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ABSTRACT Topic modeling is an important application of natural language processing (NLP) that can
automatically identify the set of main topics of a given, typically large, collection of documents. In addition
to identifying the main topics in the given collection, topic modeling infers which combination of topics is
addressed by each individual document (the so-called topic-document inference), which can be useful for
their classification and organization. However, the distributional assumptions for this inference are typically
restricted to the Dirichlet family which can limit the performance of the model. For this reason, in this paper
we propose modeling the topic-document inference with the Gumbel-Softmax distribution, a distribution
recently introduced to expand differentiability in deep networks. To set up a performing system, the proposed
approach integrates Gumbel-Softmax topic-document inference in a state-of-the-art topic model based on
a deep variational autoencoder. Experimental results over two probing datasets show that the proposed
approach has been able to outperform the original deep variational autoencoder and other popular topic
models in terms of test-set perplexity and two topic coherence measures.

INDEX TERMS Topic models, topic-document inference, variational autoencoders, Gumbel-Softmax
distribution, deep neural networks.

I. INTRODUCTION
Unstructured textual data are growing by the day in the form
of news, press releases, blogs, social media posts and others.
The possibility for humans to annotate such documents is
limited since manual annotation is labor-intensive and time-
consuming. Therefore, there is an urgent andwidespread need
for automated, unsupervised analysis tools that can provide
an understanding of such data and work at scale [7].

Topic modeling is an unsupervised, probabilistic approach
of natural language processing (NLP) that is capable of dis-
covering the main topics of large amounts of unstructured
text, and presenting them to a user in succinct and comprehen-
sible forms. It has established a strong reputation as a useful
text analytics technique and has found application in fields
ranging from business and finance to healthcare and scientific
corpora analysis [2], [4], [20], [21], [27], [29], [32]. In topic
modeling, a topic is typically represented by the set of its
most-frequent words. For instance, a topic such as ‘‘cricket’’
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may be represented by words such as ‘‘innings’’, ‘‘stump’’,
‘‘wicket’’ and all the other typical terminology of cricket
commentaries. As a more sobering example, a topic such as
‘‘pandemic’’ may be represented by words such as ‘‘infec-
tion’’, ‘‘intensive care’’, ‘‘death’’, ‘‘recovery’’ and so forth.
In more general terms, a topic can be seen as a probability
distribution over the words of an available vocabulary, where
the words that are distinctive for that topic are characterized
by the highest probabilities.

Topic modeling is able to parse a whole corpus of
documents and identify the most common topics ‘‘shared’’
by these documents. Simultaneously, it is able to determine
what proportion of topics is addressed by each individ-
ual document. The existing approaches for topic modeling
are predominantly based on non-negative matrix factoriza-
tion and probabilistic inference, and the most famous is
undoubtedly the latent Dirichlet allocation (LDA) of Blei,
Ng and Jordan [3]. In this approach and many of its deriva-
tives, the topic proportions of the individual documents are
modeled using theDirichlet distributionwhich is a convenient
conjugate prior for the topic frequencies. However, limiting
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the models to this assumption may be restrictive, since other
distributions over the topic proportionsmay be able to achieve
better performance figures for the derived topic models.

For this reason, in this paper we propose modeling the
topic proportions of the individual documents using the
Gumbel-Softmax distribution [9], [18]. This distribution has
been recently introduced to expand the applicability of back-
propagation in deep learning models with latent categori-
cal variables, where it is used to replace non-differentiable,
categorical samples with ‘‘soft’’ samples from a differen-
tiable transformation. The main expected advantage of using
this distribution for topic modeling is that it can effectively
control the sparsity of its samples by a pseudo-temperature
hyperparameter, and can thus be able to control the expected
number of topics of each individual document during the
so-called topic-document inference. To set up a perform-
ing system, we have integrated this distribution into the
sampling step of a state-of-the-art topic model, the autoen-
coding variational inference for topic models (AVITM) of
Srivastava and Sutton [28].

Experiments have been carried out on two challenging text
datasets: the popular 20 Newsgroups dataset [14], consisting
of 18,846 user-posted documents from newsgroups, and the
recent, large-scale COVID-19 news dataset,1 aggregated by
AYLIEN using their news API on more than 400 different
sources. The experimental results show that the proposed
topic-document inference approach has been able to achieve
higher topic coherence and lower perplexity than all the other
compared approaches.

