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ABSTRACT This paper is concerned with the problem of event-triggered non-fragile H∞ filter design for
interval type-2 (IT2) fuzzy systems subject to output quantization. The nonlinear plant is efficiently described
by an IT2 fuzzy model, and the lower and upper membership functions with weighting coefficients are
employed to characterize parameter uncertainties in the plant. To enhance filter adaptability, an IT2 non-
fragile fuzzy filter method is proposed to acquire available information for the unknown state of the plant,
where the multiplicative gain variations is taken into account in the filter analysis design process. In order
to avoid continuous communications and save limited bandwidth, a dynamic event-based mechanism is
employed to adopt the limited communications links. Then, based on the Lyapunov theory together with
the inequality technique, a filtering system with event-based mechanism and measurement quantization
is analyzed and constructed. Moreover, the obtained sufficient conditions for system analysis are given
in the form of linear matrix inequalities (LMIs). Finally, a numerical simulation is provided to verify the
effectiveness of the proposed filter design strategy.

INDEX TERMS Event-triggered scheme, interval type-2 fuzzy systems, non-fragile filtering, quantization.

I. INTRODUCTION
In the field of theoretical research and engineering applica-
tions, Takagi-Sugeno(T-S) fuzzy model is proposed to deal
with system nonlinearities, which was first established in [1],
[2]. It describes the nonlinear systems by average weighted
summation of some local linear sub-models. By using of this
replaceable model of nonlinear systems, the controller can be
designed by utilizing the parallel distributed compensation
scheme. This structure gives a general alternative method
for the analysis and synthesis of nonlinear systems, which is
called as the type-1 T-S fuzzy model. Recently, fruitful issues
were reported for type-1 fuzzy systems. Fault detector and
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controller design was solved in [3]; fault estimation and fault-
tolerant control of switched fuzzy systems was addressed
in [4]; event-triggered fuzzy controller design and its applica-
tion was given in [5]; fuzzy adaptive event-triggered control
was considered in [6].

It is well known that the uncertainty is inevitable for
various systems, which is caused by parameter uncertainty,
modeling error, conversion error etc. In order to describe and
capture uncertainties existing in nonlinear plants, an interval
type-2 (IT2) T-S fuzzy logic was given to extend type-1 fuzzy
version in [7], [8]. It adopts a lower and upper membership
functions approach to deal with uncertain parameters existing
in membership functions and has more better description
ability and performance than type-1 T-S fuzzy logic sys-
tem. Compared with type-1 T-S fuzzy model, the superiority
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of IT2 T-S fuzzy systems has been shown in many fields.
Based on dissipativity performance of nonlinear discrete-time
systems, a novel reliable IT2 fuzzy filter was constructed
in [9]; H∞ norm and Hankel-norm model reduction problem
for high-order IT2 fuzzy systems were addressed in [10],
[11], respectively. A new triple-integral Lyapunov-Krasovskii
functional was provided in [12], where sufficient condition
of controller design was developed by second-order Bessel-
Legendre integral inequality. By employed input delay con-
version method, H∞ fuzzy networked sampled data control
problem was solved in [13]. After designing the integral slid-
ing mode surface, an adaptive fuzzy sliding mode controller
of uncertain nonlinear systems was constructed to make the
systems stable in [14]. Based on the framework of IT2 T-S
fuzzy logic, the sampled-data tracking output-feedback con-
trol of polynomial fuzzy-model-based system was presented
in [15]. Some sampled-data control results were obtained
for IT2 systems in [16], [17]. Subjecting to time-varying
delay and external disturbances, the reliable control problem
of finite-time discrete-time uncertain IT2 systems was con-
cerned with in [18].

Since the state information is not always available and
known for the systems being studied, filter design or state
estimation is required to estimate system state through an
available measurement way in computer application, signal
processing, network communications and control field. Until
now, considerable research has focused on the problem of
filtering analysis and design, for example, [19]–[21] and the
references therein. On the other hand, increasing efforts have
been made for type-1 and type-2 fuzzy filtering problem.
Through the T-S fuzzy framework, a robust fault detection fil-
tering design was proposed for nonlinear switched stochastic
systems in [22]. By the event-triggered scheme, the authors
in [23] have focused on fault detection filtering problem
for nonlinear systems under the network environment. Using
two-dimensional Roesser T-S fuzzymodel, the authors in [24]
have addressed positive filtering construction with induced
`1 performance. By taking full advantage of the relationship
information between multiple delay terms and the current
system states, a novel delays dependent partitioning tech-
nique was employed to obtain H∞ filter for discrete-time
fuzzy systems in [25]. For tackling random link failures of
sensor network, a distributed reliable IT2 fuzzy filter problem
was carried out to have system states in [26]. Considered data
packet dropouts and quantization, an IT2 fuzzy filter was got
for a class of nonlinear networked systems in [27]. Based
on an adaptive event-triggered method, a novel IT2 fuzzy
filter was implemented to deal with asynchronously and
imperfectly matched membership functions in [28]. By using
of asynchronous adaptive event-triggered method, the track-
ing control problem of multi-agent systems was investigated
in [29]. Considered the physical phenomenon of quantization
and random network attacks, the fuzzy finite time controller
was designed for nonlinear interconnected systems in [30].
In the framework of network environment and IT2 fuzzy

fuzzy model, an adaptive event-based fault detection filter
was obtained by applying an improved Wirtinger-based inte-
gral inequality and reciprocally convex inequality in [31].
In the field of science or engineering, non-fragile perfor-
mance is used to describe the robustness to the system
uncertainty, which was reported in [39], [40]. It should be
pointed out that fault-tolerant control [41], [42], tracking
control [43] and fractional order systems [44] have always
been hot research topic in this field. How to solve these
topics of IT2 fuzzy systems will be one of our future research
directions.

As a result of the above discussion, the research in fil-
tering problem for IT2 T-S fuzzy systems with quantization
and time-delay should be both valuable and meaningful for
theoretical research and practical applications, which gives us
a motivation to carry out this work. In this paper, the problem
of event-triggered non-fragile H∞ filtering for IT2 T-S fuzzy
systems with quantization and time-delay is investigated.
In the framework of IT2 fuzzy sets, both lower and upper
of membership function is adopted to catch systems uncer-
tainty. Furthermore, the information of both time-delay and
quantization are taken into account in filtering system anal-
ysis and syntheses. With such information, the event-based
mechanism is introduced to improve network communication
applicability. Based on Lyapunov functional theory, sufficient
conditions are acquired to determine the stability of the filter-
ing error system. And then, the filter design process is given
in terms of LMIs. Since the multiplicative gain variations is
considered separately in each local sub-plant, the filter adapt-
ability can be enhanced and the stability criteria are more
relaxed. The main innovations and contributions obtained in
this paper are as follows:

1) To improve the accuracy of nonlinear systemmodeling,
an interval type 2 (IT2) fuzzy model is constructed by
using of upper and lower membership functions to han-
dle the uncertainties caused by time delay, quantization
error and gain fluctuations.

