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ABSTRACT Visual grounding is a vision and language understanding task aiming at locating a region in an
image according to a specific query phrase. However, most previous studies only address this task for the
English language. Although there are previous cross-lingual vision and language studies, they work on image
and video captioning, and visual question answering. In this paper, we present the first work on cross-lingual
visual grounding to expand the task to different languages to study an effective yet efficient way for visual
grounding on other languages. We construct a visual grounding dataset for French via crowdsourcing. Our
dataset consists of 14k, 3k, and 3k query phrases with their corresponding image regions for 5k, 1k, and 1k
training, validation and test images, respectively. In addition, we propose a cross-lingual visual grounding
approach that transfers the knowledge from a learnt English model to a French model. Despite that the size
of our French dataset is 1/6 of the English dataset, experiments indicate that our model achieves an accuracy
of 65.17%, which is comparable to the accuracy 69.04% of the English model. Our dataset and codes are
available at https://github.com/ids-cv/Multi-Lingual-Visual-Grounding.

INDEX TERMS Visual grounding, cross-lingual, vision and language.

I. INTRODUCTION
Studies on various vision and language tasks, such as image
captioning [1] and visual question answering [2], have signif-
icantly promoted the research on joint vision and language
understanding. Visual grounding, which aims at finding a
specific region in an image corresponding to a query phrase,
plays a fundamental role in enhancing the performance of
many joint vision and language tasks. Since the emergence
of the first work of visual grounding in [3], research efforts
have been dedicated to improve its accuracy [4]–[11].

These studies are targetedmostly on English because large-
scale visual grounding datasets are only available in English.
Although English is the major language, visual grounding
could be also important for other languages for joint vision
and language understanding in those languages. Studies on
English, however, may not necessarily address the visual
grounding task for other languages, as the query phrases
may be completely different for different languages, and thus
a visual grounding model is strongly tied to the specific
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language used for training. Constructing dedicated datasets
in other languages in a similar scale to the English ones
could be a solution, but its cost is expensive. Therefore,
visual grounding on languages other than English remains an
unaddressed problem. The objective of our work is to study
an effective yet efficient way for visual grounding on other
languages.

To this end, in this paper, we present the first work on
cross-lingual visual grounding that transfers the knowledge
obtained from an English visual grounding model to another
language. Cross-lingual transfer works because the same
visual concept is shared despite different languages. Cross-
lingual studies have been already applied to visual caption-
ing [12] and visual question answering [13] but not yet to
visual grounding. A high-performance cross-lingual visual
grounding model not only provides efficient query localiza-
tion for other languages but also has the potential to improve
the performance of multimodal multilingual tasks, such as
multimodal machine translation [14].

We exemplify our idea with the French language. We con-
struct a French visual grounding dataset via crowdsourcing,
which consists of 14k, 3k, and 3k query phrases with their
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FIGURE 1. Overview of cross-lingual visual grounding.

corresponding image regions for 5k, 1k, and 1k training,
validation and test images, respectively. As our French dataset
is small in size compared to the English dataset (442k query
phrases in 31k images), we adopt the state-of-the-art English
model [11] and apply transfer learning techniques [15] to
fine-tune the model for French (see Figure 1). Our experi-
mental results show that our model achieves a comparable
accuracy to the English model on the test split of our French
dataset. Our contribution is two-fold:

• We introduce the first visual grounding dataset in a non-
English language for cross-lingual visual grounding.

• We propose a transfer learning approach for visual
grounding and experimentally verify its effectiveness.

II. RELATED WORK
A. ENGLISH VISUAL GROUNDING
Visual grounding is a task to find an image region that cor-
responds to a given phrase in a caption. Visual grounding
and object detection often share the same computer vision
techniques for proposal generation, but the former surpasses
the latter in terms of the versatility of query it could handle.
Object detection only handles pre-defined classes (for exam-
ple, the PASCAL-VOC dataset [16] has 20 categories and
the Microsoft COCO (MS COCO) dataset [17] has 80 cate-
gories), while visual grounding has no pre-defined categories
and has the capacity to handle an unlimited number of cate-
gories in principle. Moreover, visual grounding also handles
nouns with modifiers while object detection does not.

