention segments that are temporally
neighbors.
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1) ATTENTION MAPS CONSTRAINT
Ignoring the correlation between temporally adjacent atten-
tion maps causes that the generated attention maps may be
quite similar, which decreases the diversity of the attentive
features. Therefore, we propose an intuitive diversity metric
to compute the correlation between attention maps that are
temporally adjacent, which is defined as follows:

1Lmaps =
1
T

∑T

t=2

∑C

i=1
act−1 · a

c
t,i (11)

where act,i is the i-th attention score of the mention-aware
attention map after conducting a softmax on the context
words at time t , and T is the total number of time steps.
In general, 1Lmaps will get a large value if two neighboring
attention maps are similar.

2) ATTENTION SEGMENTS CONSTRAINT
Ignoring the relationship between attention segments that are
temporal neighbors leads to the problem that the generated
attention segments may largely overlap with each other, and
that some discriminative segments will be ignored. Therefore,
we impose a segment constraint on the support words of the
attention segments, which restrains the overlapped proportion
of the attention segments that are temporal neighbors to be
smaller than a threshold. The segment constraint is defined
as follows:

1Lsegments =
|Supp [St−1] ∩ Supp [St ]|

K
(12)

where Supp [St ] refers to the support words of the attention
segment St , which is used to select the attentive words, and
|Supp [St−1] ∩ Supp [St ]| is the number of intersection words
between Supp [St−1] and Supp [St ]. K is the length of the
original sentence.

3) THE LOSS FUNCTION
The final loss function considers the combination of the
classification loss and diversified constraint model, which is
defined as follows:

L = −
T∑
t=1

N c∑
i=1

yt,i log ŷt,i + λ1Lmaps,

s.t.1Lsegments < β,∀t = 2, ..,T (13)

where yt,i indicates the one-hot vector of type probabilities
at time step t , ŷt,i indicates the probability of type i at time
step t , λ is a penalty coefficient to control the diversity of the
neighboring attention maps, and β is a given threshold. The
diversity constraint model aims to enhance the diversity of
attention, which consists of two items: The first item realized
by 1Lmaps aims to maximize the diversity of the attention
maps. The second item realized by1Lsegments aims to reduce
the overlapping proportions among attention segments that
are temporal neighbors, where Supp [St−1]∩Supp [St ] ensures
the generated attention segments have the least overlap.

IV. EXPERIMENTS
In this section, we evaluate the performance of our DSAM
approach for fine-grained entity typing. First, the benchmark
datasets and the details of the implementation of our DSAM
approach are introduced. Then, we perform the model abla-
tion studies to investigate the contribution of each component
to the model. In addition, the proposed DSAM approach
is compared with the current state-of-the-art methods, and
the diversified attention maps produced are visualized in an
intuitive way to demonstrate the superiority of the DSAM.

A. DATASETS
Three public datasets are adopted for the experiments. Table 1
summarizes the statistics of the three datasets.

TABLE 1. Statistics of the datasets.

FIGER [7]: It is the most widely-used dataset for
fine-grained entity typing. FIGER contains 2,690,563 entity
mentions of 113 different entity types organized in a 2-level
hierarchy. It is divided as follows: 2,600,000 entity mentions
are for training purposes, 90,000 entity mentions are for
validation purposes, and 563 entity mentions are for testing
purposes. Specifically, the training and development sets are
automatically generated from Wikipedia articles with distant
supervision, whereas the testing set is a manually annotated
dataset from news reports.

OntoNotes [21]: It contains 232,946 entity mentions
of 89 news types, among which 220,000 entity mentions are
for training purposes, 3,342 entity mentions are for validation
purposes, and 9604 entity mentions are for testing purposes.
In the training and development data, each entity mention in
sentences is automatically linked to Freebase by using DBpe-
dia spotlight. In the test data, each entity mention is manually
annotated from 77 news documents of the OntoNotes corpus.

BBN [35]: It consists of 48,899 sentences from 2,311Wall
Street Journal articles, which are entirely manually annotated
with entity types. One sentence may contain several entity
mentions. It is divided as follows: 165,665 entity mentions
are for training purposes, 18,408 entity mentions are for val-
idation purposes, and 46,018 entity mentions are for testing
purposes.