2) In order to enhance the adaptability of the filter
designed in this paper, a non-fragile filter process
is given to deal with multiplicative gain variations.
In addition, the data to be released was quantized by
a logarithmic quantizer to satisfy the requirements of
signal normalization.

3) By employing inequality technique and slack matrix
method, the solvability problem of filter design is trans-
formed into a convex optimization problem. Moreover,
a simulation is given to reveal the effectiveness of the
obtained results.

The remainder of this paper is organized as follows.
In Section II, system description and preliminaries is pre-
sented. In Section III, the filter error systems analysis issue is
discussed by the Lyapunov stability theory and the filter con-
struction conditions are derived. In Section IV, the numerical
simulation is provided to verify the effectiveness of obtained
method. The conclusion is given in Section V.
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FIGURE 1. System Diagram.

Notation: All notations used throughout this article are
really standard, which can be found detailed explanations in
the corresponding math books. The superscripts ‘‘T ’’ and
‘‘(−1)’’ denotes matrix transposition and matrix inverse,
respectively. The notations ‘‘I ’’ and ‘‘0’’ are donated as iden-
tity matrix and zero matrix. The notations P > 0, P < 0
means a positive, negative definite matrix P, respectively. ‖·‖
denotes the Euclidean norm of a vector and its induced norm
of a matrix. ∗ represents a symmetric term in a matrix. Matri-
ces whose dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
In this paper, the structure of interval type-2 (IT2) fuzzy
system under network framework is shown in Figure 1, where
the plant is represented by the following IT2 fuzzy system
with r rules.

Rule i: IF θ1(x(t)) is M̃i1, θ2(x(t)) is M̃i2, . . ., AND θp(x(t))
is M̃ip, THEN 

ẋ(t) = Aix(t)+ Biω(t)
y(t) = Cix(t)+Diω(t)
z(t) = Lix(t)

(1)

where x(t) ∈ Rnx is the state vector; y(t) ∈ Rny is
the system measurement output; z(t) ∈ Rnz is the sig-
nal to be estimated; ω(t) ∈ Rnω is the external distur-
bance, which belongs to L2 [0,∞); Ai, Bi, Ci, Di and Li
are system matrices with suitable dimensions. θ (x(t)) =[
θ1(x(t)), θ2(x(t)), . . . , θp(x(t))

]T denotes premise variables,
p is the number of fuzzy sets; M̃i∂ stands for fuzzy sets,
i ∈ {1, 2, . . . , r}, ∂ ∈ {1, 2, . . . , p}. The trigger intensity of
rule i can be expressed as the following interval value set:

Mi(x(t)) = [M1
i (x(t)),M

2
i (x(t))] (2)

where

M1
i (x(t)) =

p
5
∂=1

µ1
M̃i∂

(θ∂ (x(t))) ≥ 0,

M2
i (x(t)) =

p
5
∂=1

µ2
M̃i∂

(θ∂ (x(t))) ≥ 0,

µ2
M̃i∂

(θ∂ (x(t))) ≥ µ1
M̃i∂

(θ∂ (x(t))) ≥ 0,

M2
i (x(t)) ≥M1

i (x(t)) ≥ 0.

with µ1
M̃i∂

(θ∂ (x(t))) ∈ [0, 1] and µ2
M̃i∂

(θ∂ (x(t))) ∈ [0, 1]
are called the lower and upper membership functions,
respectively.

According to fuzzy inference and weighting, the following
IT2 fuzzy model can be obtained

ẋ(t) =
r∑
i=1

M̃i(x(t))[Aix(t)+ Biω(t)]

y(t) =
r∑
i=1

M̃i(x(t))[Cix(t)+Diω(t)]

z(t) =
r∑
i=1

M̃i(x(t))Lix(t)

(3)

where

M̃i(x(t)) = G1
i (x(t))M

1
i (x(t))

+G2
i (x(t))M

2
i (x(t)) ≥ 0,∑r

i=1
M̃i(x(t)) = 1,

0 ≤ G1
i (x(t)) ≤ 1,

0 ≤ G2
i (x(t)) ≤ 1,

G1
i (x(t))+G2

i (x(t)) = 1, i ∈ 1, 2, · · · , r .

Remark 1: The uncertainties in nonlinear systems are
described by nonlinear termsG1

i (x(t)),G
2
i (x(t)) and interval

value of membership function M1
i (x(t)), M

2
i (x(t)), which

avoids the vulnerability of the membership functions of type-
1 fuzzy systems. G1

i (x(t)) and G
2
i (x(t)) must exit, but needn’t

be known their exact value for some analyses.
Remark 2: Type-2 fuzzy sets have grades of membership

that are themselves fuzzy. An Interval Type-2 Fuzzy Set is a
special case of a Type-2 Fuzzy Set, which the membership
functions of an element are an interval. Generally, an IT2 FS
is said to be maximally uncertain because all of its sec-
ondary membership grades are the same value. If we plot
all the primary memberships of IT2 fuzzy systems in a 2D
graph, the area covered by those primary memberships is
the Footprint of Uncertainty (FOU). The outer margin of the
FOU is the upper bound of FOU, called the Upper Mem-
bership Function (UMF), and the lower margin of the FOU
is the lower bound of FOU, called the Lower Membership
Function (LMF). Two well-known approaches to construct
upper bound and lower bound of FOU for IT2 fuzzy sets are
Gaussian primary MF with uncertain standard deviation and
Gaussian primary MF with uncertain mean.
Remark 3: For an IT2 fuzzy system, three kinds of fuzzi-

fiers can be used: singleton, type-1 non-singleton, and
IT2 non-singleton. Compared with a type-1 fuzzy systems,
it is challenging to accurately determine the fuzzy rules of an
IT2 fuzzy system. It should be pointed out that Hamrawi and
Coupland introduced two ways to determine the fuzzy rule
number of an IT2 fuzzy system in [38],

Now we aim to deal with the filter problem for the system
in (3). In order to enhance the flexibility of filter design,
it is reasonable to consider parameters change in the filter
construction, j rule of filter is expressed in the following
IF-THEN rule:
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Rule j: IF σ1(x(t)) is Ñj1, σ2(x(t)) is Ñj2,. . . , AND σq(x(t))
is Ñjq, THEN{

ẋf (t) = (Afj +1Afj)xf (t)+ (Bfj +1Bfj)ŷf (t)
zf (t) = (Cfj +1Cfj)xf (t)

(4)

where xf (t) ∈ Rnx is the state vector of the filter;
ŷf (t) ∈ Rny denotes the input vector of the filter;
zf (t) ∈ Rnz is the estimated value; Afj, Bfj and Cfj
are the parameter matrices of the filter to be designed;
Ñjλ represents IT2 fuzzy set, j = 1, 2, . . . , r, λ =

