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ABSTRACT Radio access technologies (RATs) are a key topic in railways, enabling them a better service
rendering in terms of shorter headways between trains, higher safety levels and higher customer satisfaction.
Very often, these railway RATs need a lot of time to be developed, tested and put into service, which
implies a lack of efficiency and bottlenecks in the evolution of railway systems. To solve this situation,
an emulation platform that considers both the physical layer and the network (this is, able to emulate the
end-to-end chain) is envisaged in the EmulRadio4Rail project. Therefore, the physical layer of many railway
scenarios must be emulated, which is a remarkable challenge because railways are very diverse. We see
Tapped-Delay Lines (TDL) models as the most efficient way for emulation with the available hardware.
In the literature, there are many TDL-based channel models for all the scenarios we considered but one:
tunnels. Therefore, in order to fill this gap, we develop a novel TDL model for railway tunnels, considering
the impact of the rolling stock (both high-speed railway (HSR) and subway trains). The proposed model
allows the full characterization of this scenario in terms of power-delay-profile (PDP), Doppler spectrum
and fading characteristics.

INDEX TERMS Channel modeling, propagation, railway communications, tapped-delay-line models,
tunnel.

I. INTRODUCTION
In railways, communication systems are becoming more and
more necessary now than ever due to the increasing demand
for more punctual train services, shorter headways between
trains, faster connections to the Internet for passengers and
massive sensor networks onboard the trains, among many
others [1], [2]. However, recent history has proven that the
development of these technologies is very slow (i.e. Global
System for Mobile Communications – Railway (GSM-R),
the dominant radio access technology in railways is almost

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

20 years old [1]) because the difficulties to do tests on
real environments and, on a lesser extent, the absence of
economies of scale on a niche market like this. The first
problem is targeted by the development of a radio channel
emulator which is the main purpose of the EmulRadio4Rail
project [3], within the European Shift2Rail initiative.

This radio channel emulator should allow physical con-
nections from the radio access technologies (RATs) being
tested on both sides [4]–[7], in order to emulate the whole
end-to-end communication system (both the physical and the
network layer). The Emulradio4rail platform supports mul-
tiple emulation technologies such as Long Term Evolution
(LTE) [8], Wireless Fidelity (Wi-Fi), the fifth-generation
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mobile communication system (5G) and SatComs [3].
Therefore, with this new tool, the validation process of both
existing and new RATs will speed up and some of the current
shortcomings of transmission-based signaling technologies
like Communication Based Train Control System (CBTC)
and European Train Control System (ETCS) will be finally
overcome. This will be done in accordance of the Future Rail-
wayMobile Communications System (FRMCS), an initiative
that will enable a theoretically easy migration from GSM-R,
increase throughput, provide both security and safety func-
tionalities and improved resilience to interferences [9].

In order to validate the FRMCS technologies, an exhaus-
tive process is needed formany different railway applications,
like high-speed railway (HSR), subways, tramways, main-
line, etc., as well as particular scenarios such as cuttings,
tunnels, urban areas, hilly, viaducts and a large etcetera.
Railways are very diverse all over the world and a technology
aimed to work for the whole sector must address this com-
plexity. Therefore, the RAT emulator must consider many dif-
ferent scenarios to provide support for RATs. The way to do
this is to identify reliable and accurate physical-layer channel
models for all of them [10]. Due to the available hardware
in the Emulradio4rail project and also for efficiency-related
considerations that will be discussed in Section II, the mod-
els that were decided to be emulated in the project were
the tapped-delay line (TDL) based models [11]. As Train-
to-Ground (T2G) is the main application of this project,
an exhaustive research of published TDL-based models was
carried out. Several were found in many different scenarios
(as we will see in detail later) but not for tunnels. There
are many measurement campaigns and channel models for
tunnels [12]–[17] but no one of them is TDL-based. The
reason for this is that in this environment there are many mul-
tipath components (MPC) very close together and, in order
to provide an accurate and useful TDL-based channel model,
the needed resolution in the time-domain is very demanding
(around 1 ns), which implies 1 GHz bandwidth for the chan-
nel sounder [18], [19]. These models are relevant contribu-
tions to the research in this field but they are not useful for
our channel emulator and, therefore, not useful to validate
our new TDL channel model, at least not completely. For
example, one of the previous papers [20] develops a model
based on measurements in the field but also some validation
from ray-tracing measurements. The other railway-related
environments (rural, hilly, cutting and viaduct) are outdoor
and the associated MPCs are spaced microseconds instead
of nanoseconds typical of indoor environments like tunnels.
Consequently, in order to fulfill all the requirements for
the emulation platform, we decided to retrieve a channel
model from ray-tracing (RT) simulations for two different
environments: HSR and subway tunnels.

