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ABSTRACT 3D reconstruction from a single image has many useful applications. However, it is a
challenging and ill-posed problem as various candidates can be a solution for the reconstruction. In this
paper, we propose a simple, yet powerful, CNN model that generates a point cloud of an object from a single
image. 3D data can be represented in different ways. Point clouds have proven to be a common and simple
representation. The proposed model was trained end-to-end on synthetic data with 3D supervision. It takes a
single image of an object and generates a point cloud with a fixed number of points. An initial point cloud of
a sphere shape is used to improve the generated point cloud. The proposed model was tested on synthetic and
real data. Qualitative evaluations demonstrate that the proposed model is able to generate point clouds that
are very close to the ground-truth. Also, the initial point cloud has improved the final results as it distributes
the points on the object surface evenly. Furthermore, the proposed method outperforms the state-of-the-art
in solving this problem quantitatively and qualitatively on synthetic and real images. The proposed model

illustrates an outstanding generalization to the new and unseen images and scenes.

INDEX TERMS Single-view reconstruction, deep learning, point cloud, CNN.

I. INTRODUCTION
Single-view reconstruction is a long-standing ill-posed prob-
lem and fundamental to many applications such as object
recognition and scene understanding. Single-view 3D recon-
struction means using a single image of an object and utilizing
it to infer the 3D structure of the object so that it can be
viewed from all directions. For multi-view scenarios, a large
variety of methods has been proposed which are able to
present high-quality reconstruction results [10]. The chal-
lenge appears when a single input image is just available for
the reconstruction process. Many approaches were proposed
with restrictions and special assumptions on the input image
to predict 3D geometry [19]. Single-view 3D reconstruction
is ahard problem and it mainly depends on the available infor-
mation and the imposed assumptions on the target object.
This information or cues provide prior knowledge that helps
in generating 3D shapes with plausible precision [19].
Before the deep learning era, many approaches have been
proposed to solve single-view reconstruction depending on
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the object nature. Some of them were applied to real-world
images without any knowledge of the image formation, and
the output of these approaches is plausible. One class of these
methods focus on curved objects and try to produce smooth
objects. These methods define an energy function to mini-
mize the object surface with respect to some constraints such
as a fixed area or volume [18], [20], [28]. Other methods focus
on piecewise planer objects and utilize semantic knowledge
of object locations such as the sky and the ground locations
in the image [7].

With the astonishing results obtained by applying deep
learning on different computer vision problems, many
3D-based models have made great progress in solving differ-
ent tasks using 3D data directly such as classification, object
parts segmentation, and 3D shape completion. Also, the avail-
ability of large-scale datasets [5] encourages researchers to
formulate and tackle the single-view reconstruction problem.
Volumetric methods were first used to infer the 3D structure
of an object from a single view [6]. However, volumetric rep-
resentation suffers from information sparsity and the heavy
computations during the training process. Also, this represen-
tation is ineffective in high-resolution outputs. To overcome
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FIGURE 1. A general sketch of the proposed CNN model with different
setups. Top: the proposed CNN without an initial point cloud. Bottom: the
proposed CNN with the initial point cloud. E: Encoder, G: Generator,

PC: Point Cloud, FV: Feature Vector.

this issue, recent works have used point clouds [8] as they are
samples on the surface of the objects and effectively capture
more object details.

In single-view reconstruction, the reprojection from 2D
to 3D is ambiguous due to the loss of the depth informa-
tion. To this end, we propose a CNN model that solves
the task of single-view reconstruction. The model has an
encoder-generator shape where the encoder extracts useful
features from the input image and the generator infer the point
clouds of the object shown in the 2D image. To generate
more accurate point clouds, an initial point cloud is used
to improve the reconstruction quality. We find that starting
from an initial point cloud enforces the points to distribute
equally on the shape surface and preserve the object parts.
We summarize our contributions as follows: (1) we design
a CNN model that can infer the 3D geometry of an object
from a single image. The 3D object is represented as a
point cloud. (2) Instead of directly inferring the point cloud,
we propose to utilize an initial point cloud of a sphere shape to
generate the final object point cloud. The experimental results
(Sec. V-C) that using an initial point cloud helps in generating
better and more accurate reconstruction (Fiqure 1). (3) We
evaluate the proposed model on synthetic and real data
quantitatively and qualitatively. Our model outperforms the
state-of-the-art methods and shows significant results for the
task of single-view reconstruction.

