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ABSTRACT Estimating semantic correspondence between pairs of images can be challenging as a result of
intra-class variation, background clutter, and repetitive patterns. This paper proposes a convolutional neural
network (CNN) that attempts to learn rich semantic representations that contain the global semantic context
to enable robust semantic correspondence estimation against intra-class variation and repetitive patterns.
We introduce a global context fused feature representation that efficiently employs the global semantic
context in estimating semantic correspondence as well as a semi-global self-similarity feature to reduce
background clutter-induced distraction in capturing the global semantic context. The proposed network is
trained in an end-to-end manner using a weakly supervised loss, which requires a weak level of supervision
involving annotation on image pairs. This weakly supervised loss is supplemented with a historical averaging
loss to effectively train the network. Our approach decreases running time by a factor of more than four and
reduces the training memory requirement by a factor of three and produces competitive or superior results
relative to previous approaches on the PF-PASCAL, PF-WILLOW, and TSS benchmarks.

INDEX TERMS Context fusion, historical averaging, neighborhood consensus network, semantic corre-
spondence, semi-global self-similarity, weakly supervised learning.

I. INTRODUCTION
Semantic correspondence is the problem of establishing
dense correspondence across images depicting different
instances of a given object or scene category [1]–[3].
Relative to early correspondence tasks [3]–[6], which focus
on finding correspondence between images depicting a given
object or scene, semantic correspondence is challenging as
a result of the need to process large intra-class variations,
viewpoint changes, and background clutter. To find corre-
spondence between related images, early approaches employ
hand-crafted features such as SIFT [7] or HOG [8] in asso-
ciation with geometric regularizers [9] and have proven use-
ful in various computer vision tasks such as image editing,
scene understanding, object tracking, object detection, and
3D reconstruction. However, owing to a lack of high-level
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semantic information, matching using hand-crafted features
often fails when large changes in appearance occur.

The development of convolutional neural networks
[10], [11] (CNNs) has led to significant progress in the
field of semantic correspondence in recent years. Recent
approaches adopting CNNs [12]–[20] benefit from the abil-
ity of such networks to learn high-level features for accu-
rate correspondence estimation. Among these approaches,
Neighborhood Consensus Networks [21] (NC-Nets) and
their variants [22]–[24] have shown excellent performance.
An NC-Net [21] employs a pre-trained network to extract
local feature maps from an image pair and calculates the
cosine similarities between any two locations in the respective
local feature maps, which are stored in a 4D tensor referred
to as the correlation map. The NC-Net then refines the cor-
relation map using a sequence of 4D convolutional kernels,
which are trained to capture matching patterns between two
different images and are highly effective in filtering incorrect
matches.
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The global semantic context or set of contextual informa-
tion on inter-pixel relations within an image, can be used
to help a visual system recognize an object’s spatial layout
to indicate where and how the object appears in the image.
Recently [22], the global semantic context has been incor-
porated into the NC-Net, further improving its performance
by enabling robust matching against repetitive patterns and
intra-class variation. In this approach, context-aware features
that contain the global semantic context are generated and
then correlation maps derived from local and context-aware
features are fused to apply the global semantic context to
local features. A dynamical fusion mechanism [22] for fusing
correlation maps to alleviate the performance degradation
problem caused by background clutter has also been devel-
oped. However, this method requires a long execution time
owing to its overuse of the 4D convolution kernels. Additional
4D convolution operations are needed to refine the correlation
map derived from the context-aware features and to fuse
the correlation maps dynamically. Since 4D convolution ker-
nels are prohibitively expensive, these approaches are com-
putationally intensive, resulting in lengthy execution time.
Furthermore, their training method [22] is highly memory
intensive since they require additional supervision from addi-
tional tasks to train the network.

Since the existing method of incorporating the semantic
context into NC-Net requires a large amount of computation
and memory, high-end or multiple graphics processing units
(GPU) are required to run and train the model. Therefore,
the existing method is inefficient in that it requires more
GPU resources to incorporate the semantic context. To min-
imize the GPU resource requirement, this paper proposes
a computationally efficient and memory-saving method of
incorporating semantic context into the task of semantic
correspondence estimation. To reduce the neural network’s
computational cost, the proposed method avoids combining
correlation maps to incorporate the global semantic context
by directly combining the global semantic context with the
local features, thereby avoiding the high number of heavy 4D
convolution operations needed to fuse the correlation maps.
Furthermore, it efficiently mitigates performance degradation
problems arising from background clutter by considering the
inter-pixel spatial properties in capturing the global semantic
context. The proposed network is trained with weak super-
vision from an image label-annotated dataset in an end-to-
end manner, and a historical averaging loss [25] is used to
efficiently train the network, reducing the training memory
requirement relative to the previously developed methods.