Many visual grounding studies have been conducted for
English. Plummer et al. [3] released the Flickr30k entities
dataset and proposed amethod based on canonical correlation
analysis (CCA) [18] that learns joint embeddings of phrases
and image regions. Wang et al. [4] proposed a two-branch
neural network for joint phrasal and visual embeddings.
Fukui et al. [5] used multimodal compact bilinear pooling to
fuse phrasal and visual embeddings. Rohrbach et al. [6] pro-
posed a method to first detect a candidate region for a given
phrase and then reconstruct the phrase using the detected

region.Wang et al. [7] proposed an agreement-based method,
which encourages semantic relations among phrases to agree
with visual relations among regions. Yeh et al. [8] proposed a
framework that can search over all possible regions instead of
a fixed number of region proposals. Plummer et al. [9] used
spatial relationships between pairs of phrases connected by
verbs or prepositions. Chen et al. [10] proposed a reinforce-
ment learning-basedmodel that rewards the grounding results
with image-level context. Yu et al. [11] improved the region
proposal network by training it on the Visual Genome dataset
[19] to increase the diversity of object classes and attribute
labels, which achieved the state-of-the-art performance. In
this paper, we apply the model of [11] for cross-lingual visual
grounding.

Inspired by the success of pre-training language models
such as BERT [20], vision and language pre-training on
large image caption datasets such as the conceptual captions
dataset [21] has been promoted such as [22]–[24]. Those
vision and language pre-training models differ from the
model architecture, but we refrain the details here because
this is beyond the focus of this work. Vision and language
pre-training is evaluated on tasks including visual grounding.
However, same to previous studies, the visual grounding task
is still limited to English [22]–[24].

B. CROSS-LINGUAL VISION AND LANGUAGE
As image/video captioning and visual question answering are
the most representative vision and language tasks, we intro-
duce cross-lingual work for these two tasks here.

1) IMAGE AND VIDEO CAPTIONING
Although there are some large-scale image captioning
datasets, such as the MS COCO [25] and Flickr30k [26],
many of them only provide English captions when they
were first released. These datasets have been extended by
adding captions in other languages for cross-lingual study.
Miyazaki and Shimizu [12] created the YJ Captions, which
is a Japanese image captioning dataset using a part of the
images from MS COCO, and applied transfer learning for
the task. Yoshikawa et al. [27] further enlarged the collection
of Japanese captions for MS COCO and released the STAIR
Captions dataset. There are also some extensions for Chinese,
such as [28], [29]. Li et al. [28] presented comparison of
Chinese caption datasets constructed by crowdsourcing and
machine translation. Li et al. [29] added Chinese captions
and tags for MS COCO. For video captions, Chen and Dolan
[30] collected short video clips and captions in many different
languages. They recruited monolingual speakers to make a
large-scale and linguistically diverse dataset.

Nakayama et al. [31] translated the English captions in the
Flickr30k entities dataset into Japanese. They also linked the
translated Japanese entities to their corresponding regions.
They applied a CCA based method similar to [3] to con-
duct visual grounding experiments on the created Japanese
dataset. Different from their work, our visual grounding
dataset is created for French. Moreover, we study transfer
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FIGURE 2. Two examples of French captions with corresponding image
regions in our dataset.

learning to improve French visual grounding by transferring
knowledge from the English model.

2) VISUAL QUESTION ANSWERING
Visual question answering (VQA) is a task to generate a
natural language answer to a question about the image con-
tent. Antol et al. [32] firstly published the VQA dataset.
This task has also been extended in different languages for
cross-lingual study. Gao et al. [13] published a Chinese VQA
dataset, which includes an English translation of the annota-
tion, and Shimizu et al. [33] created a Japanese VQA dataset.

III. FRENCH VISUAL GROUNDING DATASET
In this section, we introduce the approach we use to con-
struct our French visual grounding dataset, named as Flickr5k
French entities. Figure 2 shows two examples of French
captions in our dataset with corresponding image regions.