1, 2, . . . , q; σ (x(t)) =
[
σ1(x(t)), σ2(x(t)), . . . , σq(x(t))

]T
denotes premise variables; 1Afj, 1Bfj and 1Cfj are the
uncertain parameter matrices of multiplicative gain varia-
tion, which satisfy 1Afj = AfjM1jK1(t)N1j, 1Bfj =
BfjM2jK2(t)N2j, and 1Cfj = M3jK3(t)N3jCfj, in which
Mcj(c = 1, 2, 3) and Ncj(c = 1, 2, 3) are the known con-
stant matrices; The uncertain functions satisfy KTc (t)Kc(t) ≤
I , c = 1, 2, 3. The trigger intensity of rule j can be described
as:

Wj(xf (t)) = [W1
j (x(t)),W

2
j (x(t))]

where

W1
j (x(t)) =

q
5
λ=1

µ1
Ñjλ

(δλ(x(t))) ≥ 0,

W2
j (x(t)) =

q
5
λ=1

µ2
Ñjλ

(δλ(x(t))) ≥ 0,

µ2
Ñjλ

(δλ(x(t))) ≥ µ1
Ñjλ

(δλ(x(t))) ≥ 0,

W2
j (x(t)) ≥ W1

j (x(t)) ≥ 0.

with µ1
Ñjλ

(δλ(x(t))) ∈ [0, 1] and µ2
Ñjλ

(δλ(x(t))) ∈ [0, 1].
Remark 4: For the time and physical space characteristics

of the network environment, the multiplicative perturbation
of filter parameters is considered to enhance the design flex-
ibility. Moreover, it can be to extend to the form of additive
parameter perturbation for the filter to be designed.

The overall model of IT2 fuzzy filter is given as:
ẋf (t) =

r∑
j=1

W̃j(x(t))[A1fjxf (t)+ B1fjŷf (t)]

zf (t) =
r∑
j=1

W̃j(x(t))C1fjxf (t)
(5)

where W̃j(x(t)) = F2
j (x(t))W

2
j (x(t))+F

1
j (x(t))W

1
j (x(t)) ≥ 0,∑r

i=1 W̃j(x(t)) = 1, in which F1
j (x(t)) and F2

j (x(t)) are the
nonlinear functions for the filter and satisfies F1

j (x(t)) +
F2
j (x(t)) = 1 and 0 ≤ F1

j (x(t)),F
2
j (x(t)) ≤ 1. A1fj =

Afj +1Afj, B1fj = Bfj +1Bfj, and C1fj = Cfj +1Cfj.
Remark 5: Although the plants and the filter have different

premise variables, it does not lose generality to assume that
they share the same number of fuzzy rule. Moreover, it can
reduce the design complexity and calculation burden to a
certain extent.

A. MODELING OF NONLINEAR NETWORKED
COMMUNICATION LINK
1) EVENT-TRIGGERED MECHANISM
The main advantage of event-triggered scheme lies in reduc-
ing the burden of network resource, and only the required
sampling data can be released or transmitted to other com-
ponents in this way. In order to judge whether the sampling
data is transmitted, the following event-based condition in
this paper is employed:

ekT (t)2̂ek (t) ≥ σyT (ikh)2̂y(ikh) (6)

where σ ∈ [0, 1); ek (t) = y(ikh) − y(tkh) is the threshold
error; y(ikh) represents the current sampling value; y(tkh)
represents the last transmitted value; ik (h) = tk (h)+Lh,L ∈
N, 2̂ is the positive definite trigger parameter matrix to be
designed.
Remark 6: It can be seen that the trigger threshold in (6)

has a relation with the scalar σ , the matrix 2̂ and the sam-
pling states. The condition in (6) determines the frequency of
data transmission in the network environment.

2) DATA QUANTIZATION
For the networked control system, the sampled signal needs to
be quantified in order to meet the requirements of the digital
systems. In this paper, a logarithmic quantizer is given as:

ȳ(t) = G̃(y(t)) =
[
G̃1(y1(t))G̃2(y2(t)) . . . G̃ny (yny (t))

]T
, (7)

where ȳ(t) ∈ Rny is the signal to be quantized. For each
term G̃v(·), (1 ≤ v ≤ ny), the set of quantization level is
characterized as:

qv =
{
±u(v)l , u

(v)
l = ρ

l
vu

(v)
0 , l = 0,±1,±2, . . .

}
∪ {0} , (8)

where 0 < ρv < 1 and u(v)0 > 0.
The structure of the quantizer associated with the quanti-

zation level set in (8) is as follows:

G̃v(yv(t))

=


uvl , if

1
1+ δv

uvl < yv(t)≤
1

1− δv
uvl ,

0, if yv(t) = 0,
−G̃v(−yv(t)), if yv(t) < 0.

(9)

where δv =
1−ρv
1+ρv

, ρv represents quantized density.
Similar to mathematical process in [35], defining 1q =

diag{11, 12, . . . , 1ny}, 1qv ∈
[
−δqv, δqv

]
, v =

1, 2, . . . , ny, the quantized sample signal, from Event Gen-
erator, can be described as:

ȳ(tkh) = (I +1q)y(tkh) (10)

Without loss of generality, we assume that δqv = δ, it can be
obtained that

12
q ≤ δ

2I (11)
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Based on the aforementioned and considered the character-
istics of ZOH, the input signal of the filter can be expressed
as:

ŷf (t) = ȳ(tkh) = (I +1q)y(tkh),

t ∈ [tkh+ τtk , tk+1h+ τtk+1 )

where τtk represents the induced delay at time index tk
through network transmission, and 0 ≤ τm ≤ τtk ≤ τ̄ , where
τm and τ̄ represents the lower and upper of induced delay,
respectively.

Taking the similar technique in [35], the holding zone can
be described as follows.

� =
[
tkh+ τtk , tk+1h+ τtk+1

)
=

m
∪
i=0
�i, (12)

where
�0 =

[
tkh+ τtk , tkh+ h+ τ̄

)
�i = [tkh+ ih+ τ̄ , tkh+ (i+ 1)h+ τ̄ ) ,
�m =

[
tkh+ mh+ τ̄ , tk+1h+ τtk+1

)
i = 1, 2 . . . ,m− 1

Construct a function τ (t) as

τ (t) = t − tkh− ih, t ∈ �i (13)

It is obvious that

0 ≤ τm ≤ τ (t) ≤ τ̄ + h

Let τM denote h+ τ̄ , and introduce a new vector

ek (t) = y(tkh+ ih)− y(tkh), t ∈ �i (14)

Therefore, the input signal of filter, ŷf (t), can be represented
by

ŷf (t) = (I +1q)[y(t − τ (t))− ek (t)] (15)

B. FILTERING ERROR SYSTEM

Define new vectors ξ (t) =
[
xT (t) xTf (t)