Il. RELATED WORK

Inferring the 3D structure of an object from a single image is
an ill-posed problem, but many attempts have been done such
as SFM and SLAM [3], [9]. Moreover, ShapeFromX, where
X can be shadow, texture, etc. requires prior knowledge on the
nature of the input image [2].
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When applying deep learning models to generate 3D
shapes or to solve other tasks such as segmentation, recogni-
tion, or object classification, the object representation plays
an important role in designing the network. The most 3D data
representations that are used in deep learning are volumetric
data, meshes, and point clouds.

To extend the 2D convolutions to 3D, the volumetric
representation has mostly been used. Volumetric data can
be represented as a regular grid in the 3D space [27]. Voxels
are used to visualize 3D data and show the distribution of the
3D object in the 3D space. Each voxel in the 3D space that
describes the object can be classified into a visible, occluded,
or self-occluded voxel according to the viewpoint. It is simple
in implementation and compatible with the 3D convolu-
tional neural network. 3D-GAN [26] proposed a generative
adversarial network (GAN) to generate 3D objects from a
probabilistic space using volumetric CNN. They mapped a
low-dimensional probabilistic space to the 3D object space
and by this, they outperform other unsupervised learning
methods. Moreover, a 3D recurrent neural network (RNN)
has been suggested to estimate the 3D shape of an object.
3D-R2N2 [6] proposed to use long short-term memory
(LSTM) to infer the 3D geometry using many images
of the target object from different perspectives. Recently,
3D-FHNet, which is a 3D fusion Hierarchical reconstruction
method, was proposed that can perform 3D object reconstruc-
tion of any number of views [14]. The critical limitation of
using the volumetric representation in the above-mentioned
methods is the computational and the memory cost and the
restriction on the output resolution. Also, fine-grained shape
parts get lost because the voxel is represented as either
occupied or unoccupied.

To avoid the limitation of the volumetric representation,
mesh representation is more attractive for real applications
as the shape details can be modeled accurately. 3D Meshes
are commonly used to represent 3D shapes. The structure
of a 3D mesh comprises a set of polygons which are called
faces [4]. These polygons are described using a set of ver-
tices that describe how the mesh coordinates exist in the 3D
space. Besides the 3D coordinates of the vertices, there is a
connectivity list that specifies how the vertices are connected
to each other. Applying deep learning models directly to
generate meshes is a challenge as they are not regularly struc-
tured. A parameterization-based 3D reconstruction is pro-
posed in [22] that generates geometry images which encode
X; y; z surface coordinates. Three separated encoder-decoder
networks were used to generate the geometry images. The
networks take an RGB image or a depth image as an input
and learn the x; y; and z geometry images respectively. Other
methods proposed to estimate a deformation field from an
input image and apply it to a template 3D shape to generate
the reconstructed 3D model. Kuryenkov ez al. [12] proposed
DeformNet that takes an image and the nearest 3D shape to
that image from a dataset as an input. Then, the template
shape is deformed to match the input image using the Free
Form Deformation layer (FFD). In [25], Pixel2Mesh is an
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FIGURE 2. The proposed CNN Architecture with the initial Point Cloud.

end-to-end deep learning model that was proposed to gen-
erate a triangulated 3D mesh from a single image. The pro-
posed network represented the 3D mesh in graph-based CNN
(GCNN). It deforms an initial ellipsoid to leverage the per-
ceptual features extracted from the input image. They adopted
a coarse-to-find strategy that makes the deformation process
stable. A limitation of using meshes for reconstruction is that
the generated output is limited mostly to the initial mesh or
the selected template as an initial shape to be deformed.