A. RELATED DATASETS
Visual grounding requires (image, phrase, image region)
triplets for training. We build our dataset in French based on
the benchmark dataset Flickr30k and its derivatives:

Flickr30k [26] is composed of 31k images and 158k cap-
tions in English (5 captions per image).

Flickr30k entities [3] enhances the Flickr30k dataset by
identifying 443k entities in the Flickr30k’s captions with their
corresponding image region.

Multi30k [14] extends Flickr30k into French, German,
and Czech. For French in particular, the Multi30k dataset
translates 1 of 5 English captions per image in the original
Flickr30k dataset.

B. ANNOTATION PROCESS
Based on the data already available in those datasets, we con-
struct the Flickr5k French entities dataset in the following
way: we use the images from the Flickr30k dataset, entities
and image regions in the Flick30k entities dataset, and French
translations from the Multi30k dataset. We then identify
entities in French captions that correspond to those in the
Flickr30k entities dataset via crowdsourcing. As the English
entities have been linked to their corresponding image regions
in the Flickr30k entities dataset, the identified French entities

FIGURE 3. An example of our annotation task. An English sentence
(a) and its corresponding French caption (b) are presented to a worker at
the initial state of our task, where entities in (a) are in different colors.
In the French caption after annotation (c), corresponding phrases are
colored.

can be also linked with the same regions. We follow the
train-validation-test split used in the Multi30k dataset (the 5k
training sentences that we annotated in this work are the first
5k sentences in the training set of the Multi30k dataset). The
statistics of the annotated captions is shown in the first three
columns in Table 1.

We construct our dataset in this way instead of creating
a new dataset from scratch. This is advantageous in two
ways: 1) As numerous studies have been conducted on those
benchmark datasets, it will make comparison among different
works easier; 2) It can contribute to multimodal multilingual
tasks such asmultimodalmachine translation on theMulti30k
dataset.

We use Amazon Mechanical Turk1(AMT) as our crowd-
sourcing platform and develop our own interface dedicated
to the task.2 We present image, English caption, and French
caption to workers3 (see Figure 3). Each entity phrase in
English caption is shown in a different color. The workers
are asked first to click on an entity of interest in the English
caption and then click on the corresponding French words
(multiple words involved in most cases). Non-entity words
remain in the green color. Figure 3 shows an example of our
annotation task and Table 1 shows the statistics of our dataset
in detail.

C. QUALITY CONTROL
In order to facilitate quality control, we put 12 questions in
each HIT (Human Intelligence Task, the basic work unit on
AMT). This alsomakes the annotation speed ofworkers faster

1https://www.mturk.com/
2We did an experiment using the GIZA++ toolkit to automatically align

the words between English and French based on 31k sentence pairs. We then
compared the auto-aligned sentences against the human-annotated sentences
based on 1k sentences (the first 1k sentences in the training set), and found
that 5% of words are incorrectly assigned. For more distant language pairs
such as English-Japanese, it has been shown that word alignment accuracy
is significantly lower than that of English-French, and thus word alignment
cannot be directly used for our purpose in general. As wewanted to guarantee
the quality of our dataset, we chose to use human annotation instead of word
alignment. Annotating by correcting the errors made by the word aligner can
be another strategy that might be more efficient, but we had the concern that
this is more difficult to control the quality of annotation.

3We limited workers to English or French speaking countries (France,
Belgium, Canada, Switzerland, Australia, USA, UK), and we required ‘‘mas-
ter qualification’’ to work for us.

VOLUME 9, 2021 351



W. Dong et al.: Cross-Lingual Visual Grounding

TABLE 1. The statistics of our French visual grounding dataset. Numbers in bracket are the corresponding statistics of the original Flickr30k entities
dataset in English. Note that when we count vocabularies in this table, we do not conduct stemming, just convert all text into lower case.

thanks to the reduction of the time for submitting responses
and loading new questions.4

Among 12 questions per HIT, we include 2 quality control
questions in each HIT. Quality control questions are ran-
domly chosen from a pool of accepted answers on previously
annotated questions. We randomly shuffle normal questions
and quality control questions within a HIT. We evaluate the
quality of the HIT by computing the word-wise accuracy u
over the two quality control questions:

u =
1
n

∑
i

Ti
Ti + Fi

where Ti and Fi are the numbers of words annotated correctly
and incorrectly, respectively, on the i-th quality control ques-
tion of the HIT (i ∈ {1, 2}), and n is the number of quality
control questions in one HIT being set to 2.