The rest of this paper is organized as follows: Section II
presents the related work. Section III presents the proposed
model, preceding it with a concise review of LDA and a state-
of-the-art variational topic model. Section IV describes the
experiments, and presents and discusses the results. SectionV
concludes the paper.

II. RELATED WORK
Topic modeling is unarguably one of the most researched
areas of natural language processing. Its aim is to find concise
descriptors for a typically-large (> 10, 000 documents) given
corpus and for its individual documents. This is generally
achieved by introducing a set of latent variables, known as
the ‘‘topics’’, which are shared across the corpus and describe
it, while simultaneously determining the proportions of the
topics in each document. The input to topic modeling is
typically a simplified representation of the documents in the
corpus known as the term-document matrix. Topic modeling
has found application in a large number of areas including
news [29], social media [1], [21] finance [4], [21], healthcare
[2], [27], [32] and many others.

Among the many techniques proposed over the years,
latent semantic indexing (LSI, also known as latent seman-
tic analysis, or LSA) is credited as the first explicit
topic model [5]. It consists of the factorization of the

1https://aylien.com/resources/datasets/coronavirus-dataset

term-document matrix in a low-rank latent space by means
of a singular value decomposition. To more clearly explain
this factorization, which will also be useful for the remainder
of the paper, let us introduce the following notations: V is the
size of the given vocabulary,D is the number of documents in
the given corpus,K is the number of topics chosen to describe
the corpus, andW is the term-document matrix, ofV×D size.
The LSI factorization can then be expressed as:

W ≈ βθ (1)

where β is a V × K matrix usually referred to as the
term-topic matrix, and θ is a K × D matrix referred to as
the topic-document matrix. The values for β and θ can be
obtained by applying singular value decomposition toW , and
incorporating the resulting eigenvalues into either of the other
two factors. This ensures that βθ is the best possible approx-
imation of W in a least-square sense. For this factorization
to be of any practical utility, the chosen number of topics, K ,
must satisfy K � D. However, since K is typically chosen
in a range such as [20, 100] and the corpora are large, this
condition is always easily met. Among various uses, the LSI
factorization can be used to compare, cluster and classify
documents (e.g. [10]); to extract the top words of each topic;
and even to compare and cluster words.

Probabilistic latent semantic analysis (pLSA, or, analo-
gously, pLSI) [8] has overlaid a probabilistic interpretation to
the LSI factorization: the first factor, the term-topic matrix,
is interpreted as the probability of a word, w, in a given
topic, t , while the second factor, the topic-document matrix,
is interpreted as the probability of a topic, t , in a given docu-
ment, d . Both probabilities aremodeled asmultinomial distri-
butions. The computation of the factorization is similar to that
of LSI, but the elements of the factor matrices must all belong
to interval [0, 1], and the relevant columns and rows must
abide by a sum-to-one constraint (the simplex domain). The
multinomial distributions of the term-topic matrix, p(w|t), are
concisely called the ‘‘topics’’, as they express how probable
it is that any of the words in the given vocabulary will appear
in text from a given topic. The multinomial distributions
in the topic-document matrix, p(t|d), are called the ‘‘topic
vectors’’ and express the mixture of topics covered by a
given document. A highly popular generalization of pLSA
called latent Dirichlet allocation (LDA) adds prior proba-
bilities to both the topics and the topic vectors in the form
of Dirichlet distributions [3]. Since the Dirichlet distribution
is conjugate to the multinomial, the posterior probabilities
can be computed analytically, allowing for efficient infer-
ence algorithms. We review LDA in detail in Section III-A.
LDA has also spawned a large number of extensions and
variants, including hierarchical versions [11], [17], sequential
versions [26], class-supervised versions [26], sparse versions
[22], [30], [34], and many others.