B. IMPLEMENTATION DETAILS
In this subsection, we will describe the implementation
details of our proposed DSAM approach. All sentences were
first normalized by a padding strategy to ensure that they
were all the same length. For the generation of the attention
segment, three different lengths (i.e., 20, 15 and 10) were
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used on FIGER and OntoNotes datasets to generate segments
from the normalized sentences. For the BBN dataset, two
different lengths (i.e., 20 and 15) were used to generate
segments. Finally, we obtained large numbers of attention
segments for these lengths, and all these attention segments
were normalized to the same length. The sequence of these
segments was arranged as follows: the first batch of segments
was from length of 20, followed by the segments from length
of 15, and the last batch of segments was from length of 10.

Our implementation was based on PyTorch framework.1

In the training phase, we selected different hyper-parameter
settings for FIGER, OntoNotes and BBN separately, tak-
ing into consideration the differences between the three
datasets. The hyper-parameters included the learning rate lr
for Adam Optimizer, the size of contextualized word repre-
sentations dw, the state size for LSTM layers ds, the input
dropout keep probability pi and the output dropout keep
probability po for LSTM layers, and L2 regularization param-
eter λ. All the hyper-parameters were selected by the k-
fold cross-validation method. Considering the large scale
of the training dataset, we set k as 10 to ensure a better
selection of parameters. We randomly divided the training
dataset into 10 mutually exclusive subsets of equal size, and
conducted experiment 10 times. Finally, we picked the
parameters that obtain the highest classification accuracy.
The hyper-parameter settings for FIGER, OntoNotes and
BBN datasets are shown in Table 2.

TABLE 2. The hyper-parameter settings.

C. COMPARISONS WITH THE CURRENT
STATE-OF-THE-ART METHODS
This subsection presents the experimental results and analy-
ses of our DSAM approach as well as the current state-of-the-
art methods on three widely-used fine-grained entity typing
datasets.

1) COMPARING WITH THE CURRENT STATE-OF-THE-ART
METHODS
Table 3 shows the results of the comparisons based on the
FIGER, OntoNotes and BBN datasets. To evaluate the per-
formance, Accuracy (Acc), Macro-F1 scores (Ma-F1), and
Micro-F1 scores (Mi-F1) [7] were employed as the evaluation
metrics in the experiments.

1https://pytorch.org/

Performance on the FIGER dataset: Early works [10],
[19] chose fixed word embeddings to represent mention as
well as its context, and their performances were limited and
much lower than our DSAM approach. Our approach was
the best among all of the methods based on both Accuracy
and Macro-F1 scores. It obtained a 0.54% higher Accuracy
when compared with the best results of the NFETC [22]
(69.44% vs. 68.9%). It is noted that the labels used in
NFETC are handled by a variant of cross entropy loss func-
tion during the training phase, while our approach does not
do any processing with the labels. Compared to the sec-
ond highest Macro-F1 score of Attentive +LTR [36], our
DSAM approach achieved a 0.29% higher score (83.29%
vs. 83.00%). Our DSAM approach achieved a much higher
Accuracy and Macro-F1 score than HMGCN [25] but per-
formed worse based on the Micro-F1 score (69.44% vs. 57%
in Accuracy, 83.29% vs. 79.8% based on the Macro-F1 score
and 81.46% vs. 83.6% based on the Micro-F1 score). This
is due to the fact that three GCN models proposed in the
HMGCN provide complementary information, which makes
its performance based on the Micro F1 score slightly better
than ours.

Our approach performed better than the methods that
ignore the diversity of attention, such as Attentive [18],
NEURAL [19] and Attentive + LTR [36]. In Attentive,
an attention-based bi-directional LSTM network was adopted
to achieve an Accuracy of 58.97% by composing representa-
tions for the context of each mention recursively, which was
lower than our approach by 10.47%. Our DSAM approach
improved on Accuracy by 9.76% compared to NEURAL,
which combines an attentive neural model with hand-crafted
features. This verifies the effectiveness of our proposed
DSAM in gathering useful information for fine-grained entity
typing.

Furthermore, our approach outperforms themethodswhich
select different optimal thresholds for different types, such
as MuLR [17], ACT [32] and LABELGCN [33]. More-
over, our approach outperformed methods that use knowl-
edge bases, such as PLE [37], CUTE [38] and APE [24].
Neither knowledge bases nor external resources are used in
our DSAM approach, which makes fine-grained entity typing
move closer to practical application.