We evaluated the accuracy of the proposed method in car-
rying out a weakly supervised semantic correspondence task
through experiments using data from three public datasets—
PF-PASCAL [26], PF-WILLOW [27], and TSS [28]. We fur-
ther compared its training memory usage and execution time
with those of other neighborhood consensus (NC)-based
methods. The results revealed that the proposed method is
four times faster and uses one-third the training memory
compared to the prior approaches [22], while producing

competitive results relative to state-of-the-art weakly super-
vised semantic correspondence methods. We summarize our
contributions as follows: first, our proposed global context
fused feature representation makes our method faster than
existing state-of-the-art methods; second, we introduce a
semi-global self-similarity feature to efficiently mitigate the
effect of background clutter on the captured global context;
and third, we achieve competitive performance while reduc-
ing training memory usage compared to existing methods.

II. RELATED WORK
Conventional correspondence tasks [3]–[6] focus on match-
ing local descriptors around the interest points of an image.
This is done through instance matching [7] or by estimating
dense matches between images within a given scene using
optical flow estimation [3], [4] or stereo matching [5], [6].
Unlike conventional tasks, semantic correspondence esti-
mates dense matches across images depicting different
instances of a given object or scene class. Early semantic cor-
respondence approaches employed hand-crafted descriptors
such as SIFT [7], [29], HOG [8], [27], [28], and DAISY [30]
in conjunction with geometric models [9], [29], [31] or ran-
dom sampling [32], [33]. As matching with hand-crafted
features is easily distracted by background clutter or scale
changes, several attempts have been made to estimate cor-
respondence by using object proposal [27], [34] to generate
matching elements or jointly perform co-segmentation [28]
or performing matching in scale space [35] to obtain robust
matching against background clutter and scale change.
However, the lack of high-level semantic information in
hand-crafted features often causes these approaches to fail
when facing non-rigid deformation or large changes in
appearance.

Recently developed semantic correspondence approaches
[12]–[20] employ CNNs to obtain high-level semantic fea-
tures that are robust to intra-class and shape variation. Several
approaches [13]–[16], [18], [19], in which semantic corre-
spondence is formulated as image alignment, employ CNN
architecture to estimate transformation parameters between
pairs of images. Rocco et al. [13] proposed a network that
infers geometric transformation between two images by train-
ing in a self-supervised fashion. Seo et al. [16] proposed an
attentive alignment method for filtering distracting regions.
Inspired by RANSAC, Rocco et al. [14] further introduced
an end-to-end trainable andweakly supervised CNN architec-
ture using soft inlier counts. Their work was further improved
by introducing joint learning with co-segmentation [15] and
applying methods for predicting the foreground region and
enforcing cycle consistency [18]. Kim et al. [19] designed
a network with a recurrent structure to estimate geomet-
ric transformation iteratively. However, because only low-
omplexity parametric transformations are inferred between
images, these methods are highly sensitive to non-rigid defor-
mation and local geometric variation.

Unlike image-alignment approaches, semantic flow
[12], [17], [20], [36], [37] finds correspondence between
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individual pixels or patches by learning local features for
semantic correspondence. These approaches are not sig-
nificantly affected by non-rigid deformation. Choy et al.
introduced the UCNet CNN model [20], which learns
feature embedding for semantic correspondence problems
through deep metric learning. Han et al. [12] proposed a
CNN model that estimates the semantic correspondence
between images using both appearance and geometry infor-
mation. In [38] and [39], approaches to learning geometry-
aware features through self- and weakly-supervised methods,
respectively, were introduced. The FCSS [36] computes local
self-similarity descriptors [40] with learned sparse sampling
patterns in the object proposal and uses them to estimate
a dense affine transformation flow at each feature loca-
tion. The Hyper-pixel flow approach [37] applies the beam
search algorithm to effectively combine features extracted
from different layers, thereby improving the performance of
the correspondence task. SFNet [17] uses images annotated
with binary foreground masks and subjected to synthetic
geometric deformation to train CNNs with mask and flow
consistency and smoothness loss.

The NC-Net semantic flow approach [21] adopts a
sequence of 4D convolutions that incorporate neighborhood
consensus information to refine a 4D tensor that stores all
matching scores. However, as the size of the 4D matching
tensor increases quadratically with the size of the image,
NC-Net is not scalable to high-resolution images. Further-
more, 4D convolution consumes large amounts of memory
and suffers from long execution times. To address these
issues, Sparse-NCNet [24] creates a sparse 4D matching
tensor and processes using sub-manifold sparse convolu-
tion, whereas DRCNet [23] carries out a 4D convolution
operation on a coarse-resolution image and incorporates the
results into a 4D tensor obtained from the corresponding
fine-resolution features. Other recent approaches [22], [41]
apply semantic context to reduce intra-class variation and
resolve the matching ambiguities in semantic correspondence
estimation. DCCNet [22] uses a self-similarity descriptor to
generate context-aware features that are fused with the local
features using an attention mechanism. ANCNet [41] applies
the multi-scale self-similarity feature as context-aware fea-
tures and carries out processing using non-isotropic 4D
convolution. These methods, however, require multiple 4D
convolution operations to process additional context-aware
features, an approach that degrades the inference time and
is memory intensive. Unlike these approaches, the proposed
method does not require additional 4D operations or tensors,
making it much more efficient than previous approaches in
terms of computational cost and memory usage [22].