In recent years, neural topic models have come into the
spotlight by combining the advantages of deep neural net-
works and LDA. Deep models based on variational autoen-
coders (VAEs) such as [13], [19], [28], [31] have proved
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effective at automatic discovery of the latent topics in the
corpus, and deep models based on CNNs have been used for
topic-based document classification and non-negative matrix
factorization [16], [33]. Recently, Srivastava and Sutton [28]
have proposed a topic model that joins the properties of LDA
with the strong representational power of a deep variational
autoencoder. This approach has proved to clearly outper-
form LDA both quantitatively and qualitatively, and can be
regarded as one of the current state-of the-art approaches.
In addition, various deep topic models have been proposed
based on generative adversarial networks (GANs). Among
them, [6] uses a denoising autoencoder to implement the
discriminator network, under the expectation that the dis-
criminator should achieve a small reconstruction error on the
documents in the corpus, while a large reconstruction error on
the synthetic documents generated by the generator network.
The main aim of this GAN-based topic model is to provide
effective topic vectors for document classification [6]. How-
ever, it can also be used for extracting the top words of the
topics, and vector representations for the words.

III. AUTOENCODING VARIATIONAL INFERENCE FOR
TOPIC MODELS
In this section, we present the proposed methodology,
preceded by an overview of latent Dirichlet allocation and
variational autoencoders for topic modeling.

A. LATENT DIRICHLET ALLOCATION
Latent Dirichlet allocation (LDA), proposed by Blei,
Ng and Jordan in 2003 [3], is probably the reference model
for the field of topic modeling. To briefly describe it hereafter,
let us introduce the following notations:
• wd,n is the n-th word in the d-th document in the corpus.
By ‘‘word’’ we mean a categorical value in the corpus’
vocabulary (essentially, an index). The size of the vocab-
ulary is noted as V . Wherever unambiguous, we omit the
document index for brevity.

• wd is the set of all the words in document d (again, where
possible, we omit the document index).

• Each word, wd,n, is assigned to a corresponding topic,
zd,n. A topic, too, is a categorical variable taking values
in a set of 1 . . .K possible values (NB: the topics are
‘‘nameless’’, but can be later assignedmeaningful names
with a post-analysis). This correspondence means that,
for example, a word such as ‘‘bat’’ can be assigned
to topic ‘‘mammals’’ in one instance and ‘‘cricket’’ in
another.

Themodelmakes the following distributional assumptions:
• The topic variables for a given document are indepen-
dently and identically distributed according to a multi-
nomial distribution, Mult(zd,n|θd ), parametrized by a
K -dimensional probability vector, θd .

• At its turn, vector θd is distributed according to
a Dirichlet distribution, Dir(θd |α), parametrized by
a K -dimensional integer vector, α, shared by the
whole corpus. (The conjugacy between the multinomial

and Dirichlet eases the computation of the required
posteriors.)

• The words in the corpus are distributed according to a
set of K multinomial distributions, parametrized by K
corresponding V -dimensional probability vectors, β =
β1, . . . βK . Each word in a given document is indepen-
dently distributed according to one of these distributions,
indexed by its topic variable, as in Mult(wd,n|βzd,n ).

All these assumptions can be concisely noted in a ‘‘gener-
ative’’ model, that is a model that allows sampling an entire
synthetic corpus from these distributions:

∀d = 1 . . .D :

θd ∼ Dir(θ |α)

∀n = 1 . . .N :

zn ∼ Mult(zn|θd )

wn ∼ Mult(wn|βzn ) (2)

which also corresponds to the following factorization:

p(wn, zn, θd |α, β)

= Mult(wn|βzn )Mult(zn|θd )Dir(θd |α) (3)

Since both wn and zn are multinomially distributed, it is
also possible to dispose of zn altogether by marginalizing it
analytically. In this case, the generative model simplifies to:

∀d = 1 . . .D :

θd ∼ Dir(θ |α)

∀n = 1 . . .N :

wn ∼ Mult(wn|βθd ) (4)

where with βθd we have noted the product between V × K
matrix β and K × 1 vector θd . The corresponding factorized
probability is:

p(wn, θd |α, β) = Mult(wn|βθd )Dir(θd |α) (5)

and the probability for all the words in a document can be
simply expressed as:

p(w, θd |α, β) =
N∏
n=1

p(wn, θd |α, β) (6)