D. ANNOTATION ERROR ANALYSIS
We reviewed the submitted HITs with u being less than 0.9
(about 4.2% of all HITs), and we found that most of the
discrepancies on quality control questions which led to low
u score are upon ambiguous translations, and the annotation
quality on 10 normal questions was generally good. More-
over, we randomly reviewedmoreHITs. In total, wemanually
checked roughly 15% of the entire annotated data.

Annotation errors in our dataset mainly fall into the follow-
ing three categories:5

1) Errors in content words are due to negligence of
workers. We estimated that the errors in this category
contaminated 0.5% of all annotated phrases.

2) Errors in functional words have limited influence in
the meanings of phrases due to the nature of functional
words. Most errors in this category are inclusion of
unnecessary prepositions or missing of articles. These
errors contaminated about 2% of all annotated phrases.

3) Errors in Flick30k entities or Multi30k also result in
errors in our annotation as we built our dataset on top
of them. This category is estimated to occupy about 1%
of all annotated phrases.

4A screenshot of our user interface can be found in the supplementary
material.

5The error rate for each category is estimated based on our manually
checked HITs. It is calculated at phrase level, i.e. if there is one word mis-
annotated in a phrase, this phrase will be counted as a failure. For each
category, some examples of errors are listed in the supplementary material.

IV. VISUAL GROUNDING MODEL
This section introduces the model for visual grounding and
our transfer learning strategy to train the model for other
languages with much smaller volume of training data.

A. OUR MODEL
Inspired by Yu et al. [11], we implement a simple and power-
ful visual grounding model shown in Figure 4,6 which has the
capability of efficiently picking up the best region proposal
among a large number of region proposals.

The input image and query phrase are first processed sep-
arately. For the image, we use the Faster-RCNN [34] to get
N region proposals, each of which is composed of a visual
feature vector fv ∈ Rdv and a spatial feature vector fs ∈ R5.
As in [35], fs consists of the normalized coordinates of the
top-left and bottom-right corners as well as the area of the
region proposal. More specifically,

fs =
[
xtl
W
,
ytl
H
,
xbr
W
,
ybr
H
,
wh
WH

]
where (xtl, ytl) and (xbr , ybr ) are the coordinates of the top-
left and bottom-right corners of the proposal; w = xbr − xtl
and h = ybr − ytl ; W and H are the width and height of the
image. Figure 5 shows proposals generated by Faster R-CNN
upon an example image.

For the query phrase, we build a vocabulary index table
based on our training set with an adding token for unknown
words, which replaces a word not in the training set. Because
our training set is relatively small and different word forms
like singular or plural are informative for the task, we only
transform all words into lowercase but do not do stemming.
We transform the query phrase into a index sequence q,
which is then fed into a word embedding layer and a single-
layer long short-term memory (LSTM) unit. Hidden states
of LSTM form a continuous-space representation for a word
given all preceding words. We use the hidden state fq ∈ Rdq

of the last word as the query phrase representation:

fq = LSTM(embed(q))

where embed(·) converts indices in q into word embeddings
and LSTM(·) gives the last word’s hidden state.

We then concatenate the visual features fv and fs for each
region proposal and the textual features fq, i.e.,

f = concat(fv, fs, fq)

6We do not adopt the regression loss in [11], because it decreases the
accuracy in our preliminary experiments.
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FIGURE 4. The workflow of our visual grounding model. Note that the Faster R-CNN module is standalone and we do not optimize its parameters.
The query ‘‘un homme chauve’’ means ‘‘a bald man.’’ The modules in deep green (Word Embed, LSTM, FC1 and FC2) are the modules whose
parameters will be transferred from the English model to the French model.