To overcome the above-mentioned limitations, point
clouds are used to represent the 3D data. 3D Point Cloud is
a set of unordered 3D points that approximate the geometry
of 3D objects [8]. Points can be represented either as a
matrix of size N x 3, a 3-channel grid of size H x W x 3
where each pixel encodes the (X,y,z) coordinates and H x W
equals to the number of points, or depth maps from different
known viewpoints. Point Set Generation Network (PSGN)
[8] was the first proposed model to generate a point cloud
of an object from a single image and outperforming the
volumetric approaches. In RealPoint3D [29], the proposed
network has two encoders; the first one extracts 2D fea-
tures from the input image, the second encoder extracts 3D
features from the nearest similar shape to the input image
retrieved from the ShapeNet dataset. The extracted features
from both encoders are integrated and forwarded to a decoder
to generate fine-grained point clouds. The point cloud from
the retrieved shape influenced the inferring process and gen-
erated finer point clouds. 3D-LMNET [16] trained a 3D
point cloud auto-encoder and then learned the mapping from
the 2D images to the learned embedded features. Another
direction to generate the point cloud is to generate depth
images of different perspectives and fuse them to generate
the final point cloud. In [13], a generative modeling frame-
work used 2D convolutional operation to predict multiple
pre-defined depth images and use them to generate a dense
3D model. In [15], a two-stage training dense point cloud
generation network was proposed. In the first stage, the net-
work takes a single RGB image and generates a sparse point
cloud. In the second stage, a generator network densifies the
sparse point cloud and generate a dense point cloud. After
training the two stages, the model becomes an end-to-end
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network that generates a dense point cloud from a single
RGB image.

Our proposed model is different from the mentioned work.
It has a simple design and utilizes an initial point cloud to
predict the final point cloud accurately. The model has a
single input and generates the point cloud directly without
retrieving and utilizing a similar 3D model to the input image
as proposed in [29]. Also, it doesn’t use other 2D supervision
such as silhouettes to infer the 3D object structure.

lll. METHODOLOGY

Our main goal is to infer a complete 3D shape of an object
from a single RGB image. We select point clouds to represent
the generated output (Eq. 1). We set the number of the points
generated from the CNN to N = 2048. From our experi-
ments, this number of points is sufficient to cover the whole
surface of the object and preserves the major structures.

S = {(xi, yi, 7YY, (1)

A. 3D CNN MODEL

The proposed network is illustrated in Figure 2. It consists
of two parts; the encoder part and the generator part. The
encoder part is a set of consecutive 2D convolutional layers
followed by ReLU as a non-linear activation function. These
layers are used to extract the object features from the 2D input
images. To predict the 3D point cloud of the object, an initial
point cloud of a sphere shape is used. The initial point cloud
is concatenated with the extracted features from the encoder.
Then, it is fed into the generator part to get the final point
cloud of the object, where fully connected layers (FC) are
used to generate a N x 3 matrix, where each row contains the
coordinates of one point. Each network part is described in
detail below.

Encoder Net. The role of the encoder part is to extract the
distinction features from the input image that can correctly
describe the object with details. It consists of consecutive
layers of 2D convolutional layers and ReLU layers. The
convolutional layers are seven layers. The first three convo-
lutional layers are of sizes 32, 64, and 128, respectively. The
remaining layers have a size of 256. All convolutional layers
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have a kernel size of 3 x 3 and a stride of 2. The stride of
2 in the convolutional layers helps in decreasing the spatial
size of the features as pooling layers do. Comparing to the
pooling layers, the strided convolutional layers are trainable
and can extract useful features. The size of the input image is
128 x 128. The extracted feature from the encoder has a size
of 1 x 1 x 256 which will be reshaped and concatenated with
the initial point cloud.

Generator Net. The generator part is a simple network
consisting of four fully connected layers (FC). The extracted
feature vector from the encoder is reshaped to 1 x256 and then
concatenated with the initial point cloud. The initial point
cloud has a sphere shape consisting of 256 equally spaced
points. The reshaped feature is concatenated with each point
of the initial point cloud, and the new feature has a size of
256 x (3+4256). Figure 2 shows the reshape and concatenation
process. The new feature is fed into the generator. After three
FC layers followed by ReLU, the generator ends with a fully
connected layer that predicts the final point cloud with a
shape of 2048 x 3.