The inference problem for this model consists of maxi-
mizing (6) by estimating θd , β and α over a given training
corpus of documents. In essence, answering these questions:
what is the distribution of words in each of these topics?
(β = β1, . . . βK ); what are the proportions of the topics in
each of these documents? (θ = θ1, . . . θD); and what are the
proportions of the topics across the whole corpus? (α). For
new/test documents given after training is complete, β and α
are kept unchanged and only their topic vectors are inferred.
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FIGURE 1. The graphical model of LDA. The meaning of the notations is
as follows: α denotes the parameter vector for the Dirichlet prior over the
topic vectors (i.e. the topic proportions per document), unique for the
corpus. θd is the topic vector of the d -th document, sampled from
Dir(θd |α). For each document, N topics, zd ,n, are then sampled from
Mult(zd ,n|θd ). Finally, the corresponding N words, wd ,n are sampled
from a multinomial distribution over the vocabulary, Mult(wd ,n|βzd ,n ); its
parameter vector, βzd ,n , is chosen from a set of K parameter vectors,
β = {β1, . . . βk . . . βK }, based on the value of topic zd ,n.

B. VARIATIONAL AUTOENCODERS FOR TOPIC MODELING
Since the ascendance of deep learning, a freshwave ofmodels
best known as deep generativemodels (DGM) have come into
existence, fundamentally a blend of deep neural nets, genera-
tive models and Bayesian inference. Among them, variational
autoencoders (VAEs) have proved very effective for models
that contain latent variables (in our case, the topics) [12].
VAEs are able to efficiently maximize the log-likelihood of
the observed data even when this function is not directly opti-
mizable, making them widely applicable in all fields of big
data including, among others, signal processing, computer
vision, natural language processing and transactional data
analytics.

A VAE is essentially a generalization of a traditional
autoencoder, which is a neural network consisting of two sub-
networks: an encoder and a decoder. The encoder receives
a multidimensional measurement in input, and outputs a
latent representation for it; the decoder receives the latent
representation in input, and outputs a ‘‘reconstruction’’ of
the original measurement. Through this process, the model
is able to generate latent representations and reconstructed
measurements which are often more useful than the original
measurements in downstream tasks of pattern recognition
(e.g. [23]).

A variational autoencoder is a probabilistic extension of
an autoencoder where both the measurement and the latent
representation are treated as random variables, and therefore
the encoder and the decoder are treated as probability distri-
butions. The ‘‘reconstruction’’ of the original measurement
is meant in a probabilistic manner in terms of log-likelihood
maximization. In the case of our topic model, the aim of the
VAE is to maximize the log-likelihood of the words of each
document:

p(w|α, β) =
∫
θ

p(w, θ |α, β)dθ (7)

However, the above objective is too complex to be
maximized directly, and therefore the VAE establishes an
approachable lower bound for the log-likelihood known as
the Evidence Lower Bound, or ELBO, and sets to maximize
it [12]. In the case of the topic model, the ELBO has the

following form:

L(w|α, β) = Eq(θ |w)
[
log p(w|θ, β)

]
−DKL(q(θ |w)‖p(θ |α)) (8)

The terms in (8) have the following meaning: 1) q(θ |w) is
an estimator for the probability of the topic proportions for a
given document (represented by its words,w) and is known as
the ‘‘encoder’’; 2) log p(w|θ, β) is the log-probability of the
given document given its topic proportions and is known as
the ‘‘decoder’’; 3)Eq(θ |w)

[
log p(w|θ, β)

]
is the expectation of

this quantity over q(θ |w) and is known as the ‘‘reconstruction
term’’; 4) p(θ |α) is a learnable prior probability for the topic
proportions that is shared by the entire corpus. The rationale
for (8) is twofold: first, it is a proven lower bound for (7),
that is the target of the maximization; second, it consists
of a trade-off between two terms that can be interpreted
intuitively: the model is rewarded for either improving the
reconstruction term, or for keeping the encoder close to the
prior.