]T
, ω̃(t) =[

ωT (t) ωT (t − τ (t))
]T
. Taking the event-triggered mecha-

nism (6) and quantizer (9) into account, the filtering error
system can be obtained as:

ξ̇ (t) = Āij(t)ξ (t)+ B̄τ ij(t)Hξ (t − τ (t))
+B̄ωij(t)ω̃(t)+ B̄eij(t)ek (t)

e(t) = C̄ij(t)ξ (t)
(16)

where Āij(t) = Ãij(t) + 1Ãij(t), B̄τ ij(t) = B̃τ ij(t) +
1B̃τ ij(t), B̄ωij(t) = B̃ωij(t) + 1B̃ωij(t), B̄eij(t) = B̃eij(t) +
1B̃eij(t), C̄ij(t) = C̃ij(t)+1C̃ij(t),H = [I 0],

Ãij(t) =
r∑
i=1

r∑
j=1

M̃iW̃jÃij, B̃τ ij(t) =
r∑
i=1

r∑
j=1

M̃iW̃jB̃τ ij,

B̃ωij(t) =
r∑
i=1

r∑
j=1

M̃iW̃jB̃ωij, B̃eij(t) =
r∑
i=1

r∑
j=1

M̃iW̃jB̃eij,

C̃ij(t) =
r∑
i=1

r∑
j=1

M̃iW̃jC̃ij,1Ãij(t) =
r∑
i=1

r∑
j=1

M̃iW̃j1Ãij,

1B̃τ ij(t) =
r∑
i=1

r∑
j=1

M̃iW̃j1B̃τ ij,1B̃ωij(t)

=

r∑
i=1

r∑
j=1

M̃iW̃j1B̃ωij,

1B̃eij(t) =
r∑
i=1

r∑
j=1

M̃iW̃j1B̃eij,

1C̃ij(t) =
r∑
i=1

r∑
j=1

M̃iW̃j1C̃ij,

Ãij =

[
Ai 0
0 Afj

]
, B̃τ ij =

[
0

Bfj(I +1q)Ci

]
,

B̃ωij =
[
Bi 0
0 Bfj(I +1q)Di

]
,

B̃eij =
[

0
−Bfj(I +1q)

]
,

C̃ij =
[
Li −Cfj

]
,1Ãij =

[
0 0
0 1Afj

]
,

1B̃τ ij =
[

0
1Bfj(I +1q)Ci

]
,

1B̃ωij =
[
0 0
0 1Bfj(I +1q)Di

]
,

1B̃eij =
[

0
−1Bfj(I +1q)

]
,1C̃ij =

[
0 −1Cfj

]
.

The issue of non-fragile H∞ filtering under event-based
scheme in this article is addressed, which is summarized as
follows:

1) Stable performance: The filtering error system in (16)
with ω̃(t) = 0 is asymptotically stable;

2) H∞ performance: Under zero initial conditions and
given a scalar γ > 0, for any disturbance ω̃(t) 6= 0,
the filtering error e(t) satisfies ‖e(t)‖2 < γ ‖ω̃(t)‖2,
then the filtering error system (16) satisfies the given
H∞ performance index γ .

At the end of this section, the following definitions and
lemmas need to be recalled, which paly a key role to obtain
the main results in this paper.
Lemma 1 [32]: Given a scalar a > 0, vectors p, q ∈ Rn,

and matrices W , M with suitable dimensions, such that

2pWM (t)Eq ≤ apTWW T p+ a−1qTEET q,

where MT (t)M (t) ≤ I .
Lemma 2 [33]: Given the matrix R > 0 and the matrix

of Si and Ul with the appropriate dimensions, the following
formula holds:

STi RUl + U
T
l RSi ≤ S

T
i RSi + U

T
l RUl .
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Lemma 3 [34]: For given suitable dimensions matrices V ,
H , E , and Q, there must exist a scalar ε > 0, such that

(V + HM (t)E)TQ (V + HM (t)E)

≤ V T
(
Q−1 − εHHT

)−1
V + ε−1ETE

where MT (t)M (t) ≤ I and Q−1 − εHHT > 0.
Lemma 4 [36]: Given matrices Q = QT , X , and Y with

given appropriate dimensions, if

Q+ XM (t)Y + Y TM (t)XT < 0

hold for all M (t) satisfies all of MT (t)M (t) ≤ I , then there
must exist a scalar δ > 0 such that

Q+ δXXT + δ−1Y TY < 0

III. MAIN RESULTS
A. H∞ PERFORMANCE ANALYSIS
In this section, based on Lyapunov functional technique, the
sufficient condition is presented such that the filtering error
system (16) satisfies the asymptotically stability with a H∞
index performance γ .
Theorem 1: Consider the IT2 fuzzy systems and the fuzzy

filter with quantizer and event-triggered mechanism subject
to σ , for given scalars τM > 0, εi > 0(i = 1, 2, . . . , 9),
and the membership function satisfies W̃j − `jM̃j ≥ 0
(0 < `j ≤ 1). The filtering error system (16) is asymptotically
stable with a performance index γ , if there exist matrices
P > 0, Q1 > 0, R1 > 0, 2̂ > 0, U1 > 0, and Xi = XTi ,
(i = 1, 2, . . . , r), such that

R−11 > 0, (17)[
I ε9M̃5
∗ ε9

]
> 0,

[
R1 UT

1
∗ R1

]
≥ 0

(18)

4ij − Xi < 0, (19)

`i4ii − `iXi + Xi < 0, (20)

`j4ij+ `i4ji− `jXi− `iXj+ Xi+ Xj< 0, i< j, (21)