The proposed network is different from other single-view
reconstruction models as the proposed model utilizes an ini-
tial point cloud with a sphere shape for better inference of the
final point cloud. In the results section, we will discuss and
show the importance of using this setup and how it improves
the final results.

B. LOSS FUNCTION
Selecting a suitable loss function to train the CNN model
is a critical step. The nature of the problem, the dataset
representation, and the output values are the points that
should be considered when designing the loss function. The
loss function measures the error between the inferred output
and the corresponding ground-truth. According to the error,
the model weights are optimized and updated. In our case,
the loss function will measure the distance between the gen-
erated point cloud and the ground-truth shape. It should fulfill
the following conditions; (1) the selected loss function should
be efficient to compute and differentiable so that it can be
used for the back-propagation step, and (2) it should be robust
against the outliers [8].

So, the required loss function L between two 3D shapes,
spred g0 C R3, is defined as:

L(SP) (8% = D _d(s7!, s%) )

where SP™? and S8 are the predicted 3D shape and the
correspondence ground-truth shape, respectively.

Since the point cloud is an orderless representation, the loss
function should be invariant to the ordering of the points.
To this end, we propose to use and compare two different loss
functions: Chamfer Distance (CD) [24] and Earth Mover’s
Distance (EMD) [21].

Chamfer Distance (CD). The Chamfer Distance between
S1, 8> € RY is defined as:

dep =) min lx =3 +§SS§} e =yl3 3
€02

xeSl
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In the first term of Eq. 3, for each point in the pre-
dicted point cloud, CD finds first the nearest neighbor in
the ground-truth point cloud and sums the squared distance
up. The second term of Eq. 3 does the same but from the
ground-truth point cloud to the predicted point cloud. CD is
piecewise smooth and continuous, and the search process
is independent for each point. So, this function is paral-
lelizable and produces high-quality results. The lower the
value, the better and more accurate the generated shape.
The drawback of CD is that there is no clear mechanism to
enforce the uniformity of the generated point cloud because
the optimization process leads to a minima where a subset of
points account for the whole shape and cluster the remaining
points.

Earth Mover’s Distance (EMD). The EMD between S,
Sy C R3 is defined as:

d = i — 4
EMD ¢:§?£‘s2§ lx = ()12 @
1

where ¢ : S| — S is a bijection and the size of S| and S is
equal, s = |S1] = |$2].

In EMD, ¢ maps each point from S; to a one unique point
in S». It enforces a point-to-point assignment between the two
point clouds. EMD is differentiable and parallelizable, but
computationally expensive (with respect to the time and the
memory for high-resolution point clouds).

IV. EVALUATION

In this section, we outline the implementation details of
the proposed architecture and the datasets used for train-
ing. We also discuss the testing datasets that will be used
to evaluate and compare the proposed method against the
state-of-the-art.

A. IMPLEMENTATION DETAILS

We implemented and trained the proposed model in Tensor-
Flow [1]. The input image size is 128 x 128. For each object
category, we trained a separate model. The encoder generates
a latent feature of dimension 256. The generator network
outputs a point cloud of size 2048 x 3. Adam optimizer [11]
was used to optimize the network parameters with a learning
rate of Se™> and a minibatch of size 32. We trained the model
until the validation accuracy stopped increasing.

B. DATASET PREPARATION

1) ShapeNet

Reference [5] is a large-scale synthetic 3D dataset that is
widely used in 3D research such as 3D model retrieval and
reconstruction. ShapeNetCore is a subset of the ShapeNet
dataset that we used in our experiment. It is manually cleaned
and aligned. It has more than 50K unique 3D models which
cover 55 common object categories. We focus on 13 cate-
gories and use the 80% —20% train-test split provided by [5].
The input images provided by [6] are used during training,
where each model is rendered from 24 different azimuth
angles.
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The 2D input images used for training and testing are
provided by [6]. Each model in ShapeNet was rendered from
24 different azimuth angles.