Performance on OntoNotes and BBN datasets: When
applied to OntoNotes, our DSAM approach outperformed
the other methods based on all metrics (66.06% in Accu-
racy, 83.07% on Macro-F1 scores and 78.19% on Micro-
F1 scores respectively). DSAM delivered improvements
of 0.86%, 0.17% and 0.25% in Accuracy, Macro F1 score
and Micro F1 score, respectively, than the best results of
the other methods with which it was compared. The pat-
tern of the results after application to the BBN dataset was
similar to those obtained using the FIGER dataset. Our
DSAMapproach achieved the best results based on theMacro
F1 score (82.84%) and Micro F1 score (81.93%) of the cur-
rent state-of-the-art methods. It achieved an Accuracy close
to that of PLE [37]. The superiority of PLE in Accuracy
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TABLE 3. Comparisons with the current state-of-the-art methods on FIGER, OntoNotes and BBN datasets.

FIGURE 9. The precision-recall curves.

mainly comes frommodeling the type correlation with entity-
type facts in knowledge bases, which yields more accurate
and complete type correlation statistics compared to our
approach.

2) TESTING WITH THE PRECISION-RECALL CURVES
Since the Macro F1 and Micro F1 scores both rely on a deci-
sion threshold, the precision-recall curves [39] were intro-
duced for more transparent comparisons. As shown in Fig. 9,
the data points in each precision-recall curve are based on
the validation performance provided by 55 equal-interval
thresholds between 0 and 1. From Fig. 9, we can observe
that: On the one hand, there are clear margins between our
DSAM and the method without attention mechanism (FNET)
after they were applied to the three datasets. This indicates
the effectiveness of the attention mechanism in capturing dis-
criminative features. On the other hand, our DSAM approach
outperformed the other attention-based methods after they
were applied to the three datasets, and it verified the superior-
ity of our DSAM. The DSAM integrates the coarse-grained
global feature and fine-grained diversified attention feature
to boost the discriminative feature learning and enhance their
complementarity.

3) TESTING AT DIFFERENT TYPE LEVELS
In addition, to further explore the classification performance
variance with different type levels, we report the compar-
isons of the Accuracy at different levels of the entity type
hierarchy in Fig. 10. From the results (Fig. 10) of the meth-
ods being applied to the three datasets, it is more difficult
to distinguish among deeper (more fine-grained) types due
to small variances among the different subtypes. However,
despite this challenge, our DSAM approach still outper-
formed the other methods with which it was compared, and
achieved a 7.8% higher Accuracy than the best result of
the Attentive + LTR on level-3 types (45.72% vs. 37.92%).
The gain mainly comes from the dynamic modeling of the
diversity of attention, which is able to gather discriminative
information to the maximal extent possible. In addition, our
DSAM approach employs the diversity constraint model to
exploit subtle and local discrimination for distinguishing the
subtypes.

D. MODEL ABLATION STUDIES
In this subsection, ablation studies are conducted on the pro-
posed DSAM to evaluate the effectiveness of each individual
component.
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FIGURE 10. Accuracy on different type levels.

TABLE 4. Comparisons of typing results on FIGER, OntoNotes and BBN datasets.

1) EFFECTIVENESS OF THE DIVERSIFIED ATTENTION
SEGMENTS
In our DSAM approach, the final classification result is gen-
erated by merging the prediction results of multiple attention
segments across all time steps. Multi-length attention seg-
ments with different words contribute to the diversity of atten-
tionmaps, whichmakes it possible to capture the semantics of
an entitymention from coarse to fine granularity. To verify the
effectiveness of the diversified attention segments, the experi-
ments with different combinations of lengths were conducted
on the three datasets. In Table 4, ‘‘Original’’ refers to the
DSAM trained with the original sentence e, ‘‘One-length-
Att’’ refers to the DSAM trained with the attention seg-
ments generated by a length of 20, ‘‘Two-length-Att’’ adopted
lengths of 20 and 15, and ‘‘Three-length-Att’’ attended to the
attention segments with lengths of 20, 15 and 10. The Macro-
Precision (Ma-P), Macro-Recall (Ma-R) and the Area Under
Curve (AUC) [40] were adopted as the evaluation metrics
to comprehensively evaluate the performance, since they can
reflect the relationship between the false negative rate and the
true positive rate in a classification. From Table 4, we can
observe that:
• Overall, the performance of the methods trained
with diversified attention segments (i.e., ‘‘One-length-
Att’’, ‘‘Two-length-Att’’ and ‘‘Three-length-Att’’) were
better than ‘‘Original’’ for all metrics after the
methods were applied to the three datasets. In partic-
ular, ‘‘Three-length-Att’’ obtained a 4.25% improve-
ment in Macro-Precision and a 4.57% improvement
in Macro-Recall compared to ‘‘Original’’ after being
applied to the OntoNotes dataset. Superior performance
of these methods trained with attention segments mainly
comes from explicitly diversifying the attentive features,
which is able to boost the capturing of discriminative
semantics.