Srivastava and Sutton in [28] have proposed a VAE for
topicmodeling (AVITM) that leverages a Laplace approxima-
tion of the usual Dirichlet prior to permit its integration into
the autoencoder. In AVITM, both the prior and the encoder
are modeled as logistic normal distributions: the prior is
modeled as p(θ |α) = LN (θ |µ(α), 6(α)), and the encoder
is modeled as q(θ |w) = LN (θ |fµ(φ,w), f6(φ,w)), where φ
are the internal parameters of two neural networks that predict
the mean and covariance of the encoder, respectively. The
expectation in (8) is computed by sampling q(θ |w), which
in turn is performed through reparametrization. The decoder
takes the following form:

p(w|θ, β) = Mult(w|σ (β)θ ) (9)

where σ () is the softmax operator and the word distributions
are parametrized in the softmax basis rather than the simplex
to remove unnecessary constraints during backpropagation.
The authors have also proposed a second, heuristic version
of the decoder, called ProdLDA, that performs the product
before the softmax:

p(w|θ, β) = Mult(w|σ (βθ )) (10)

As shown in [28], both AVITM and ProdLDA have out-
performed a number of compared topic model approaches
by large margins, and can be regarded as state-of-the-art
approaches for this task.

C. THE PROPOSED APPROACH: VAE TOPIC MODELS
WITH THE GUMBEL-SOFTMAX
The Gumbel-Softmax distribution, co-credited to [18] and
[9], has channeled much attention from the deep learn-
ing community in recent years. This distribution models
‘‘soft’’ categorical variables (categorical variables that are
not restricted to have one-hot values) and has been intro-
duced to circumvent issues related to backpropagation in
models with latent categorical variables. Many deep learning
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models (prominently, variational autoencoders and genera-
tive adversarial networks, or GANs) need to sample from
distributions, and sampling is a non-differentiable operation
that breaks the backpropagation chain. The Gumbel-Softmax
distribution is an alternative to the multinomial distribution
that allows sampling of quasi-categorical variables and is
differentiable via reparametrization. Given amultinomial dis-
tribution,Mult(z|θ ), withK possible values, samples from the
corresponding Gumbel-Softmax distribution, GS(z̃|θ, τ ), can
be obtained as:

z̃ = σ
(
[log θ − log(− log u)]/τ

)
u ∼ U(0, 1)K (11)

where u is a vector of K random variables each sampled from
the uniform distribution over (0, 1), and τ is a hyperparameter
(referred to as ‘‘temperature’’) that controls the sparsity of z̃
(the lower τ , the more the samples resembles one-hot values;
the larger, the more the samples become uniform). Note that
the sampled distribution is fixed and does not need gradient
updates, and the functions in (11) are all differentiable.

To take advantage of its properties, we propose sampling
the topic vector from a Gumbel-Softmax distribution. The
modified decoder (nicknamed AVITM-GS) becomes:

p(w|θ, β) = Mult(w|σ (β) z̃), z̃ ∼ GS(θ, τ ) (12)

and in the case of ProdLDA (ProdLDA-GS) it becomes:

p(w|θ, β) = Mult(w|σ (β z̃), z̃ ∼ GS(θ, τ ) (13)

Please note that the number of trainable parameters is the
same as in the original decoders, with the exception of the
scalar hyperparameter τ that we can use to control the sparsity
of the inferred topic vectors.

IV. EXPERIMENTS AND RESULTS
A. DATASETS
As datasets for the experiments, we have used the popu-
lar 20 Newsgroups dataset (a de-facto benchmark for the
field) and a 500K-document subset of AYLIEN’s recently
released COVID-19 news dataset. 20 Newsgroups consists
of 18,846 news documents posted by users, split over
11,314 as training set and 7,532 as test set. The average length
of these documents is 311 words. To be consistent with the
experiments carried out in [28], we have used the prepro-
cessed version publicly released by the authors2 which uses a
vocabulary of 1,995 words. The COVID-19 news dataset is a
dataset aggregated by AYLIEN using their News Intelligence
Platform from November 2019 to July 2020 from approxi-
mately 440 different sources. For our experiments, we have
used the first 500K documents (over 7 GB of uncompressed
text) split over 400K as training set and 100K as test set since
this size could still be managed by a PC with 16 GB of RAM.
The documents were preprocessed with tokenization, stop-
word elimination, stemming and lemmatization, and encoded

2Available at: https://github.com/akashgit/autoencoding_vi_for_topic_
models.

with a vocabulary formed by the most-frequent 5,000 unique
words.