To show the generalization of the proposed method on real
images, we tested it using Pix3D dataset [23]. Pix3D is a
publicly available dataset of aligned real-world image and 3D
model pairs. It contains a large diversity in terms of object
shapes and backgrounds and is highly challenging. We will
test and report the performance of the proposed method on
the chair, sofa, and table categories from the Pix3D dataset.

C. BASELINES

We test the proposed model trained on the ShapeNet dataset.
First, we test the proposed model on synthetic images and
show that the proposed model can generate point clouds that
describe the object in the input image. Then, we validate the
benefit of using the initial point cloud to improve the final
point clouds. Also, we compare the proposed model against
PSGN [8] and 3D-LMNet [16] qualitatively and quantita-
tively. CD (Eq. 3) and EMD (Eq. 4) are used to report the
quantitative evaluation. Finally, we test the proposed model
on real images to validate its generalizability on unseen
images.

V. EXPERIMENTAL RESULTS & COMPARISONS

To test the performance of the proposed model, we evaluate
it from different directions. First, we show general results
generated by the proposed model on the ShapeNet dataset
for different classes. Then, we compare the results of the
proposed model against similar approaches that target the
same problem using point cloud representation quantitatively
and qualitatively.

After that, we validate the proposed architecture by an
ablation study. We validate the benefits of using the initial
point cloud (the 3D sphere) to generate more accurate results.
Also, we show how the proposed model deals with the input
images that have an ambiguous view (some object structures
are hidden). Moreover, we show that the learned latent vec-
tor can be utilized to transfer useful information from one
shape to another shape by applying arithmetic operations on
different extracted features.

To check the model generality, we demonstrate the perfor-
mance of the proposed model on the Pix3D dataset that has
real images and compares the results against other methods
quantitatively and qualitatively. Finally, we report some fail-
ure cases that happened in some results because of the strange
shapes or some new parts that do not usually exist in normal
cases.

A. GENERAL RESULTS ON ShapeNet DATASET

We test the proposed model on the testing set of ShapeNet.
The proposed model was trained on synthetic images of
objects rendered from different viewpoints. The testing was
performed on 13 different categories. Figure 3 shows the
qualitative results of 8 different categories. It clearly demon-
strates that the generated point clouds of the objects from a
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single view are very close to the ground-truth and they capture
the object geometry. Also, the proposed model learns to gen-
erate the point clouds and keeps the salient features such as
free spaces between the splats in the back of the chair and the
holes between the back and the seat of the bench. Moreover,
the proposed model successfully learned to generate some
thin and rare parts such as the stretchers between the chair
legs as these parts are not common in the chair category. Many
categories have various geometrical shapes such as the top
surface of the tables. In Figure 3 (last row), the proposed
model generates the circular surface accurately as the input
image with the cylindrical pillar and the four small legs.
Furthermore, the proposed model generates complete and
plausible shapes. The generated points are evenly distributed
and cover the whole parts of the objects.

B. COMPARISON RESULTS AGAINST OTHER METHODS

We benchmark our proposed model against PSGN and
3D-LMNet. Both models were trained on the same train-
ing set of ShapeNet. PSGN is the first model to solve the
problem of single-view reconstruction using CNN that gen-
erates point clouds. In [8], the reported results show that
the point cloud-based models outperform the state-of-the-art
voxel-based models significantly. Table 1 reports the com-
parison results of our proposed model against PSGN [8] and
3D-LMNet [16] on ShapeNet dataset. It demonstrates that our
proposed model outperforms PSGN in 8 out of 13 categories
in the Chamfer metric and in all 13 categories in the EMD
metric. Also, our proposed model outperforms 3D-LMNet
in 6 out of 13 categories in the Chamfer metric and in all
13 categories in the EMD metric. Overall, the average per-
formance of our proposed model outperforms both models
in both metrics despite that our proposed model is simple,
yet efficient, comparing with the others. Looking deeper into
Table 1, EMD values denote better visualization of the gener-
ated point clouds of the objects. Also, since EMD is a point-
to-point distance, it results in a high penalty when computing
the distance between the points, and the two point cloud sets
should have the same number of points. In Chamfer distance,

TABLE 1. Quantitative comparison of single-view reconstruction results
on ShapeNet. The metrics are computed on 1024 points after performing
ICP alignment with the ground truth point cloud. All metrics are scaled
by 100.