FIGURE 5. An example of an image (left) and region proposals for the
image generated by Faster R-CNN (right).

and put all proposals in a matrix F :

F = [f1, . . . , fN ].

where F ∈ RN×d0 with d0 = dv + 5+ dq.
Next, to rank the proposals according to the query phrase,

we pass F through a fully-connected layer (FC1), a batch
normalization layer, a dropout layer, and a second fully-
connected layer (FC2) consecutively. Formally,

F1 = ReLU(FW1 + b11T )

where W1 ∈ Rd0×d1 , b1 ∈ Rd1 , 1 is a vector with all N
elements being 1. Then

F ′1 = dropout(batchnorm(F1))

S = softmax(F ′1W2 + b21T )

where W2 ∈ Rd1 , b2 ∈ R, and S = [s1, . . . , sN ] ∈ [0, 1]N is
the scores for N proposals.
The ground truth score gn of the n-th proposal is the IoU

score between the proposal and the ground truth image region
with thresholding. Let rn and t denote the n-th proposal and
the ground truth image region for the query phrase. We com-
pute gn by

g′n =

{
IoU(rn, t) if IoU(rn, t) > η

0 otherwise
(1)

where η is the threshold. We normalize the score over the N
proposals by

gn =
g′n∑
i g
′
i
.

For training our model, we use the Kullback-Leibler diver-
gence as loss L:

L =
∑
n

gn log
gn
sn

B. TRANSFER LEARNING
As in Figure 4, our model consists of vision and language
branches, which are merged to predict the score for each
proposal. The vision branch can be independent from the
language branch; therefore, the vision branch trained for a
certain language can be reusable for another language. On the
other hand, the language branch needs to be re-trained for
different languages. This can be seen as an analogy of our
own human experience. For an English speaker who already
knows ‘‘computer,’’ when he learns the French word ‘‘ordina-
teur,’’ he will not need to learn this word as a French person
did in 1950s who had never seen any computer in his life.
Instead he will just map this French word to the concept of
‘‘computer’’ already in his mind. Such a transfer learning
strategy greatly facilitates acquisition of foreign languages
for human beings. We do the same thing for our machine
learning model for visual grounding.

To implement such an idea for transferring knowledge
from English to French visual grounding, we first train
our English model from scratch with the Flickr30k entities
dataset. Then we initialize a French model in the same net-
work architecture, except the vocabulary size in the word
embedding layer. The other parameters of the French model
are initialized with those of the English model. Figure 6
illustrates the workflow of this transfer learning strategy. For
the word embedding layer, we test five different strategies:

Random mapping assigns a word vector of the English
model to each French word randomly.
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FIGURE 6. The workflow of our transfer learning model. The word
embedding layer is treated with special strategies, while other layers in
the French model are transferred directly from the English model. The
Embed, LSTM, FC1, and FC2 modules are fine-tuned.

Frequency-based mapping counts the word frequency in
the English and French training sets separately and sorts them
in a descending order. The English word vector is assigned to
the French word at the same position in the French’s sorted
word list as the English one.

General dictionary mapping (GDM) uses a general pur-
pose dictionary, e.g., Google Translate, to map each French
word to an English word. If an English word suggested
for a certain French word by the general-purpose dictionary
does not used in our English dataset, we randomly assign an
English word vector to this French word.When the dictionary
suggests a multi-word English phrase for one French word,
we use the last word in the English phrase.

Dataset-specific dictionary mapping (DSDM) is the
same as the GDM approach except that the dictionary is built
from the dataset. We use the GIZA++ toolkit7 to align words
in the training set of the Multi30k English-French datasets
and then calculate the lexical translation probability of French
and English word pairs. We choose the English word with the
highest translation probability as the translation of a French
word.

The general-purpose dictionary mapping approach has
wide applicability in many real scenarios because most lan-
guages, even low-resource ones, have dictionaries between
them and English. This provides our approach great porta-
bility to address visual grounding problems even for many
low-resource languages.