B. EXPERIMENTAL SET-UP
To probe the comparative performance of the proposed
approach, we have integrated it in both AVITM and
ProdLDA, and compared these versions with the original
versions. In the following, we refer to them as AVITM-GS
and ProdLDA-GS, respectively. We have also included LDA
and LSI from Gensim [24] in the comparison as baselines,
and the GAN-based topic model from [6] that we refer
to as GANTM in the following. As learning rate for the
variational autoencoders, we have used the rather standard
value of 0.001. Any other hyperparameters were left to their
default values. For the temperature of the Gumbel-Softmax
distribution, τ , we have carried out a preliminary sensitivity
analysis and chosen to run experiments with τ ∈ [1.5−2.5] in
steps of 0.25. This range corresponds to moderately-sparse to
dense topic vectors. As number of topics, we have used both
50 and 100 topics for both datasets. We have also initially
carried out multiple runs per model, and realised that the
performance did not vary significantly (< 0.5% in all cases).
Therefore, in Section IV-C we report results from single runs
of each model.

As an unsupervised technique, the performance evaluation
of a topic model is non-trivial. For our work, we have used
two common measures:
• perplexity over the test set: the perplexity of a
model over a set S is defined as: perplexity(S) =
exp(−L(S)/(number of tokens in S)). In the general
case,L denotes the log-likelihood of the data, but for the
variational methods (all except LSI and GANTM in our
case), it is given by the ELBO in (8). The perplexity is a
measure of the ‘‘poorness of fit’’ of themodel on the data
(the lower, the better) and, as such, it is important that
it is measured over an independent test set for realistic
generalization.

• topic coherence: topic coherence quantifies the coher-
ence of a topic by measuring how often its top
K words co-occur within a text window that slides
across the documents (the higher the co-occurrence,
the better). Since this measure is not uniquely defined,
we report both the normalized pointwise mutual infor-
mation (coher-NMPI) [15] and the CV coherence
(coher-Cv) [25] from their Gensim implementation.
The coherence is typically measured on the training
set itself since this guarantees the presence of all the
top words. For the experiments, K has been set to 10.
For the variational methods, the top words per topic
have been selected as those with highest probability in
the term-topic matrix. For LSI, they have been selected
as those with highest weight in the term-topic matrix
(which is not normalized to probability values). For
GANTM, they have been selected as those with highest
weight in the discriminator’s decoder network (equiva-
lent to the term-topic matrix of LSI).
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TABLE 1. Results with 50 topics on 20 Newsgroups.

TABLE 2. Results with 100 topics on 20 Newsgroups.

TABLE 3. Results with 50 topics on COVID-19.

TABLE 4. Results with 100 topics on COVID-19.

Given their significantly different nature, some disagree-
ment in model ranking between perplexity and topic coher-
ence is to be expected. Perplexity is, essentially, a measure
of fit of the model, while topic coherence is a measure of
quality of the extracted topics andmay better reflect the user’s
perception of performance. For this reason, for comparing the
models we resort to a majority criterion, with emphasis on the
topic coherence.

C. RESULTS
Tables 1 and 2 report the results over the 20 Newsgroups
dataset for 50 and 100 topics, respectively. In terms of test-set
perplexity, it is evident that the proposed approach has been
able to improve over the original variational autoencoder,
both for ProdLDA and AVITM. In these and the following
tables, we report the perplexity also for LDA, but the scale
of its ELBO is not directly comparable with that of the
autoencoder techniques; for this reason, its values are marked
in italics and not commented further. For LSI and GANTM,
the perplexity is simply not available since they are not proba-
bilistic models. In terms of coherence, ProdLDA-GS has been
able to achieve significantly higher values than all the other
techniques in both coherence metrics. In addition, the two
topic model baselines, LDA and LSI, and the GANTMmodel
have scored significantly lower values of topic coherence
than all the variational autoencoder approaches. Overall,
ProdLDA-GS has achieved the best performance in 4 cases
out of 6 (combined number of topics/metrics) and can be
regarded as the best-performing technique overall.

In turn, Tables 3 and 4 report the results over the COVID-19
dataset for 50 and 100 topics, respectively. In terms of

TABLE 5. Results for ProdLDA-GS (50 topics, 20 Newsgroups) with
varying temperature hyperparameter, τ .

test-set perplexity, the proposed approach has again been
able to improve over the original variational autoencoders.
In terms of coherence, the original AVITM has achieved
the highest values for coher-NPMI, while ProdLDA-GS
has achieved the highest values for coher-Cv. Again, all
the variational autoencoder approaches have scored signif-
icantly higher coherence values than both the LDA and
LSI baselines. GANTM generated an out-of-memory error
while training over larger training sets, and is therefore not
reported. Overall, ProdLDA-GS has achieved the best per-
formance in 3 cases out of 6 and may still be regarded as the
best-performing overall.