III. METHOD
A. PROBLEM SETTING AND OVERVIEW
The goal of semantic correspondence is to estimate the
pixel-wise correspondence between pairs of images depicting

different instances from a given object or scene class.
A common approach to the estimation of pixel-wise corre-
spondence is matching the local features of two different
images. In this process, local features are first extracted
from an image pair and then similarity scores are calculated
for all possible feature matches between the two images.
Pixel-wise correspondence is inferred by selecting the feature
match with the highest similarity score. However, the lack of
global semantic context information in the local features can
lead to the miscalculation of the similarities between differ-
ent image points, primarily when large intra-class variation
occurs, and repetitive patterns are present. To achieve robust
matching against intra-class variation and repetitive pattern,
the proposed method adds global contextual information to
local features through the use of a CNN that incorporates
semantic context in local features to achieve robust semantic
correspondence estimation.

The overall architecture of the proposed network is shown
in Fig. 1. It comprises a feature extractor, a local-context
fusion module, and a neighborhood consensus module. As a
first step, local features are extracted from input image pairs
using the pre-trained CNN as the feature extractor. Each
image pair

(
Is, I t

)
is fed into a feature extractor to obtain

a local feature map pair
(
X s,X t), where X s

∈ Rd×hl×wl

and X t
∈ Rd×hl×wl are the normalized local feature repre-

sentations of input images Is and I t , respectively, d is the
dimension of local feature, and hl,wl are the height and width
of the local feature map, respectively.

The local-context fusion module (LCF) is used to incor-
porate global semantic context into the local features. The
LCF module first captures the global semantic context from
the local feature map by extracting self-similarity features
that convey the internal spatial layout of the image. The
module then generates context-aware features by integrating
self-similarity features with local semantic features. After
multiplying the learnable scalar by the context-aware features
to adjust the global semantic context information in the local
features, the module combines the context-aware features
with the local features to add global semantic context. In this
process, the LCF module receives a local feature map pair
(X s,X t ) as an input and produces a new feature map pair
(Zs,Zt ) that contains local appearance and global semantic
context information.

The cosine similarities of all possible matches between
Zs and Zt are compared and stored in a 4D tensor referred
to as the correlation map, C, where C ∈ Rhl×wl×hl×wl .
The correlation map is then refined using the neighborhood
consensus (NC) module [21], which applies a sequence of 4D
convolution kernels to filter out incorrect matches in the
correlation map.

Finally, the pixel-wise correspondence is inferred from the
refined correlation map by extracting the most likely matches
from it. The model is trained with a weakly supervised
loss [21] that requires supervision at the level of image pairs
in an end-to-end manner. To effectively train the network,
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FIGURE 1. Overview of proposed network. Given an image pair
(

Is, I t
)

, the network extracts a local feature map pair (X s,X t ) using the feature
extractor. The LCF module then captures the global semantic context from each local feature map and generates a global context fused feature map
pair (Z s,Z t ). A 4D correlation map C is then produced by computing all possible matching similarities between Z s and Z t . C is refined using the NC
modules to filter incorrect matches within it. Finally, semantic correspondence is inferred from the refined correlation map C̃ by selecting the most-
likely matches in C̃ .

FIGURE 2. Overview of semi-global self-similarity feature generation process, in which local attention masks are applies as similarity features S to draw
attention to local self-similarity patterns for mitigating the effect of background clutter.

a further historical averaging loss [25] is applied to theweakly
supervised loss results.

B. LOCAL CONTEXT FUSION MODULE
The LCF module incorporates spatial context into the sets of
local features established by the feature extractor by gener-
ating context-aware features from the local feature map and
combining them with the local features. In subsection 1),
we introduce a new self-similarity feature that effectively

describes the global semantic context, as shown in Fig. 2.
Following this, in subsection 2) we describe the generation of
context-aware features using the local features and the self-
similarity feature introduced in Subsection 1 and introduce a
method for combining local and context-aware features.