V. EXPERIMENTS
A. SETTINGS
For training the English model, we generally followed the
configuration suggested in [11]. We used the Faster-RCNN
with ResNet101 provided by Anderson et al. [36] to get
N = 100 region proposals for each image. The dimension dv
of visual features was set to 2,048. The dimension of word
embedding was set to 300. For the LSTM layer’s output,

7http://code.google.com/p/giza-pp

TABLE 2. Comparison between our English model and existing ones.

we used dq = 1, 024. For FC1’s output, we used d1 = 512.
For FC2’s output, we set d2 = N = 100. When calculating
the Kullback-Leibler divergence, we added ε = 10−7 to all sn
in order to avoid zero division. We used the Adam optimizer
with β1 = 0.9 and β2 = 0.999. The initial learning rate was
0.001 with an exponential decay rate 0.7. The dropout rate
was 0.5, and the mini-batch size was 64.We trained themodel
by 10 epochs, saving the model after each epoch. Finally
we picked up the model with the best performance on the
validation set as the chosen model, and evaluated it on the
test set.

Following previous studies, we treated a prediction as suc-
cessful when the predicted image region overlaps the ground
truth with IoU > 0.5, and we calculated the percentage of
such successful predictions within a certain test set as the
accuracy over this test set. The threshold η in Equation (1)
was set to 0.5, the same value as the criterion between a
successful and an unsuccessful prediction.

B. RESULTS
1) PERFORMANCE OF OUR ENGLISH MODEL
We first report the performance of our English model in
Table 2.8 We can see that, although our model performs
slightly worse compared to [11], it is comparable to the state-
of-the-art.

2) CROSS-LINGUAL GROUNDING PERFORMANCE
For our Flickr5k French entities dataset, we compared our
transfer learning model with three baselines.
• Training from scratch: all layers are trained on the
French data from scratch.

• GDM w/o TL: the word embedding layer is initialized
by GDM, but all other layers are trained from scratch.

• Ground after Translate: translates the French test set into
English word by word using our general dictionary, and
then uses the English model to ground.

To better understand the performance of different transfer
learning strategies on different volumes of training data,
we tested them with 1k and 3k sets. The 5k set is the
entire training set of Flickr5k French entities dataset, while
the 1k and the 3k take their corresponding images from the
beginning of the training set.

Table 3 summarizes the performances. We can see that
despite the small volume of the training set, our Frenchmodel
reaches comparable accuracy to the English model. As for

8Recent pre-training vision and language representation studies also tested
on English visual grounding such as [22]–[24]. However, all these studies did
not report results on the Flicker30k entities dataset, but on another dataset of
RefCOCO+. Therefore, we did not add them into Table 2.
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TABLE 3. The accuracy scores for the three baselines and our model with
different transfer learning strategies (split by the middle line). ‘‘1k’’, ‘‘3k’’,
and ‘‘5k’’ mean training on entities for 1k, 3k, and 5k images, respectively.
Note that ‘‘Ground after Translate’’ is not trained on our Flickr5k French
entities dataset.

TABLE 4. The performance of our model with freezing certain layers
when training the French model. ‘‘T’’ refers to ‘‘trained’’ and ‘‘F’’ refers to
‘‘fixed.’’ We use the GDM strategy and train our model on 5k images.

word embedding initialization, random and frequency map-
ping perform worse than training from scratch. When using
a dictionary to map the word embeddings, the performance
is significantly improved.9 GDM performs significantly bet-
ter than GDM w/o TL especially when the training data is
smaller, indicating the importance of transfer learning. 5k
performs better than 3k, and 3k performs significantly better
than 1k, indicating that our model can be further improved by
accumulating the French training data. Surprisingly, Ground
after Translate shows a high accuracy, but it is still worse
than GDM with 3k or 5k images. DSDM outperforms GDM,
showing the ability of our model when parallel captions are
available for generating a dictionary.

3) EFFECTS WHEN FREEZING CERTAIN LAYERS
For all results in Table 3, the parameters of all layers are
trained in the French model, except for the vision branch.
We also investigated the performance of our model when we
freeze some layers during training. Table 4 summarizes the
results. In the table, we see that the best result is achieved
when we only fine-tune the embedding and the LSTM layer
while fixed the two fully connected layers. These experi-
mental results confirm our intuition in Section IV-B, that
the superficial difference in languages can be handled in the
lower layers (the layers close to text) and the conceptual
representations (the layers close to image in our case) for
different languages can be shared.