where

4ij =


411
ij 412

ij 413
ij 414

ij 415
ij

∗ 422
ij 423

ij 0 425
ij

∗ ∗ 433
ij 0 0

∗ ∗ ∗ 444
ij 0

∗ * * * 455
ij


411
ij = PÃij + ÃT

ijP+ H
T (Q1 − R1)H + ε1PM̃1M̃T

1 P

+ε−11 ÑT
1 Ñ1 + ε2PM̃2M̃T

2 P+ ε3PM̃3M̃T
3 P

+ε4PM̃4M̃T
4 P+ C̃Tij (I − ε9M̃5M̃T

5 )C̃ij + ε
−1
9 ÑT

5 Ñ5

+4τ 2M (ÃT
ijH

TR1HÃij + ε
−1
5 ÑT

1 Ñ1),

412
ij = PB̃τ ij + HTRT1 − H

TUT
1 , 4

13
ij = HTUT

1 ,

414
ij = PB̃eij, 415

ij = PB̃ωij,

422
ij = ε

−1
2 ÑT

2 Ñ2 − 2R1 + U1 + UT
1

+4τ 2M (B̃Tτ ijH
TR1H B̃τ ij + ε−16 ÑT

2 Ñ2)+ σCTi 2̂Ci,
423
ij = RT1 − U

T
1 , 4

25
ij = σC

T
i 2̂

[
0 Di

]
, 433

ij = Q1 − R1,

444
ij = −2̂+ ε

−1
4 ÑT

4 Ñ4 + 4τ 2M (B̃TeijH
TR1H B̃eij

+ε−18 ÑT
4 Ñ4),Xi = diag{X i1, 0, . . . , 0︸ ︷︷ ︸

4

},X i1

= diag{X̄ i1, 0}

455
ij = σ

[
0 Di

]T
2̂
[
0 Di

]
+ ε−13 ÑT

3 Ñ3

+4τ 2M (B̃TωijH
TR1H B̃ωij + ε−17 ÑT

3 Ñ3)− γ 2I ,

M̃k (t) =
r∑
i=1

r∑
j=1

M̃iW̃jM̃k , k = 1, 2, . . . , 5,

Ñl(t) =
r∑
i=1

r∑
j=1

M̃iW̃jÑl, l = 1, 2, . . . , 5,

M̃1 =

[
0

AfjM1j

]
, M̃2 =

[
0

ρBfjM2j

]
,

M̃3 =

[
0

ρBfjM2j

]
, M̃4 =

[
0

−ρBfjM2j

]
,

M̃5 = M3j, Ñ1 =
[
0 N1j

]
, Ñ2 = N2jCi,

Ñ3 =
[
0 N2jDi

]
, Ñ4 = N2j,

Ñ5 =
[
0 N3jCfj

]
, ρ = I +1q,

Proof: The following Lyapunov-Krasovskii functional
to be analyzed is established:

V (t) = V1(t)+ V2(t)+ V3(t),

V1(t) = ξT (t)Pξ (t),

V2(t) =
∫ t

t−τM
ξT (s)HTQ1Hξ (s)ds,

V3(t) = τM

∫ t

t−τM

∫ t

s
ξ̇T (ν)HTR1H ξ̇ (ν)dνds. (22)

Calculating the derivative of (22), it can be obtained that

V̇ (t) = V̇1(t)+ V̇2(t)+ V̇3(t),

V̇1(t) = 2ξT (t)Pξ̇ (t),

V̇2(t) = ξT (t)HTQ1Hξ (t)

−ξT (t − τM )HTQ1Hξ (t − τM ),

V̇3(t) = τ 2M ξ̇
T (t)HTR1H ξ̇ (t)+ G1

3(t),

G1
3(t) = −τM

∫ t

t−τM
ξ̇T (s)HTR1H ξ̇ (s)ds. (23)

From (16), it yields

2ξT (t)Pξ̇ (t) = 2ξT (t)P [ι1(t)+ ι2(t)]χ (t) (24)

where

χ (t) =
[
ξT (t) ξT (t − τ (t))HT ω̃T (t) eTk (t)

]T
,

ι2(t) =
[
1Ãij(t) 1B̃ij(t) 1B̃ωij(t) 1B̃eij(t)

]
,

ι1(t) =
[
Ãij(t) B̃ij(t) B̃ωij(t) B̃eij(t)

]
,
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By employing Lemma 1, we can get

2ξT (t)P1Ãij(t)ξ (t)

= 2ξT (t)PM̃1(t)K1(t)Ñ1(t)ξ (t)

≤ ε1ξ
T (t)PM̃1(t)M̃T

1 (t)Pξ (t)+ ε
−1
1 ξT (t)ÑT

1 (t)Ñ1(t)ξ (t)

(25)

where for any ε1 > 0. Similarly, for arbitrary scalars ε2 > 0,
ε3 > 0, and ε4 > 0, the following inequalities hold

2ξT (t)P1B̃ij(t)Hξ (t − τ (t))
≤ ε2ξ

T (t)PM̃2(t)M̃T
2 (t)Pξ (t)

+ε−12 ξT (t − τ (t))HT ÑT
2 (t)Ñ2(t)Hξ (t − τ (t)) (26)

2ξT (t)P1B̃ωij(t)ω̃(t)
≤ ε3ξ

T (t)PM̃3(t)M̃T
3 (t)Pξ (t)

+ε−13 ω̃T (t)ÑT
3 (t)Ñ3(t)ω̃(t) (27)

2ξT (t)P1B̃eij(t)ek (t)
≤ ε4ξ

T (t)PM̃4(t)M̃T
4 (t)Pξ (t)

+ε−14 eTk (t)Ñ
T
4 (t)Ñ4(t)ek (t) (28)

Applying Jensen’s inequality to the integral term in (23), we
have that:

−τM

∫ t

t−τM
ξ̇T (s)HTR1H ξ̇ (s)ds

≤ −
τM

τ (t)

(∫ t

t−τ (t)
ξ̇ (s)Hds

)T
R1

(∫ t

t−τ (t)
ξ̇ (s)Hds

)
−

τM

τM − τ (t)

(∫ t−τ (t)

t−τM
ξ̇ (s)Hds

)T
R1

(∫ t−τ (t)

t−τM
ξ̇ (s)Hds

)
(29)

By applying the reciprocal convex technique to (29), one can
get

−τM

∫ t

t−τM
ξ̇T (s)HTR1H ξ̇ (s)ds

≤ −

 Hξ (t)
Hξ (t − τ (t))
Hξ (t − τM )

TT
 Hξ (t)
Hξ (t − τ (t))
Hξ (t − τM )

 (30)

where

T =

 R1 −RT1 + U
T
1 −UT

1
∗ 2R1 − U1 − UT

1 −RT1 + U
T
1

∗ ∗ R1


Then, by using of Lemma 2, the term τ 2M ξ̇

T (t)HTR1H ξ̇ (t) in
(23) can be written as

τ 2M ξ̇
T (t)HTR1H ξ̇ (t)

≤ 4τ 2M ξ
T (t)ĀT

ij (t)H
TR1HĀij(t)ξ (t)

+4τ 2M ξ
T (t − τ (t))HT B̄Tij (t)H

TR1H B̄ij(t)Hξ (t − τ (t))
+4τ 2M ω̃

T (t)B̄Tωij(t)H
TR1H B̄ωij(t)ω̃(t)

+4τ 2Me
T
k (t)B̄

T
eij(t)H

TR1H B̄eij(t)ek (t) (31)

Further, applying Lemma 3 to (31), there exist some scalars
εk > 0 (k = 5, 6, 7, 8) such that

4τ 2M ξ
T (t)ĀT

ij (t)H
TR1HĀij(t)ξ (t)

≤ 4τ 2M ξ
T (t)

{
ÃT
ij (t)H

TK−11 HÃij(t)+Q1

}
ξ (t) (32)

4τ 2M ξ
T (t − τ (t))HT B̄Tij (t)H

TR1H B̄ij(t)Hξ (t − τ (t))

≤ 4τ 2M ξ
T (t − τ (t))HT B̃Tij (t)H

TK−12 H B̃ij(t)Hξ (t − τ (t))