1) SEMI-GLOBAL SELF-SIMILARITY FEATURE
To capture the global semantic context, global self-similarity
features that measure the self-similarity patterns of an entire
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image are used as global spatial layout cues. These global
self-similarity features are calculated in a manner similar to
that used to generate attention maps [42]. First, the local fea-
ture mapX is transformed into a new feature mapU . For each
location (i, j) in U , the global self-similarity features at (i, j)
are obtained by calculating the cosine similarities between the
feature ui,j and all features in U . The ReLU activation func-
tion is then used to suppress negative self-similarity scores
to filter out irrelevant pixels. The self-similarity feature is
calculated as follows:

ui,j = 9u(xi,j) (1)

si,j = ReLU(

[ 〈
ui,j,u1,1,

〉∥∥ui,j∥∥2 ∥∥u1,1∥∥2 , . . . ,
〈
ui,j,uhl ,wl

〉∥∥ui,j∥∥2 ∥∥uhl ,wl∥∥2
]
) (2)

S = {s1,1, . . . , shl ,wl } (3)

si,j ∈ RN×1, S ∈ RN×hl×wl (4)

where 9u(xi,j) = 8uxi,j is a linear transformation in which
8u ∈ Rd×d is the weight matrix to be learned, si,j is the
self-similarity feature of location (i, j), N = hl × wl , and
S denote the self-similarity features of image I . In calculat-
ing self-similarity, it is insufficient to describe the correla-
tion between features by measuring the similarity using the
feature value alone without considering the spatial proper-
ties between features. Therefore, more precise self-similarity
patterns are extracted by considering the spatial relations
between features. Using the fact that the correlation between
two points in an image increases as they approach each other,
the self-similarity scores are increased as the spatial distance
between two features is reduced. In thismanner, the local self-
similarity patterns can be used to increase the similarity score
as the spatial distance between features diminishes.

A Gaussian function is used to build a local attention mask.
For a self-similarity feature si,j, a local attention mask mi,j is
generated using gi,j, a Gaussian function with center position
(i, j). The resulting local attention mask has a value of one
at (i, j) and smoothly decreases to zero as the distance from
(i, j) increases. This local attention mask is applied to the
self-similarity patterns by performing element-wise multipli-
cation between si,j and mi,j to produce a new self-similarity
feature, oi,j, which is referred to as a ‘‘semi-global’’ self-
similarity feature because it captures the global self-similarity
patterns while focusing on the local self-similarity patterns.
The process for applying the local attention mask to self-
similarity features is given by the following:

gi,j (k, p) = exp(−
(i− k)2 + (j− p)2

2σ 2 ) (5)

mi,j = {gi,j(1, 1), . . . , gi,j(hl,wl)} (6)

oi,j = mi,j � si,j (7)

oi,j, mi,j ∈ RN×1 (8)

O ∈ RN×hl×wl (9)

where � is element-wise multiplication, gi,j is a Gaussian
function with center position (i, j) and standard deviation
σ, oi,j is the semi-global self-similarity feature of location

(i, j), and O denotes the semi-global self-similarity features
of image I .
Through this focusing on local self-similarity patterns,

the proposed method obtains global semantic context that
is robust to background clutter. The self-similarity feature
should capture a self-similarity pattern within the global
region that can represent the global semantic cue. As longer-
range self-similarity patterns include more similarities with
spatially distant background clutter, the results of capturing
the global semantic context using self-similarity features can
be easily affected by background clutter. However, by using
local self-similarity patterns obtained from the local attention
mask, it is possible to reduce the similarity scores with spa-
tially distant background clutter, thereby reducing the impact
of background clutter on the captured global semantic cue.

Unlike FCSS [36], our method does not rely on object
proposal, which increases the estimation time needed to find
matching elements. The proposed method measures self-
similarity patterns over the global region to capture a global
semantic context, whereas FCSS focuses on measuring the
self-similarity pattern within a local region.

This approach is similar to the one used by DCCNet [22],
which also uses self-similarity patterns within the global
region as spatial layout cues. However, our method does not
require the size of the local feature map to be increased
for measuring the self-similarity pattern, making it more
memory-efficient than DCCNet. In addition, unlike DCCNet
the proposed method efficiently removes the effect of back-
ground clutter on the self-similarity. To mitigate the effect of
background clutter, DCCNet uses an attention module [22]
to dynamically fuse context-aware and local features. This
approach is computationally expensive because it requires
additional heavy 4D convolution operations to carry out the
fusion. The proposed approach is more computationally effi-
cient because it requires only element-wise multiplication
in applying the local attention mask to the mitigation of
background clutter.

FIGURE 3. Overview of procedure for generating fused global semantic
context features.