4) APPLICABILITY TO OTHER LANGUAGES
As different languages have different word orders, we also
conducted experiments to investigate the influence of word
orders to the performance of our transfer learning-based
approach. We trained a model with randomly shuffling the
word order in each French query. The results are shown in

9We provide examples of word mapping in the supplementary material.

TABLE 5. Accuracy when word order is shuffle. We used the GDM
strategy and all layers are trained over entities for 5k images.

Table 5. We can see that our model performs similarly to
the original and shuffled word orders. This indicates that
word orders should not matter when we apply our model to
different languages.10

C. DISCUSSION
We analyzed the French visual grounding results to investi-
gate the strengths and weaknesses of our model.

1) SUCCESSFUL EXAMPLES
The top row of Figure 7 shows some successful examples.We
found that our model has the capability to localize objects
described by a wide variety of words; it can also localize
objects in different amounts (e.g., 1, 3, and 5 in Figure 7) or
in different sizes (e.g., 2 and 4 in Figure 7). Our model also
works for both fully and partially presented objects (e.g., 2
and 4 in Figure 7).

2) UNSUCCESSFUL EXAMPLES
The bottom row of Figure 7 shows some unsuccessful exam-
ples. We found that some are with resembling rivals (e.g., 6
and 7 in Figure 7); some are with different amounts (e.g.,
8 and 9 in Figure 7); some are due to the lack of context
information (e.g., 10 in Figure 7); others are failures due to
unknown words. Note that our English model also makes
similar mistakes for these examples. These problems point
out future research directions. For example, we may need to
take language and visual context into account to handle some
queries; we may also conceive a more advanced approach to
deal with words not appeared in training set by sub-words,
or an external knowledge base.

Though comparable, our French model still performs
slightly worse than our English model. Therefore, we also
investigated examples where our French model fails but our
English model succeeds to analyze the weakness of transfer
learning. Figure 8 shows such examples. We found that in
many cases our French model tends to focus on a part of the
object while our English model can ground correctly (e.g., 1
vs 6, 2 vs 7, 3 vs 8 in Figure 8); there are also cases where
our French model encompasses redundant regions. However,
we did not observe meaningful trends. We think that these
cases happen due to the small size of the French dataset and
more training data could help.

To summarize, we can see that our French model per-
forms comparable to the English model. However, due to

10Note that complicated queries such as ‘‘the dog holding a brown toy,’’
where changing the word order of nouns will change the semantic meaning
do not exist in our dataset. ‘‘the dog holding a brown toy’’ is split into two
queries of ‘‘the dog’’ and ‘‘a brown toy’’ in Flick30k entities and thus also
split in our dataset.
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FIGURE 7. Examples of successful (top) and unsuccessful (bottom) visual grounding. The green boxes are the ground truth image region, and the yellow
boxes are the prediction by our French model.

FIGURE 8. Examples of visual grounding examples that our French model fails (top), but our English model succeeds (bottom). The green boxes are the
ground truth image region, and the yellow boxes are the prediction.

the limitations of the original English model in lacking
of context and unknown words, our model still fails in
these cases. We believe recent advances in sub-word based
context-aware pre-training visual and language representa-
tions such as [22]–[24] are more robust to these issues and
plan to study cross-lingual visual grounding based on these
models.

VI. CONCLUSION
In this paper, we presented the first work on cross-lingual
visual grounding to study an effective yet efficient way for
visual grounding on other languages. We constructed a visual
grounding dataset in French and proposed to transfer the
knowledge from a state-of-the-art English visual grounding
model to the French one. Experimental results showed that
our transfer learning-based approach can achieve an accuracy
comparable to the English model, even with a small French
dataset.

As future work, we plan to conduct experiments on lan-
guages distant from English, such as Chinese and Japanese,
and verify the effectiveness of our approach on these lan-
guages. This work still needs to annotate a small visual
grounding dataset in another language, making it hard to
extend to other languages. We plan to study robust cross-
lingual representations so that we can get rid of the expensive
annotation process in this work.
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