As expected, the choice of the temperature hyperparameter,
τ , in the Gumbel-Softmax distribution has a major impact
on the performance as it substantially changes the shape
of the samples (from almost one-hot to almost uniform).
Since the coherence measures are to be computed on the
training set, it is legitimate to choose the value of τ that
empirically maximizes them. Conversely, the perplexity is
a test-set measure and the optimal τ should be chosen on
the training set or a separate validation set. In all cases,
the different measures may be maximized by different values
of τ , and a trade-off between them is required. To illustrate
this dependence, Table 5 shows the results with varying τ
for ProdLDA-GS with 50 topics on 20 Newsgroups. With
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TABLE 6. Examples of topics extracted from the COVID-19 dataset (50 topics).

FIGURE 2. Comparison of coher-NPMI on the test set for ProdLDA and
ProdLDA-GS (50 topics, 20 Newsgroups) with varying temperature
hyperparameter, τ .

τ = 10−5 (almost one-hot samples), the model has achieved
a very low coherence. At the other end of the spectrum,
with τ = 10 (almost uniform samples), the coherence has
been again very low. The equal-best coher-NPMI coher-
ence values have been achieved with τ = 2.25 and 2.5,
and the best value for coher-Cv has been achieved with
τ = 2.25, so we have used these results for the com-
parison in Table 1. To further evaluate the model’s quality
with varying τ , we have also measured the topic coherence
(coher-NPMI) of ProdLDA-GS over the test set, using
ProdLDA as the reference. Figure 2 shows that τ has played
a key role also for this measure: for τ ∈ [1.5− 2.5], the topic
coherence of ProdLDA-GS has been invariably higher than
that of Prod-LDA, while it has noticeably deteriorated for
more ‘‘extreme’’ values (0.1, 10).

In terms of qualitative analysis of the extracted topics,
all approaches seem to have performed well overall. The
extracted topics are presented to the user as the lists of their
K = 10 topwords, and such lists must appear informative and
coherent. Examples for LDA, ProdLDA and ProdLDA-GS
from the COVID-19 topic models are displayed in Table 6.
For LDA, the first example clearly addresses the lockdown
measures taken by various European countries; the second
names New York State Governor Andrew Cuomo and the
mayor of San Francisco, but fails to include the ‘‘reason’’
for their mention; and the last is simply a list of countries,
again with no explicit mention of the COVID outbreak. For

ProdLDA, the first example refers to COVID symptoms and
testing (word ‘‘mer’’ is the stemmed version of ‘‘MERS’’);
the second refers to the case of the Diamond Princess cruise
ship; and the last addresses football news from the obser-
vation period. For ProdLDA-GS, the first example clearly
refers to COVID symptoms and the risk of infection for the
doctors; the second to the recent US presidential primaries,
which were held during the observation period; and the last
to economic news. Their lists of top words seem very consis-
tent and descriptive. A possible limitation of both ProdLDA
and ProdLDA-GS, and possibly of all autoencoding methods
which are based on sampling, is the presence of a number
of repeated topics. However, it should be easy to prune them
post-hoc.

V. CONCLUSION
This paper has presented an approach for topic modeling
based on the Gumbel-Softmax distribution and variational
autoencoders. During the step of topic-document inference,
the topic proportions of the current document are sampled
in the autoencoder from a Gumbel-Softmax distribution with
appropriate temperature. The samples are then used to mix
either the topic distributions (AVITM-GS) or their logits
(ProdLDA-GS). To validate the proposed approach, exper-
iments have been carried out on two challenging datasets,
the well-known 20 Newsgroups and a recently-released,
large-scale COVID-19 news dataset. The experimental results
have shown that the proposed approach has been able to
outperform the original variational autoencoders and two sig-
nificant baselines in terms of topic coherence, and achieve the
best trade-off across two coherence metrics and the test-set
perplexity. In addition, a qualitative analysis of the extracted
topics has shown that they appear informative and consistent.
In the near future, we plan to extend our research to other
distributional models and reparametrization approaches.
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