2) LOCAL CONTEXT FUSION
Here, we describe the process for generating context-aware
features from the semi-global self-similarity features and
combining them with local features (Fig. 3). The semi-global
self-similarities contain only the spatial layout information of

2500 VOLUME 9, 2021



H.-J. Lee et al.: Semi-Global Context Network for Semantic Correspondence

the image and lacks the appearance information represented
by local features. To capture different aspects of the semantic
object, therefore, the proposed method applies the fusion
step from [22] to generate context-aware features. The semi-
global self-similarity features O are then integrated with the
local feature map by applying a linear transformation over the
concatenation of O and X as follows:

wi,j = 8w[xi,j, oi,j
]

(10)

wi,j ∈ Rd×1 (11)

where 8w ∈ Rd×(d+N ) is the weight matrix that transforms
the concatenated features into d -dimensional space, and wi,j
is the context-aware feature of location (i, j). The context-
aware semantic features are then added to the local features
to incorporate the global semantic context into the local fea-
tures. Before adding the context-aware features to the local
features, the former are multiplied by the learnable scalar γ
to adjust the global semantic context in the local features:

zi,j = xi,j + γwi,j (12)

Z = {z1,1, . . . , zhl ,wl } (13)

zi,j ∈ Rd×1, Z ∈ Rd×hl×wl (14)

where Z denotes the global semantic context fused features of
image I and the additional superscripts represent the global
semantic context fused features Zs and Zt obtained from
images Is and I t , respectively.
However, adding untrained context-aware features directly

to local features in the early stage of training results in
unstable training. To prevent this, the learnable scalar γ is
initialized to zero to ensure that the network relies on local
features to find correspondences between images in the early
stage of training. As the network learns to capture the global
semantic context from images, it gradually incorporates a
more global semantic context by assigning more weight to γ .
Thus, the network can be trained stably by relying on local
features at the early training stage and gradually adding the
global semantic context as the training proceeds.

This approach is much lighter computationally than that
used by DCCNet. As DCCNet generates an additional
4D correlation map for context-aware feature map pairs,
it becomes computationally intensive as a result of the heavy
4D convolution operations needed to fuse the correlation
maps. By contrast, our approach directly adds context-aware
features to local features to avoid generating an additional 4D
correlation map, allowing it to incorporate semantic context
more efficiently and increase its speed relative to that of
DCCNet.

C. NEIGHBORHOOD CONSENSUS MODULE
To infer pixel-wise correspondence between Zs and Zt ,
cosine similarities are calculated for all possible matches
between the features and stored in the 4D correlation maps

C ∈ Rhl×wl×hl×wl :

ci,j,k,p =

〈
zsi,j, z

t
k,p

〉
∥∥∥zsi,j∥∥∥2 ∥∥∥ztk,p∥∥∥2 (15)

where ci,j,k,p is the matching similarity scores between
zsi,j and ztk,p. To enable precise pixel-wise correspondence,
the correlation map C is further refined by filtering out incor-
rect matches. To do this, the NC module from NC-Net [21]
is adopted. The NC module comprises a stack of 4D
convolutions that filter out incorrect matches by analyz-
ing local neighborhood matching patterns. The proposed
method applies this module to both matching directions
(i.e., to matching Is to I t and matching I t to Is), making
the model invariant with respect to the order of images. The
refined 4D correlation map is obtained as

C̃ = N (C)+
(
N
(
CT
))T

(16)

where N is the NC module, T denotes the swapping of the
matching direction for an image pair, i.e.,

(
cT
)
i,j,k,p = ck,p,i,j,

and C̃ is the refined correlation map, which is the final
output of the network. Amutual nearest neighbor consistency
constraint [21] is also applied before and after N to down-
weight the scores of matches that are not mutually nearest
neighbors; the reader is referred to [21] for further details.

1) MOST-LIKELY MATCHES
Finally, the pixel-wise correspondence between images is
inferred by selecting themost-likely matches from the refined
correlation map. Before extracting these matches, softmax
normalization is applied to the similarity scores to convert
matching scores into matching probabilities. The matching
probability of a given point (i, j) in Is to an arbitrary point
(k, p) in I t is

vsi,j,k,p =
exp(c̃i,j,k,p)∑
a,b exp(c̃a,b,k,p)

(17)

Similarly, the matching probability of a given point at (k, p)
in I t to an arbitrary point (i, j) in Is is

vti,j,k,p =
exp(c̃i,j,k,p)∑
c,d exp(c̃i,j,c,d )

(18)

After performing the softmax normalization, pixel-wise cor-
respondence between the pair of images is attained by per-
forming hard assignments [21] over the refined correlation
map in either of two possible directions—from Is to I t or vice
versa—to select the most-likely matches. A given position
(i, j) in Is will correspond to (k, p) in I t if

(k, p) = argmax
c,d

vsi,j,c,d (19)

Similarly, a given position (k, p) in I t will correspond to (i, j)
in Is if

(i, j) = argmax
a,b

vta,b,k,p (20)
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D. LEARNING OBJECTIVE
The model parameter is trained in a weakly supervised man-
ner that requires only a weak level of supervision comprising
annotation on image pairs. For this, the weakly-supervised
training loss proposed in NC-Net [21], which has the func-
tional form

`ω
(
Is, I t

)
= −y

(
vs + vt

)
(21)

is adopted, where y denotes the ground-truth label of the
image pair (Is, I t ), with y = +1 and y = −1 corresponding
to positive and negative matching, respectively, and vs and vt
are the mean matching scores over all of the hard-assigned
matches of a given image pair (Is, I t ) in both matching direc-
tions. Minimization of this loss maximizes and minimizes the
scores of the positive and negative image pairs, respectively.