For all of this, the main contributions of this article are
twofold:
• Present a TDL-based channel model for railway tunnels,
considering as well the influence of the rolling stock in
two different setups: large, wide tunnels mainly used for

HSR trains and, on the other side, shorter and narrow
tunnels for subway trains.

• Identify the influence of the differences between HSR
and subway scenarios: size of the tunnel, speed of the
train, cross section of the train, etc.

The layout of this paper is as follows: in Section II a
brief explanation of the emulation process is provided and a
description of the TDL setup is provided aswell; in Section III
we present the RT simulator and simulation configuration;
Section IV reports the methodology of parameter derivation
for the TDL models; in Section V we present the obtained
models for both types of tunnels and some related discussion
on them. Finally, conclusions come in Section VI.

II. EMULATION OF RADIO ACCESS TECHNOLOGIES IN
RAILWAYS
A. RAILWAY SCENARIOS
The emulation of RATs in railways is troublesome because
there is not a single scenario which could be representative
of the whole railway world, so we need to consider many
different ones. In this research work, we have significantly
simplified this diversity and we have considered five different
scenarios [21]–[23]:
• Rural: this is the most common one in both mainline and
HSR lines [24].

• Viaduct: due to the inability of HSR trains to run on very
high ramps, on these lines it is very common to construct
viaducts [25], [26].

• Cutting: very useful to decrease the impact on neighbor-
ing areas and to ease transitions from and to tunnels [27].

• Hilly terrain: very common in several railway lines
around the world [28], [29].

• Tunnel: this is the most likely one in metropolitan
railways (subways) but also common in HSR lines
[16], [30]. In this scenario we will focus from now on.

Therefore, there is a high chance that every railway line in
the world could be characterized as an ensemble of several
stretches of the five scenarios considered above. For more
details on each one of them, please see Deliverable 1.3 of the
EmulRadio4Rail Project [3].

B. MODELS
After the definition of the scenarios to be considered in the
emulation process, we need to explain how this emulation
will be performed. The aim of the platform is the end-to-end
emulation of the RAT, so both a channel emulator and a
network emulator are needed. From now on, we will focus on
physical layer aspects only (i.e. channel emulator). Details on
this platform can be found in our previous papers [12], [31].

Perhaps the most efficient way to emulate a wideband
channel is using TDLmodels [11]. The idea behind this is the
following: MPCs arrive at the receiver (Rx) in many different
(and discrete) moments in time and each one of them has its
own power figure as depicted in Fig. 1. It is assumed that
within each tap the spectrum is flat (i.e. there is no frequency
selectivity) and that all taps are not correlated with each other.

VOLUME 9, 2021 1513



H. Qiu et al.: Emulation of Radio Technologies for Railways: A TDL Channel Model for Tunnels

FIGURE 1. Schematic of the tapped-delay-line channel model.

Therefore, we can model the channel impulse response (CIR)
as the sum of delayed MPCs:

h(τ, t) =
K∑
k=1

ckδ(τ − τk ) (1)

where τ is the delay, t is time, ck is the complex coefficient
associated to each one of the K taps. For practical reasons,
taps with a power below a threshold are discarded and all
MPCs within a time frame are grouped together into a single
tap. All these practicalities, including both the tap width and
power threshold, are explained in detail in Section IV.
Moreover, for each one of the taps we must consider the

Doppler spectrum which is the distribution of the frequency
shifts associated to each MPC that arrives at the Rx. This
is of great importance in vehicular scenarios like railways
(in particular, HSR trains can run up to 350 km/h, probably
faster in the mid-term). For more details on TDL models any
classical text on channel modelling and measurement like for
example [11] is a good reference.