+4τ 2M ξ
T (t − τ (t))HT ε−16 ÑT

2 (t)Ñ2(t)Hξ (t − τ (t)) (33)

4τ 2M ω̃
T (t)B̄Tωij(t)H

TR1H B̄ωij(t)ω̃(t)

≤ 4τ 2M ω̃
T (t)

{
B̃Tωij(t)H

TK3
−1H B̃ωij(t)+Q2

}
ω̃(t) (34)

4τ 2Me
T
k (t)B̄

T
eij(t)H

TR1H B̄eij(t)ek (t)

≤ 4τ 2Me
T
k (t)

{
B̃Teij(t)H

TK4
−1H B̃eij(t)+Q3

}
ek (t) (35)

where

K1 = R−11 − ε5HM̃1(t)M̃T
1 (t)H

T > 0,

K2 = R−11 − ε6HM̃2(t)M̃T
2 (t)H

T > 0,

K3 = R−11 − ε7HM̃3(t)M̃T
3 (t)H

T > 0,

K4 = R−11 − ε8HM̃4(t)M̃T
4 (t)H

T > 0,

Q1 = ε
−1
5 ÑT

1 (t)Ñ1(t),

Q2 = ε
−1
7 ÑT

3 (t)Ñ3(t),

Q3 = ε
−1
8 ÑT

4 (t)Ñ4(t).

Adopting a similar approach, there exists a scalar ε9 > 0
satisfying I − ε9M̃5(t)M̃T

5 (t) > 0, such that

eT (t)e(t) = ξT (t)C̄Tij (t)C̄ij(t)ξ (t)

≤ ξT (t)C̃Tij (t)
[
I − ε9M̃5(t)M̃T

5 (t)
]−1

C̃ij(t)ξ (t)

+ε−19 ξT (t)ÑT
5 (t)Ñ5(t)ξ (t) (36)

By combining (23) to (36), and the event triggered condition,
we can obtain

V̇ (t)+ eT (t)e(t)− γ 2ω̃T (t)ω̃(t)

≤

r∑
i=1

r∑
j=1

M̃iW̃jη
T (t)4ijη(t) (37)

where

ηT (t) =
[
ξT (t)ξT (t − τ (t))HT ξT (t − τM )HT eTk (t)ω̃

T (t)
]

Resorting to a similar technique in [37], the following slack
matrix is introduced
r∑
i=1

r∑
j=1

M̃i(M̃j− W̃j)Xi = 0,Xi = XTi (i = 1, 2, . . . , r)

(38)
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According to (37) and (38), one can get

r∑
i=1

r∑
j=1

M̃iW̃jη
T (t)4ijη(t)

=

r∑
i=1

r∑
j=1

M̃i(M̃j − W̃j + `jM̃j − `jM̃j)ηT (t)Xiη(t)

+

r∑
i=1

r∑
j=1

M̃iW̃jη
T (t)4ijη(t)

=

r∑
i=1

M̃2
i η

T (t)(`i4ii − `iXi + Xi)η(t)

+

r−1∑
i=1

r∑
j=i+1

M̃iM̃jη
T (t)(`j4ij − `jXi + Xi)η(t)

+

r−1∑
i=1

r∑
j=i+1

M̃iM̃jη
T (t)(`i4ji − `iXj + Xj)η(t)

+

r∑
i=1

r∑
j=1

M̃i(W̃j − `jM̃j)ηT (t)(4ij − Xi)η(t)

where W̃j − `jM̃j ≥ 0 is satisfying for all of j. From (17) to
(21), one has

V̇ (t)+ eT (t)e(t)− γ 2ω̃T (t)ω̃(t) ≤ 0 (39)

From (39), by using of Schur Complement Lemma, it is
easily concluded that the filtering error systems (16) with
ω̃(t) = 0 meets the stability requirement.
Taking the integral from 0 to∞ of both sides of (39), we get∫

∞

0
eT (t)e(t)dt <

∫
∞

0
γ 2ω̃T (t)ω̃(t)dt (40)

Obviously, for any non-zero ω̃(t) ∈ L2[0,∞), we have
‖e(t)‖2 < γ ‖ω̃(t)‖2. Thus, the filtering error system (16) is
asymptotically stable and satisfies theH∞ performance. This
ends the proof. �

B. FILTER DESIGN
In this sequel, based on Theorem 1, we will give a specific
algorithm for filter parameter of (5).
Theorem 2: Consider the IT2 fuzzy systems and the fuzzy

filter with quantizer and event-triggered mechanism subject
to σ , for given scalars τM > 0, εi > 0(i = 1, 2, . . . , 9),
and the membership function satisfies W̃j − `jM̃j ≥ 0
(0 < `j ≤ 1). The filtering error system (16) is asymptotically
stable with a performance index γ , if there exist matrices

P =
[
P1 −P2
−P2 P2

]
> 0, Q1 > 0, R1 > 0, 2̂ > 0,

U1 > 0, and X̃i = X̃Ti , (i = 1, 2, . . . , r) satisfy the following
inequalities:

2P2 − R1 > 0, (41)[
I ε9M̃5
∗ ε9

]
> 0,

[
R1 UT

1
∗ R1

]
≥ 0 (42)

4̃ij − X̃i < 0, (43)

`i4̃ii − `iX̃i + X̃i < 0, (44)

`j4̃ij + `i4̃ji − `jX̃i − `iX̃j + X̃i + X̃j < 0, i < j, (45)