To stabilize the training process, the network gradually
adds the global semantic context to the local features as the
training proceeds. This allows the NC module to learn to
filter out incorrect matches between local featuremaps during
the early training process and to gradually learn to filter out
matches between feature maps containing a global semantic
context. However, as training proceeds the NCmodule slowly
forgets to filter incorrect matches between local feature maps.
To train the NC module more effectively, the past-learned
information is used to induce the NC module to preserve
its ability to filter incorrect matches between local feature
maps. To reuse the past-learned information, the historical
averaging loss [25] on the NC module is applied as follows:

`h (θNC ) =

∥∥∥∥θNC − 1
t

∑t

i=1
θNC [i]

∥∥∥∥
2

(22)

where θNC are the current parameters of the NC module,
and θNC [i] are the parameters of the module at past time i.
By continuously updating the past averages of the NCmodule
parameters, it is possible for the module to retain the infor-
mation learned during the training process. The overall loss
of the proposed model can be written as

`
(
Is, I t

)
= `ω

(
Is, I t

)
+ λ`h (θNC ) (23)

where λ is a weight balancing term. To effectively train the
network, DCCNet [22] uses additional supervision from two
additional tasks involving the addition of training networks
with correlation maps derived from the local and context-
aware features, respectively. Adding these auxiliary tasks has
shown to produce outstanding performance but requires a
large amount of training memory to train the network with
the additional correlationmaps. The proposedmethod ismore
memory-efficient than DCCNet [22] because it avoids using
additional correlation maps to train the network.

IV. EXPERIMENT
A. IMPLEMENTATION DETAILS
We implemented the proposedmethod using the PyTorch [43]
framework. As a feature extractor, we used ResNet101 [11]
pre-trained on ImageNet [44] with the parameters fixed and

cropped at the conv4-23 layer. In the local-fusion context
module, we set the value of σ in Eq. (5) to 7 and the
output dimension of the number of context-aware semantic
features, d , to 1,024, which is the same dimension of features
established by the feature extractor. For the NC module,
we followed [21] and stacked three 4D convolutional layers
with the kernel size set to 5 × 5 × 5 × 5 and the channel
number of the intermediate layer set to 16.

To train the network, we set the value of λ in the historical
averaging loss to 1 by validation. We kept the pre-trained
feature extractor weights fixed and initialized the weights of
the LCF module randomly. The neighbor consensus module
was initialized using the pre-trained weight from [21]. The
network was trained for five epochs on a Tesla P100 with
early stopping to avoid overfitting. An Adam optimizer [45]
with a learning rate of 0.0005, no weight decay and batch size
of 16 was used.

We then trained the model using the PF-PASCAL [26]
dataset and evaluated its performance in carrying out weakly
supervised semantic correspondence tasks using the PF-
PASCAL [26], PF-WILLOW [27], and TSS datasets [28].
To evaluate the model on the three different datasets,
we reshaped the size of all images to 400 × 400.

B. BENCHMARK COMPARISONS
1) PF-PASCAL BENCHMARK
The PF-PASCAL benchmark contains 1,351 keypoint anno-
tated image pairs classified into 20 categories. Following the
split in [12], we divided the dataset into 700 training pairs,
300 validation pairs, and 300 test pairs. To train the network
using weakly supervised loss, we followed the procedure
in [21] by using the 700 training pairs as positive train-
ing pairs and generating negative pairs by randomly paring
images from different categories.

We evaluated the model using the percentage of cor-
rect keypoints (PCK) matrix [46], which counts the number
of correct keypoints whose distance from ground-truth lies
withinαmax(h,w) pixels, where h andw are height andwidth,
respectively, of the image or bounding box, and then divides
by the total number of image pairs. In linewith previouswork,
we evaluated PCK(α = 0.1) with respect to image size.
Table 1 compares the results obtained using our method

with those obtained using recently developed state-of-
the-art methods including NC-Net [21], DCCNet [22],
WeakAlign [14], A2Net [16], CNNGeo [13], Proposal
Flow [27], UCN [20], and different versions of SCNet [12].
The proposed method achieves an overall PCK of 82%,
which is only 0.3% lower than that of the best state-of-the-art
method. It outperforms recent image alignment approaches
(CNNGeo, A2Net, WeakAlign) because they are sensitive
to non-rigid deformation and local geometric variations as
they only estimate low-complexity parametric global trans-
formation between two images. The proposed method avoids
this problem by inferring pixel-wise correspondence from the
correlation map. The proposed method outperforms recent
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TABLE 1. Per-class PCK(α = 0.1) by image size on the PF-PASCAL [26] dataset.