Once we had a clear decision on the type of wideband
model to be used, we performed an exhaustive literature
survey of existing TDL-based models for railway scenarios.
The outcome of this survey is that there are many published
TDL models for all railway scenarios but not even one for
tunnels. We only considered those who included complete
information about the Doppler spectrum, speed range, band-
width, diversity scheme, as well as the more obvious number
of taps, delay, frequency range and relative power associated
to the taps. Based on this information, we chose the most
suitable ones for our emulation platform. All the details of
the models and also the assessment on the suitability of each
one of them has been already published as a deliverable report
in our project [32].

III. RAY-TRACING AND SIMULATION PROCEDURE
A high-performance computing (HPC) cloud-based ray-
tracing simulator (CloudRT) is utilized in this study. The
simulator is developed by the State Key Laboratory of Rail
Traffic Control and Safety, Beijing Jiaotong University [33].
It is based on the RT technique, which considers the antenna
patterns, the existence of the scatterers, locations of trans-
mitter (Tx) and Rx, and various propagation mechanisms.
The complete RT simulation process is that the user first
needs to reconstruct the three-dimensional (3D) model of the

target scenario and the scatterers and define the electromag-
netic (EM) parameters of the material, then set the simulation
frequency, propagationmechanism, transceiver and scatterers
motion trajectory, antenna type and other parameters, and
finally start the RT simulation. After calibrating the geom-
etry of the 3D environment model, and determining the EM
parameters of objects/materials and the dominant propaga-
tion mechanisms, intensive RT simulations can be conducted
with various Tx/Rx deployments as well as various combi-
nations of the objects, which breaks the limits of the mea-
surement [34], [35]. Based on the simulation results, the ray
information can be captured, and moreover the TDL model
parameters can be extracted. CloudRT has been validated
by extensive measurements in various railway environments
[23], [36]. In our recent work [37], [38], CloudRT has been
validated at 30 GHz and 90 GHz in HSR outdoor and tunnel
environments, respectively. More details of CloudRT can be
found in http://www.raytracer.cloud.

A. SCENARIO AND SCATTERERS MODELING
In this study, the simplified HSR and subway tunnel scenarios
are reconstructed. The cross-sections of the two tunnels in
the simulations are shown in Fig. 2. W1 and H are the width
and height of the tunnel, W2 is the spacing of rail and W3
is the width of the rail. As the dual-lines are considered, R
is the distance between the rail and the wall. The length of
each tunnel in the simulation is 3000 m. As shown in Fig. 3,
two types of train bodies are modeled. The width, height,
and length of the HSR train are 2.942 m, 3.70 m and 200 m,
respectively. Thewidth, height, and length of the subway train
are 2.8 m, 3.25 m and 55.049 m, respectively.

B. RT SIMULATION CONFIGURATION
In this study, Tx is deployed closed to the wall of the tunnel,
and Rx is placed on the top of the train body. As for rectangle
HSR tunnel, Tx and Rx are placed at a height of 4.55 m
and 4.05 m, respectively. As for rectangular subway tunnel,
Tx and Rx are placed at a height of 4.10 m and 3.60 m,
respectively. Two antennas are employed at both the Tx and
Rx, and the two antenna elements are spaced apart with
an inter-distance of λ/2. Considering the tradeoff between
computing resource and accuracy, up to 6-order reflection
is deployed in this simulation. The specific deployment of
the tunnel is shown in Fig. 4. TABLE 1 summarizes the
simulation configuration. In Multiple-Input Multiple-Output
(MIMO) channel, 4 subchannels are set (as shown in Fig. 5),
which constitute the Channel Matrix (2).

H =
[
h11 h12
h21 h22

]
(2)

The considered materials include the concrete (the tunnel)
and metal (the train body and rails). The EM parameters of
the mentioned materials are provided by the State Key Lab-
oratory of Rail Traffic Control and Safety, Beijing Jiaotong
University, as listed in TABLE 2.
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FIGURE 2. Cross-sections of the tunnels.

FIGURE 3. 3D models of the train bodies in the simulation.