where

4̃ij =



4̃11
ij 4̃12

ij 4̃13
ij 4̃14

ij 4̃15
ij 4̃16

ij
∗ 4̃22

ij 4̃23
ij 0 0 4̃26

ij
∗ ∗ 4̃33

ij 0 0 0
∗ ∗ ∗ 4̃44

ij 0 0
∗ ∗ ∗ ∗ 4̃55

ij 0
∗ ∗ ∗ ∗ ∗ 4̃66

ij


,

4̃11
ij =


811
ij 812

ij LTi 814
ij 0

* 822
ij −C̃Tfj 824

ij 825
ij

* * 833
ij 0 0

* * * 844
ij 0

* * * * −ε9


with

811
ij = Q1 − R1 + P1Ai +AT

i P1 + 4τ 2MAT
i R1Ai,

814
ij =

[
−
√
ε1ÃfjM1j−ρ

√
ε2χ1−ρ

√
ε3χ1ρ

√
ε4χ1

]
,

812
ij = −Ãfj −AT

i P2, χ1 = B̃fjM2j,

822
ij = Ãfj + ÃT

fj + (ε−11 + 4ε−15 τ 2M )NT
1jN1j,8

24
ij = −8

14
ij ,

825
ij = CTfjN

T
3j,8

33
ij = −I + ε9M3jM

T
3j,

844
ij = diag{−I ,−I ,−I ,−I },

4̃12
ij =


−ρB̃fjCi + RT1 − U

T
1

ρB̃fjCi
0
0
0

 , 4̃13
ij =


UT
1
0
0
0
0

 ,

4̃14
ij =


ρB̃fj
−ρB̃fj

0
0
0

 , 4̃15
ij =


P1Bi
−P2Bi

0
0
0

 ,

4̃16
ij =


−ρB̃fjDi

ρB̃fjDi
0
0
0

 ,
4̃22
ij = (ε−12 + 4τ 2Mε

−1
6 )NT

2jN2j − 2R1 + U1 + UT
1

+σCTi 2̂Ci,
4̃23
ij = RT1 − U

T
1 , 4̃

26
ij = σC

T
i 2̂Di, 4̃

33
ij = −Q1 − R1,

4̃44
ij = (ε−14 + 4τ 2Mε

−1
8 )NT

2jN2j − 2̂, 4̃
55
ij

= 4τ 2MBTi R1Bi − γ
2I , X̃i = diag{X̄ i1, 0, . . . , 0︸ ︷︷ ︸

10

},

4̃66
ij = (ε−13 + 4τ 2Mε

−1
7 )DT

i N
T
2jN2jDi + σDT

i 2̂Di − γ
2I ,

1540 VOLUME 9, 2021



C. Han et al.: Event-Triggered Mixed Non-Fragile and Measurement Quantization Filtering Design

and, the filter parameters are as follows:

Afj = P−12 Ãfj,Bfj = P−12 B̃fj, Cfj = C̃fj. (46)
Proof: Give P1 > P2 > 0, and construct

P =
[
P1 −P2
−P2 P2

]
.

According to Schur Complement Lemma, we have P1 −
P2P
−1
2 P2 = P1 − P2 > 0 to ensure P > 0. Pre-multiplying

and post-multiplying (17) by P2, it can be obtained that
P2R
−1
1 P2 > 0. Then, by using −P2R

−1
1 P2 ≤ −2P2 + R1,

we can get (41).
From Theorem 1, we have:

PÃij =

[
P1Ai −P2Afj
−P2Ai P2Afj

]
,

PB̃τ ij =
[
−P2BfjρCi
P2BfjρCi

]
,

PB̃eij =
[
P2Bfjρ
−P2Bfjρ

]
,

PB̃ωij =
[
P1Bi −P2BfjρDi
−P2Bi P2BfjρDi

]
,

PM̃1 =

[
−P2AfjM1j
P2AfjM1j

]
,PM̃2 =

[
−ρP2BfjM2j
ρP2BfjM2j

]
PM̃3 =

[
−ρP2BfjM2j
ρP2BfjM2j

]
PM̃4 =

[
ρP2BfjM2j
−ρP2BfjM2j

]
(47)

Furthermore, new variables are defined:

Ãfj = P2Afj, B̃fj = P2Bfj, C̃fj = Cfj. (48)

By Schur Complement Lemma, (19) is equivalent to the
following inequality

φ11ij φ12ij φ13ij φ14ij φ15ij
∗ 422

ij 423
ij 0 425

ij
∗ ∗ 433

ij 0 0
∗ ∗ ∗ 444

ij 0
∗ ∗ ∗ ∗ 455

ij

− X̃i < 0, (49)

where

φ11ij =


φ11 φ12 φ13 φ14
∗ φ22 0 0
∗ * φ33 0
* * * −ε9

 ,
φ11 = PÃij + ÃT

ijP+ H
T (Q1 − R1)H

+ε−11 ÑT
1 Ñ1 + 4τ 2M (ÃT

ijH
TR1HÃij

+ε−15 ÑT
1 Ñ1), φ12 = C̃Tij ,

φ13 =
[
√
ε1PM̃1

√
ε2PM̃2

√
ε3PM̃3

√
ε4PM̃4

]
,

φ14 + ÑT
5 , φ22 = −I + ε9M̃5M̃T

5 , φ33 = 8
44
ij ,

φ12ij =

[(
412
ij

)T
0 0 0

]T
,

φ13ij =

[(
413
ij

)T
0 0 0

]T
,

φ14ij =

[(
414
ij

)T
0 0 0

]T
,

φ15ij =

[(
415
ij

)T
0 0 0

]T
.

Based on the filtering error system (16), we have

ÃT
ijH

TR1HÃij =

[
AT
i R1Ai 0
0 0

]
,

B̃TωijH
TR1H B̃ωij =

[
BTi R1Bi 0

0 0

]
,

B̃Tτ ijH
TR1H B̃τ ij = 0, B̃TeijH

TR1H B̃eij = 0. (50)

By substituting (47), (48) and (50) into inequalities (49),
we can derive (43). Similarly, (44) and (45) can be obtained.
This ends the proof. �

It is worth noting that there are uncertainties1q in the term
ρ for Theorem 2. In order to facilitate the subsequent simula-
tion analysis, we give the standard linear matrix inequalities
(LMIs) form in the following theorem.
Theorem 3: Consider the IT2 fuzzy systems and the fuzzy

filter with quantizer and event-triggered mechanism sub-
ject to σ , for given scalars τM > 0, δ > 0, εi >

0(i = 1, 2, . . . , 10), and the membership function satisfies
W̃j− `jM̃j ≥ 0 (0 < `j ≤ 1). The filtering error system (16)
is asymptotically stable with a performance index γ , if there

exist matrices P =
[
P1 −P2
−P2 P2

]
> 0, Q1 > 0, R1 > 0,

2̂ > 0, U1 > 0, and X̄i = X̄Ti , (i = 1, 2, . . . , r) satisfy the
following inequalities:

2P2 − R1 > 0, (51)[
I ε9M̃5
∗ ε9

]
> 0,

[
R1 UT

1
∗ R1

]
≥ 0 (52)

9ij − X̄i < 0, (53)

`i9ii − `iX̄i + X̄i < 0, (54)

`j9ij + `i9ji − `jX̄i − `iX̄j + X̄i + X̄j < 0, i < j. (55)

where

9ij =

 4̄ij δ6T
1 ε106

T
2

∗ −ε10I 0
* * −ε10I

 ,

4̄ij =



4̄11
ij 4̄12

ij 4̃13
ij 4̄14

ij 4̃15
ij 4̄16

ij
∗ 4̃22

ij 4̃23
ij 0 0 4̃26

ij
∗ ∗ 4̃33

ij 0 0 0
∗ ∗ ∗ 4̃44

ij 0 0
∗ ∗ ∗ ∗ 4̃55

ij 0
∗ ∗ ∗ ∗ ∗ 4̃66

ij


,

4̄11
ij =


811
ij 812

ij LTi 8̄14
ij 0

* 822
ij −C̃Tfj 8̄24

ij 825
ij

* * 833
ij 0 0

* * * 844
ij 0

* * * * −ε9

 ,
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with

8̄14
ij =

[
−
√
ε1ÃfjM1j−

√
ε2χ1−

√
ε3χ1
√
ε4χ1

]
,

4̄12
ij =


χ2

B̃fjCi
0
0
0

 , 4̄14
ij =


B̃fj
−B̃fj
0
0
0

 ,

4̄16
ij =


−B̃fjDi

B̃fjDi
0
0
0

 , X̄i = diag{X̄ i1, 0, . . . , 0︸ ︷︷ ︸
12

},

χ2 = −B̃fjCi + RT1 − U
T
1 , 61 =

[
B̃Tfj B̃

T
fj O1×11

]
,

62 =
[
χ3 χ4

]
, 8̄24

ij = −8̄
14
ij ,

χ3 =
[
O1×4

√
ε2M2j

√
ε3M2j −

√
ε4M2j

]
,

χ4 =
[
0 Ci 0 −I 0 Di

]
,

and, the filter parameters are constructed as follows:

Afj = P−12 Ãfj,Bfj = P−12 B̃fj, Cfj = C̃fj. (56)
Proof: According to Theorem 2, we have

4̃ij − X̃i = 4̄ij − X̃i +6T
1 1q62 +6

T
2 1q61 < 0 (57)

Applying Lemma 4 to (57), there exists a scalar ε10 > 0 such
that

4̄ij − X̃i + ε
−1
10 6

T
1 δ

261 + ε106
T
2 62 < 0 (58)

Then, (51) to (55) are obtained by Schur Complement
Lemma. This completes the proof. �
Moreover, it should be noted that the minimum value of

the performance index γ can be obtained by solving the
following convex optimization problem:

minγ subject to inequalities (51) to (55).

IV. NUMERICAL SIMULATION
In this sequel, a simulation example is provided to show the
effectiveness of the obtained method in this article. Consider
the IT2 T-S fuzzy networked system (3) with two rules, and
the system parameter matrices are given as follows:

A1 =

[
−3.1 10
−1 −10

]
,B1 =

[
0.9
−0.2

]
,D1 = 0.1,

C1 =
[
−0.1 −0.2

]
,L1 =

[
1 −0.5

]
,

A2 =

[
−0.1 10
−1 −10

]
,B2 =

[
0
0.1

]
,D2 = 0.1,

C2 =
[
1 0

]
,L2 =

[
−0.2 0.3

]
.

The membership functions of the system (3) and filter (5) are
selected as follows:

M1
1(x1(t)) = 1−

1

1+ e
(x1(t))

2−0.25
2

,

FIGURE 2. FOUs for M1(x1(t)).

TABLE 1. Obtained minimum performance index γ for different τM .

M2
1(x1(t)) = 1−

1

1+ e
(x1(t))

2+0.25
2

,

M1
2(x1(t)) = 1−M2

1(x1(t)),G
1
i (x(t)) = sin2(x1(t)),

M2
2(x1(t)) = 1−M1

1(x1(t)),G
2
i (x(t)) = cos2(x1(t)),

W1
1 (x1(t)) = 0.3+ 0.4 ∗ e−

(x1(t))
2

2 ,

W2
1 (x1(t)) = 0.3+ 0.4 ∗ e−

(x1(t))
2

7 ,

W1
2 (x1(t)) = 1−W2

1 (x1(t)),F
1
j (x(t)) = 0.5,

W2
2 (x1(t)) = 1−W1

1 (x1(t)),F
2
j (x(t)) = 0.5, i, j ∈ {1, 2}.

Assuming that the sampling period of the system is h =
0.01s, the matrices of filter parameter uncertainties and
scalars are chosen as follows:

M11 = M12 = [0.1−0.3] ,M21 =M22 = −0.02,

M31 = M32 = 0.01,N11 = N12 = [0.10.01] ,

K1(t) = K2(t) = K3(t) = sin(t),N21 = N22 = 0.02,

N31 = N32 = 0.01, ε1 = 0.08, ε2 = 0.05, ε3 = 0.6,

ε4 = ε5 = ε6 = 0.7, ε7 = ε8 = ε9 = 0.06, ε10 = 10.

In order to better describe the uncertainty of the member-
ship function for IT2 fuzzy systems, the FOUs of M1(x1(t))
and M2(x1(t) are depicted in Figure 2 and Figure 3,
respectively.

We assume the initial state is x0 =
[
0.1 −0.1

]T , σ = 0.2,
`1 = 0.7, `2 = 0.5, δ = 0.1 and the external noise is

ω(t) =


0.1, 0 ≤ t ≤ 1;
−0.1, 1 < t ≤ 2;
0, other .

(59)

By solving Theorem 3, we derive the minimum perfor-
mance indexes under different delay upper bounds in Table 1.
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FIGURE 3. FOUs for M2(x1(t)).

FIGURE 4. Response of filtering error.

FIGURE 5. The states of filter and original system.

TABLE 2. Triggered times and transmission rate for different σ .

It can be seen that γ becomes bigger with an increasing the
upper bound of delay. Table 2 provides the numbers of trig-
gered and transmission rate for different triggered parameter
σ . One can observe from Table 2 that the transmission rate

FIGURE 6. The curve of triggered instants and intervals.

and triggered times decrease with the increase of σ , and when
σ = 0, the event-triggered mechanism changes into the time-
triggered case.

Solving Theorem 3 with τM = 0.2, the parameters of
the event-triggered mechanism and the filter are obtained as
follows:

Af 1 =

[
−7.1838 −4.2681
4.7704 −6.6837

]
,Bf 1 =

[
1.2988
−1.0512

]
,

Af 2 =

[
−6.6736 4.5226
4.5488 −6.9496

]
,Bf 2 =

[
1.3634
−1.1250

]
,

Cf 1 =
[
0.2459 −0.1826

]
, Cf 2 =

[
0.1380 −0.1745

]
,

2̂ = 1.7628, γ = 0.7241

Figure 4 depicts the filtering error. The evolutions of x(t)
and xf (t) are shown in Figure 5. Figure 6 gives the triggered
instants and intervals. As can be seen from Fig. 6, only
25 times of all sampled data are transmitted to the next node
in the simulation time. From Figure 4 to Figure 6, it can
be drawn the conclusion that the designed filter is effective
and the event-based mechanism can save communication
resources.

V. CONCLUSION
In this paper, a non-fragile fuzzy filter has been investigated
for a class of nonlinear networked system. Due to the net-
work framework, an event-based mechanism was employed
to alleviate the communication load and save the limited
bandwidth. In addition, the data to be released was quantized
by a logarithmic quantizer to satisfy the requirements of
signal normalization. Consequently, a method was proposed
to construct the corresponding filter with H∞ performance
index γ . An example has been provided to demonstrate the
usefulness of the proposed approach.

In the future, the study of event-based mechanism under
the network framework can be extended to fault diagnosis and
fault tolerance for IT2 fuzzy systems. Moreover, the research
on the practical application of IT2 fuzzy systems deserves
more attention.
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