FIGURE 4. Qualitative comparisons on the PF-PASCAL dataset. The leftmost column shows source images. The second, third, and fourth columns show
predictions from NC-Net [21], DCCNet [22], and the proposed model, respectively. The ground truth and predicted key-points are indicated by squares and
dots, respectively, with their distances in the target image representing matching error. It is seen from the figures that the proposed and DCCNet methods
are more robust than NC-Net to repetitive patterns and intra-class variation.

semantic flow approaches (Proposal Flow, UCN, SCNet),
which indicates that further processing the correlation tensor
with 4D convolutional kernels to filter out incorrect matches
significantly improves the accuracy of the correspondence
estimation. We compare the proposed model with other
neighborhood consensus-based approaches (NC-Net, DCC-
Net) and present a qualitative comparison between the results
obtained using these approaches (Fig. 4). It is observed that
DCCNet and our method are more robust against repetitive
patterns than NC-Net, as both DCCNet and the proposed
model use the global context information at each image
location in conjunction with local semantic features, whereas
NC-Net solely relies on local semantic features.

2) PF-WILLOW BENCHMARK
The PF-WILLOW [27] dataset contains 900 image pairs,
selected from 100 images, with corresponding ground-truth

TABLE 2. Evaluation results obtained using PF-WILLOW [27] dataset.

bounding boxes. We computed the PCK scores with respect
to bounding box size at multiple thresholds (α = 0.05,
0.10, 0.15) and compared the PCK accuracies of the pro-
posed method with those of the state-of-the-art semantic
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FIGURE 5. Qualitative results on PF-WILLOW [27] dataset.

correspondence methods (Table 2). It is seen that, for
α = 0.05 and 0.10, our method improves the PCK accuracies
compared to the best- performing state-of-the-art approaches
by 0.88% and 0.01% respectively. Furthermore, at α = 0.15
our method achieves a competitive PCK of 86.44%, which is
only 0.06% lower than that achieved by DCCNet. As shown
by the results at α = 0.05, our method has a more pre-
cise localization ability than previous semantic correspon-
dence outlines. Fig 5 shows the qualitative obtained on the
PF-WILLOW dataset.

3) TSS BENCHMARKS
We further evaluated the proposed model on the TSS bench-
marks [28], which contain a total of 400 image pairs divided
into three groups: FG3DCAR, JODS, and PASCAL. The TSS
benchmarks provide dense flow fields obtained by interpolat-
ing sparse keypoint matches and co-segmentation masks for
each image pair. Following the experimental protocol proto-
col used in [28], we computed the PCK over the foreground
objects with respect to image size for α = 0.05.

TABLE 3. Evaluation of results obtained using TSS [28] dataset.

Table 3 and Fig. 6 show the quantitative and qualitative
results obtained on the TSS benchmarks, respectively. Our
method achieves the same performance as a state-of-the-art

FIGURE 6. Qualitative results obtained using TSS [28] dataset.

TABLE 4. Runtime comparison of local region matching.

result on FG3DCAR and a competitive PCK accuracy
of 82.2% on JODS, which is only 0.4% less than the result
obtained by DCCNet. Furthermore, our method improves on
the state-of-the-art results in terms of average performance
over the three groups on the TSS dataset. These TSS bench-
marks results demonstrate our method’s ability to generalize
to novel datasets outside of the training domain.

C. COMPARISON WITH OTHER NEIGHBORHOOD
CONSENSUS-BASED APPROACHES
1) RUNTIME COMPARISON
Table 4 compares the runtime performance of several
NC-based methods. To enable a straight comparison,
we implemented all source codes using PyTorch [43] and
measured the average runtimes on the same machine with
an NVIDIA Tesla P100 GPU. It is seen that DCCNet [22]
requires more 4D convolution operations than NC-Net and
our method to combine the local and context-aware fea-
ture convolutions. As 4D convolution itself requires a large
amount of computation, this significantly degrades its run-
time performance, as shown in Table 4. By contrast, our
method requires only the use of additional 2D convolution
operations to generate local-context fusion features. As 2D
convolution is computationally much lighter than 4D con-
volution, it does not significantly slow runtime performance
relative to DCCNet (Table 4).

2) TRAINING MEMORY USAGE COMPARISON
We evaluated the training memory requirements of
NC-Net [21], DCCNet [22], and our model (Fig. 7); the
number of training parameters are presented in Table 5. The
training memory usages were measured in the same environ-
ment used for the runtime comparisons. We selected NC-Net
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FIGURE 7. GPU training memory consumption as a function of batch size.