IV. TDL MODEL PARAMETERS DERIVATION
A. DELAY VALUE AND AVERAGE GAIN OF TAPS
In RT simulations, a pair of Tx/Rx is simulated as a single
snapshot with the predefined configurations. A simulation

FIGURE 4. The deployment of Tx and Rx antennas in the simulation.

FIGURE 5. MIMO system.

TABLE 1. Simulation configuration.

TABLE 2. The electromagnetic parameters of main objects.

task for an environment model is composed of Ns snapshots.
For each snapshot, the intrinsic results include the number
of rays Nr , ray energy E(s, j) and the delay of each ray
τ (s, j) (s is the index of snapshot, and j is the index of ray in
snapshot s) [39]. In order to achieve a time-domain resolution
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FIGURE 6. An example of combining the multipaths to obtain the CIR in subway tunnel scenario. The 8 ns resolution is given as the
green dotted line and the threshold of −60 dB is given as the red dotted line.

as high as 1 ns for a channel model, there are two types
of simulations: the frequency-domain RT simulation with
a bandwidth of 1 GHz, or the time-domain RT simulation.
Considering that it is not feasible to use 1 GHz bandwidth at
such a low frequency band–2.4 GHz in reality for communi-
cations, so in order to achieve a sufficiently high multipaths
resolution, we use the time-domain RT simulation, because
its time resolution is only limited by the number of CPU
bits of the computer, and its resolvable time duration is much
shorter than the delay difference between two adjacent mul-
tipaths in the simulation. As shown in Fig. 6, as an example,
numerical multipaths between 48 and 49 ns are with much
shorter delay differences than 1 ns but still can be resolvable
by the time-domain RT simulation. Since the time-domain
resolution of the emulator that is aiming to use our channel
model is 8 ns, we combine the multipaths (with the threshold
of 60 dB below the strongest ray power) within every 1τ
of 8 ns duration in time-domain to obtain the CIR for further
modeling (as shown in Fig. 6), which can be expressed as

h(s,m1τ ) =
∑
J

E(s, j), J = {j|m1τ −
1τ

2

≤ τ (s, j) < m1τ +
1τ

2
,m ≥ 0} (3)

where m is the delay bin index. From which, we define the
instantaneous power delay profile (PDP) as

P(s,m1τ ) = |h(s,m1τ )|2 (4)

where | · | denotes the absolute value. The instantaneous gain
for the Tx-Rx link is expressed as

PG(s) =
Ms∑
m=1

P(s,m1τ ) (5)

where Ms is the number of delay bins in snapshot s. After
removing the mean value of PG(s) from h(s,m1τ ) within

the bin,the normalized CIR hnorm(s,m1τ ) can be obtained as

hnorm(s,m1τ ) =
h(s,m1τ )√
1
Ns

∑Ns
s=1 PG(s)

(6)

This operation is done to reduce the distance dependence
and shadowing effects. The instantaneous normalized PDP is
expressed as

Pnorm(s,m1τ ) = |hnorm(s,m1τ )|2 (7)

The averaged normalized PDP is then calculated as

Pave(m1τ ) =
1
Ns

Ns∑
s=1

Pnorm(s,m1τ ) (8)

The instantaneous and averaged normalized PDPs of h22
for subway tunnel scenario are presented in Fig. 7. For
determining the number of taps in the model, the threshold

FIGURE 7. An example of instantaneous and averaged normalized PDPs
in subway tunnel scenario. The threshold of −30 dB is given as the red
dotted line.
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of 30 dB below the strongest tap power is used. Then the
averaged normalized power gains and the delay values can
be obtained through the delay bin index of the remaining
taps. For example, as shown in Fig. 7, the number of taps
is 5. The delay bin indexes are l = m = 1, 2, 5, 6, 7, delay
values are calculated from l1τ , and averaged power gains,
Pl = Pave(l1τ ), are from Equation (8).
The normalized amplitude is given by |α(s, l1τ )|, which

can be calculated as

α(s, l1τ ) =
hnorm(s, l1τ )
√
Pl

(9)

Pl =
1
Ns

Ns∑
s=1

|hnorm(s, l1τ )|2 (10)

where l is the index of remaining taps.