• The general pattern of the results after applica-
tion of the methods to the FIGER and OntoNotes
datasets was that the performance of ‘‘One-length-Att’’,
‘‘Two-length-Att’’ and ‘‘Three-length-Att’’ were sig-
nificantly improved, when more lengths of segments
were involved in the proposed DSAM. Specifically,
‘‘Two-length-Att’’ achieved higher AUC results than
‘‘One-length-Att’’, i.e., 82.01% vs. 81.09% after appli-
cation to the FIGER dataset. Compared to ‘‘One-length-
Att’’, ‘‘Three-length-Att’’ improved much on the AUC,
i.e., by 1.32% and 1.13% after application to the
FIGER and OntoNotes datasets respectively. Comparing
with ‘‘One-length-Att’’, ‘‘Two-length-Att’’ and ‘‘Three-
length-Att’’ gained performance from correctly captur-
ing more discriminative words with different lengths.
In general, the generated attention segments with long
lengths tended to capture the global semantics, while
local discriminative semantics will be attended to by
short lengths.

• We observe that ‘‘Three-length-Att’’ did not always
improve the performance, i.e., the performance of
‘‘Two-length-Att’’ was better than ‘‘Three-length-Att’’
after application to the BBN dataset (83.06% vs. 82.86%
in Macro-Precision, 82.62% vs. 82.35% in Macro-
Recall, and 81.63% vs. 81.42% in AUC). It shows
that the attention segments generated by a short
length cannot always provide additional information for
fine-grained entity typing. For example, if the attention
segments only contain a word such as ‘‘movie’’ or ‘‘star-
ring’’ in a sentence, it is hard to assign the correct types
for a certain entity from types such as director and actor,
since ‘‘movie’’ and ‘‘starring’’ usually appears in these
semantically similar types.

The observations above demonstrate the effectiveness of
the proposed diversified attention segments in capturing
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TABLE 5. Performance of mention-aware attention mechanism on FIGER, OntoNotes and BBN datasets.

multiple discriminative semantics, which further confirms the
superiority of our DSAM approach for fine-grained entity
typing.

2) EFFECTIVENESS OF THE MENTION-AWARE ATTENTION
MECHANISM
Compared with previous attentive methods, which only
perform an attention mechanism for the entity mention
contexts, we further propose a two-step mention-aware
attention mechanism to focus on informative words in men-
tions and contexts. To study the effectiveness of the pro-
posed mention-aware attention mechanism in our DSAM,
we compared it with the DSAM adopting other atten-
tion mechanisms, such as the dot-product attention mech-
anism [41] and the self-attention mechanism [19], which
are denoted as ‘‘DSAM-dotAtt’’ and ‘‘DSAM-selfAtt’’.
In addition, the DSAM without the attention mecha-
nism was chosen as another variant of our DSAM,
and denoted as ‘‘DSAM-NoAtt’’. The comparison results
after application to the three datasets are summarized
in Table 5:
• Compared with DSAM-NoAtt, our DSAM gained per-
formance by extracting the most relevant features
via adopting the mention-aware attention mechanism,
which assists in capturing the subtle semantic differ-
ences among subtypes.

• Based on all the evaluation metrics, our DSAM out-
performed the other two variants (i.e., DSAM-dotAtt
and DSAM-selfAtt) after they were applied to the
three datasets. In particular, our DSAM obtained
a 1.75% improvement on the Macro-Precision and
a 0.36% enhancement on the Macro-Recall compared
to the best variant DSAM-dotAtt after application
to the FIGER dataset. The DSAM improved on the
Macro-Precision by 3.27% compared to DSAM-selfAtt
after application to the OntoNotes dataset. The
enhancement mainly comes from jointly combining
mention-level attention and context-level attention,
which can provide more supplementary semantics
compared to the methods adopting other attention
mechanisms.

Therefore, the observations verify that the proposed
mention-aware attention mechanism is more effective than
other methods for fine-grained entity typing, due to the com-
plementary information between an entity mention and its
context.

FIGURE 11. Performance of our DSAM with different λ on the three
datasets.