TABLE 5. Number of trainable parameters.

as the baseline because it trains only as a networkwith weakly
supervised loss. Because the input and output tensor of each
layer are temporarily stored on the memory for calculating
the weight gradients via backpropagation, the dimensions of
the input and output tensors considerably affect the training
memory. Therefore, despite the small number of training
parameters, NC-Net requires large amounts of training mem-
ory owing to processing high-dimensional 4D tensors. The
results in Fig. 7 indicate that DCCNet requires approximately
370% more GPU memory than NC-Net at each batch size
owing to storing more 4D tensors in the memory for its multi-
auxiliary task loss and additional weights provided by the
dynamic fusion network and spatial context encoder [22].
By contrast, our method requires only approximately 19%
more GPU memory than NC-Net owing to its historical
averaging loss term and additional weights provided by the
LCF module. These results indicate that our training method
is much more efficient than that used by DCCNet in terms of
memory usage.

TABLE 6. Ablation study experimental results.

D. ABLATION STUDY
We conducted ablation studies on different components of the
LCFmodule and on the losses used in our model. We selected
NC-Net [21] as the baseline and evaluated the PCK (α = 0.1)
results obtained on the PF-PASCAL [26] test split (Table 6).

TABLE 7. Effect of σ in LCF module on PF-PASCAL [26] dataset.

1) SELF-SIMILARITY FEATURES
We conducted a series of experiments using different types
of self-similarity feature to encode the context-aware fea-
tures. Adding context-aware features encoded with global
self-similarity features to local features (GL0) improved the
overall PCK by 0.81% relative to NC-Net and adding context-
aware features encoded with semi-global self-similarity
features to the local features (SL0) further improved the per-
formance by 1.32% relative to using context-aware features
encoded with a global self-similarity feature (GL0). These
improvements indicate the effectiveness of using semi-global
self-similarity features as a global context cue. Table 7 further
lists the effects of semi-global self-similarity features with
different σ values.

2) FUSION METHOD
We subsequently conducted experiments in which the settings
of γ in Eq. (12) were varied to obtain different fuse local and
context-aware features. As seen from Table 6, setting γ to a
constant value of 1.0 for combining local and context-aware
features (SC1H) downgrades the performance significantly,
producing an overall reduction in PCK of 10.29% relative
to NC-Net. Furthermore, setting γ as a learnable scalar and
initializing it to 1.0 (SL1H) downgrades performance relative
to NC-Net—in this case by an overall reduction in PCK
of 0.8%—owing to unstable training at the early training
stage. By contrast, combining local and context-aware fea-
tures while using γ as a learnable scalar initialized to zero
yields significantly better results (82.0%), illustrating the
necessity of gradually adding context-aware features to local
features to prevent the large degradation induced by unstable
training.

3) HISTORICAL AVERAGING
To analyze the effects of historical averaging loss, we com-
pared the model between being trained with and without an
historical averaging term. It is seen from Table 6 that, with an
historical averaging loss term (SL0H), the proposed model
obtains a PCK value 0.97% higher than that without such a
term (SL0), reaching an overall PCK of 82.0%. This result
illustrates the effectiveness of historical averaging loss in
regularizing the weakly supervised loss term in Eq. (21).With
the addition of the historical averaging loss term, the NC
module retains information learned at the beginning of the
training phase, enabling it to combine local and context infor-
mation more efficiently to achieve better semantic correspon-
dence estimation.
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V. CONCLUSION
In this paper, we introduced a CNN for semantic corre-
spondence estimation. Our focus in developing this network
was on efficiently incorporating the global context cue into
local semantic features to achieve accurate semantic match-
ing. To this end, we introduced a semi-global self-similarity
feature for capturing the global context semantic cue while
reducing the sensitivity to background clutter. We further
proposed the LCF module, which effectively fuses the global
context cue to local features. Finally, we applied historical
averaging loss to train our network efficiently. We evaluated
our method on the PF-PASCAL [26], PF-WILLOW [27], and
TSS [28] benchmarks and compared its performance with
that of prior methods [22] in terms of inference time and
training memory usage. The results demonstrated that the
proposed model is much faster and more memory-efficient
than existing approaches and achieves comparable accuracy.

However, training the model with weak supervision can
be easily overfitted, especially when training the model with
a small dataset such as PF-PASCAL. The proposed method
also requires a significant amount of computation to refine
correlation maps with sequences of 4D convolution kernels.
In future work, we will train the model with other spa-
tial regularizers that enforce strong spatial constraints for
semantic correspondence, such as a cycle-consistency con-
straint or smoothness constraint, to overcome the overfitting
problem and improve the accuracy of the model. We will
train the model with other training strategies such as self-
supervised or semi-supervised training methods to train a
model with stronger supervision than the weakly supervised
method on a small dataset. We will also attempt to develop a
simple method of refining the correlation map to reduce the
computation needed for correspondence estimation. We will
develop an effective way to reduce the size of the correlation
map while maintaining the pixel-wise correlations between
images and develop low complex kernels to filter out incor-
rect matches in the correlation map.
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