B. DOPPLER SPECTRUM OF TAPS
Different normalization methods are used when calculating
the Doppler spectrum. For all snapshots, the scalar sum of
power of rays P(s) for snapshot s is used to normalize the
power of effective rays Pnorm−ray(s, j), so that the distance-
dependent path loss is removed, which can be expressed as

P(s) =
Nr∑
j=1

|E(s, j)|2 (11)

Pnorm−ray(s, j) =
|E(s, j)|2

P(s)
(12)

The corresponding Doppler shift of each ray in snapshot s
(fd (s, j)) can be expressed as

fd (s, j) = −fc ·
EvRx(s) · Ek(s, j)

c
(13)

where fc is the center frequency, EvRx(s) is the velocities of
Rx, Ek(s, j) is the unit vector along the direction of the ray
departing from the Tx, scattering point or reflecting point
towards the Rx, and c is the speed of light. Then, all the
normalized effective rays and corresponding Doppler shift
of each ray in each snapshot are grouped by the time delay
interval 8 ns to form several taps of rays.

For each tap, wemake statistical analysis for the power and
Doppler shift of all the rayswithin this tap of all the snapshots.
Jakes model [40] is used to fit the Doppler spectrum within
each tap of all the snapshots, which can be modeled as:

S(fd (s, j)) =
2σ 2(s, l)

π fmax
√
1− fd (s,j)

fmax

, {j|l1τ −
1
2
1τ

≤ τ (s, j) < 1τ +
1
2
, l ≥ 0} (14)

where 2σ 2(s, l) is the scattering component power of tap l in
snapshot s, fmax is the maximum Doppler shift of the HSR or
subway train.

V. CHANNEL MODELS
In this section, we provide the obtained channel models,
in terms of the parameters defined above for both types of
tunnels (HSR and subway).

A. HIGH-SPEED RAILWAY TUNNELS
In Tables 3, 4, 5, and 6, the MIMO 2× 2 TDL model for the
HSR tunnel is considered. In these tables, we can see both
the power and delay associated to each of the 11 taps which
comprise each of the subchannels of the 2×2MIMO channel.
The PDP for h11 is shown in Fig. 8. We can see that, as it
was expected, the maximum power is related to τ = 0 ns (the
graph is not normalized to 0 dB but in absolute received power
in dBm) which is the LOS component. Given that the Tx is
in the middle of the tunnel, the maximum received power
is obtained at the central snapshot of the simulations. Due
to the limitation introduced in the time resolution (to 8 ns,
as we discussed in Section IV), the number of MPCs that we
are able to solve is limited. In this case, we obtain 11 taps
but for subway tunnels, we only get 5 with a significant
power figure (the power threshold is set at 30 dB below the
maximum tap).

FIGURE 8. PDP for h11 in HSR tunnel.

The fading distribution, which fits better to the results is not
Rayleigh as it could be foreseen, butWeibull and the values of
the distribution parameters for each tap are provided as well
in Tables 3–6. Regarding the better fitting to a Weibull distri-
bution rather than to a Rayleigh, the reason is that scatterers
are not uniformly distributed in the tunnel because they come
from the tunnel walls, which was studied in the literature [41]
as well as in some experiments in the field [42] and it is the
main assumption related to Weibull Distribution (15).

pdf (|α|;βw, �weib) =
βw

�weib
|α|βw−1 · e(−

|α|βw
�weib

) (15)

The other parameter of this distribution βw describes the
average fading power. As it is known from the first descrip-
tions of the Weibull distribution, Rayleigh distribution is a
particular case (βw = 2) of it. βw accounts the fading severity,
increasing the fading as βw decreases.
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TABLE 3. TDL parameters of h11 for HSR tunnel scenario.

TABLE 4. TDL parameters of h12 for HSR tunnel scenario.

TABLE 5. TDL Parameters of h21 for HSR tunnel scenario.

Consequently, looking at the measured βw parameter
in Tables 3–6, we can see that the fading severity in this
scenario is always much worse than Rayleigh, which gives an
idea of how extreme and challenging the tunnel scenario is.
Regarding the power distribution of the fading, we see that the
relative power from the 3rd -4th tap increases monotonically.
This can be explained in the reduction of MPCs and also on
its heterogeneity (in terms of followed paths, reflections, etc.)

that arrive at the Rx as the tap-index increases, which means
that the variance of the power of the MPCs is presumably
higher.