3) EFFECTIVENESS OF THE DIVERSIFIED CONSTRAINT
MODEL
To ensure the diversity in the attention process, the diversified
constraint model is further employed to drive the prediction
of the discriminative attention maps. The attention maps
constraint ensures that the generated attention maps have
high representativeness, while the attention segments con-
straint eliminates redundancy and enhances discrimination of
the selected segments. Both are jointly employed to exploit
the subtle semantic discrimination for distinguishing the
subtypes. The effectiveness of the diversified constraint
model is verified in the following paragraphs. In Table 6,
‘‘DSAM-AMC’’ refers to the DSAM only performing an
attention maps constraint, ‘‘DSAM-ASC’’ refers to the
DSAM only adopting an attention segments constraint, and
‘‘DSAM-NoDC’’ refers to the DSAM without considering
the diversified constraints model. From Table 6, we can see
that the performance ofDSAM-AMCwas better thanDSAM-
ASC in terms of all metrics after application to the three
datasets, which shows that the effect of the attention maps
constraint is stronger than that of the attention segments
constraint. In addition, a combination of the two constraints
(i.e., DSAM) further improved the classification perfor-
mance. In particular, our DSAM improved DSAM-AMC’s
AUC by 2.29% and DSAM-ASC’s Ma-P by 1.67% after
application to the FIGER dataset. Compared to the best
variant DSAM-AMS, our DSAM obtained over a 0.86%
improvement on Ma-P and over a 1.05% enhancement on
Ma-R after application to the OntoNotes dataset. Superior
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FIGURE 12. Three sentences and their attention maps at different time steps. The entity mentions are highlighted in yellow,
while the attention segments (bold typeface) are highlighted in red. Darker background color indicates higher attention score.

TABLE 6. The performance of the diversified constraint model on FIGER, OntoNotes and BBN datasets.

performance of our DSAM demonstrates the effectiveness
of the proposed diversified constraint model in promoting
selection of the discriminative features.

4) EFFECTIVENESS OF PARAMETER λ
Furthermore, Fig. 11 shows the performance sensitivity of
DSAM with respect to λ—the tuning parameter in the
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diversified constraint model to control the diversity of the
neighboring attention maps—after application to the three
datasets.

One can see that the performance of our DSAM improves
as λ increases, and dramatically decreases as λ is large
than 1, 2 and 1 after application to the three datasets respec-
tively. In particular, our DSAM achieved the highest Micro
F1 scores (81.46%, 78.19% and 80.31% respectively) after
application to the three datasets when λ = 1, λ = 2 and
λ = 1 respectively. Consequently, we set λ = 1, λ = 2
and λ = 1 throughout the experiments above for our DSAM
when applied to the FIGER, OntoNotes and BBN datasets
respectively.

V. VISUALIZATION OF DIVERSIFIED SEMANTIC
ATTENTION
We visualized the diversified attention maps generated
through our DSAM approach for several instances selected
from the three datasets, as shown in Fig. 12. Overall,
the diversified attention maps were correctly captured across
the different time steps. From Fig. 12(a), we can see that
the attentive words such as ‘‘staff’’ and ‘‘executives’’ were
first captured, and then ‘‘magazine’’ and ‘‘telephones’’ were
focused on to help classify ‘‘Time’’ as organization/company.
In the last few time steps, local discriminative words such
as ‘‘television subscription’’, ‘‘advertisers’’ and ‘‘annual sub-
scription’’ receivedmore attention, which assists in determin-
ing the subtype to be news instead of broadcast. Similarly,
in Fig. 12(b), the attentive words such as ‘‘ACL’’ and ‘‘for-
ward’’ were observed first. The discriminative words such
as ‘‘season’’ and ‘‘players’’ were then sequentially captured
from the next attention segments. For Fig. 12(c), the global
semantics were first captured from the long-length attention
segments. After shortening the attention segments, ‘‘traders’’,
‘‘stock’’, and ‘‘trading’’ were observed as well. Finally, the
fine-grained types organization/corporationwere assigned to
the mention ‘‘Big Board’’.

VI. CONCLUSION
In this paper, we propose a diversified semantic model
(DSAM) for fine-grained entity typing, which explicitly
diversifies the semantic attentions for capturing multiple
discriminative information. It dynamically captures impor-
tant information at each time step through a recurrent
mention-aware attention mechanism. As a second contri-
bution, a diversified constraint model is proposed to drive
the generation of attention maps, which combines two con-
straints: the attention maps constraint aims to ensure the
high representativeness of generated attention maps, and the
attention segments constraint aims to eliminate redundancy
and highlights discrimination of the attention segments. Com-
bination of both constraints yields a promotion on the cap-
turing of the subtle and local discrimination. Importantly,
our DSAM avoids using any prior knowledge and external
resources to move closer to a practical application. Exten-
sive experimental results demonstrate the effectiveness and

robustness of the proposed DSAM approach, when compared
with over 10 current state-of-the-art approaches after being
applied to three widely-used datasets.
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