Themaximal speed for the train is 350 km/h, and the carrier
frequency is 2.4 GHz which leads to a maximal Doppler shift
of ±800 Hz. Regarding the Doppler spectrum, all the taps
in the models are Jakes’ shaped and the distribution which
fits better the Jakes’ σ related to the model is log-logistic
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FIGURE 9. The Doppler shift and its Jakes fitting model of the h11 channel for HSR scenario.

(see tables 3–6 for more details and values of related param-
eters), and its probability density function (PDF) is:

pdf (σ (s, l);µLL , σLL) =
1
σLL
·

1
σ (s, l)

·
ez

(1+ ez)2
(16)

z =
log(σ (s, l))− µLL

σLL
(17)

where µLL is the mean of logarithmic value, σLL is the
scale parameter of logarithmic value, and σ (s, l) is the fitting
parameters of Jakes model for every taps. If the number of
σ (s, l) of tap l is less than 15, one Jakesmodel is adopted to fit
the Doppler shift of all the rays within this tap l. The obtained
shifts for each tap of the TDL model and the statistical fit are
both shown in Fig. 9.

B. SUBWAY TUNNELS
The procedure for these simulations is the same as for HSR
trains but this time we have a shorter tunnel, slower trains

FIGURE 10. PDP for h11 in subway tunnel.

(110 km/h) and smaller trains as well (See Table 7–10 for
all the simulation details). As in the HSR scenario we have
a dominant line-of-sight (LOS) path in terms of power but
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TABLE 6. TDL parameters of h22 for HSR tunnel scenario.

TABLE 7. TDL Parameters of h11 for subway tunnel scenario.

TABLE 8. TDL parameters of h12 for subway tunnel scenario.

TABLE 9. TDL parameters of h21 for subway tunnel scenario.

here we have less resolvable MPCs (5 instead of 11 as we
had in HSR). This is due to the size of the tunnel which tends
to concentrate more power on the LOS component. This is
depicted in Fig. 10 where it is even hard to appreciate the
power for the other MPCs rather than the direct one.

The fading distribution is Weibull as in the HSR scenario,
which makes sense because both tunnels share a common
propagation environment, with scatterers not uniformly dis-
tributed around the Rx. βw figures are very similar in both
cases, a little higher in subway which means less severe
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TABLE 10. TDL parameters of h22 for subway tunnel scenario.

FIGURE 11. The Doppler shift and its Jakes fitting model of the h11 channel for subway scenario.

fading. In both cases, the fading is worse than Rayleigh
(βw < 2). Regarding the Doppler spectrum, obviously,
the maximum shift is lower (244 Hz) than in HSR because
the train speed is lower (110 km/h). Regarding the distribution
fitting, for the first two taps, the best fit is a Burr distribution.
For the other three taps, there is no enough resolvable data
points to do a proper fit (the number of σ (s, l) of tap l is less
than 15). Burr distribution is depicted in (18). The Doppler
spectrum associated to the five taps of this model is depicted
in Fig. 11.

pdf (σ (s, l);α, c, k) =
k·c
α
(σ (s,l)

α
)c−1

(1+ (σ (s,l)
α

)c)k+1
,

α > 0, c > 0, k > 0 (18)

where α is the scale parameter; c and k are both the shape
factors. In Tables 7–10, we provide all the parameters related
to this 2× 2 MIMO TDL model.

VI. CONCLUSION
In this paper we have presented a complete TDL-based
channel model for railway tunnels considering two different
scenarios: HSR and subway tunnels. The differences among
them are subtle but important for real-world technical and

engineering problems. The influence of the usual rolling
stock that runs through these tunnels has been included in the
model as well as other details in order to be more realistic.

The differences in the resolvable paths between HSR and
subway tunnels are worth mentioning (11 and 5 for HSR and
subway tunnels, respectively) as well as the dominance of
the direct path in both cases but on a larger extent in the
subway tunnel. The proposed TDL model can be embed-
ded into emulators for an end-to-end emulation of RATs in
tunnel environments. This will effectively help the design,
development, and validation of FRMCS technologies.
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