Category Chamfer EMD
PSGN  3D-LMNet Ours | PSGN 3D-LMNet  Ours
airplane 3.74 3.34 3.29 6.38 7.44 3.82
bench 4.63 4.55 4.59 5.88 4.99 4.31
cabinet 6.98 6.09 6.07 6.04 6.35 4.94
car 5.20 4.55 4.39 4.87 4.10 3.61
chair 6.39 6.41 6.48 9.63 8.02 6.45
lamp 6.33 7.10 6.58 16.17 15.8 8.45
monitor 6.15 6.40 6.39 7.59 7.13 5.94
rifle 291 2.75 2.89 8.48 6.08 4.25
sofa 6.98 5.85 5.85 7.42 5.65 5.03
speakers 8.75 8.10 8.39 8.70 9.15 7.37
table 6.00 6.05 6.26 8.40 7.82 6.05
telephone 4.56 4.63 4.27 5.07 5.43 3.77
vessel 4.38 4.37 4.55 6.18 5.68 4.89
Mean 5.62 5.40 5.38 7.75 7.00 5.30
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FIGURE 3. Qualitative results of ShapeNet on different categories. From left to right: input image, ground-truth, generated point cloud.

the nearest points are used to calculate the distance in a for-
ward manner (from the generated point cloud to the ground-
truth) and in a backward manner (from the ground-truth to the
generated point cloud). It is not necessary that the generated
point cloud and the corresponding ground-truth have the same
number of points.

Figure 4 highlights the qualitative comparison. It clearly
shows that the generated point clouds by our proposed model
are visualized better than the ones generated by PSGN and
3D-LMNet. Our proposed model captures the details of the
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object and generates the object parts more accurately. In the
riffle image (Figure 4, 4th row to the right), the small parts
of the riffle are captured in more detail compared to the
generated point cloud of 3D-LMNet as it doesn’t generate
the grip or the magazine and in PSGN where these parts
are almost fused with each other and they cannot be sepa-
rated. Also, our proposed model generates a well-distributed
point cloud that the points are fairly distributed on the whole
shape and not concentrated in one part or at the center of
the shape. Moreover, this can be noticed in the chair image
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FIGURE 4. Comparison results between different methods on ShapeNet. From left to right: input image, ground-truth, resutls generated from
PSGN, results generated from 3D-LMNet, and results generated from the proposed model.

(Figure 4, 3rd row) where our proposed model successfully
generates and separates the chair legs and the armrest, but the
other models have considered them either a fully connected
part of the chair (e.g. the armrest) or one part (e.g. the chair
legs). Thanks to the initial point cloud that helps in generating
a well-distributed point cloud.

Moreover, we compare our proposed model against
Pixel2Mesh [25]. Different from the proposed model,
Pixel2Mesh uses an ellipsoidal mesh as an initial shape. It uti-
lizes the extracted features from the image feature network
from different stages and applies them to deform and add
more details to the generated mesh in the mesh deforma-
tion network in a coarse-to-fine fashion. Table 2 reports the
quantitative comparison between Pixel2Mesh model and our
proposed model. With respect to CD, our model outperforms
in some categories and is comparable to Pixel2Mesh results
in other categories, and the average performance of our model
outperforms Pixel2Mesh model. In EMD, our model outper-
forms Pixel2Mesh model in all categories and the average
performance of the proposed model outperforms it with a
large margin as reported in Table 2.

C. EFFECT OF THE INITIAL POINT CLOUD

To test the efficacy of using the initial point cloud in recon-
structing a finer point cloud, we conduct an experiment to
test and evaluate the performance of two different setups of
the proposed model (Figure 1). The first model is the same as
Figure 2 that uses an initial point cloud. The second setup has
the same architecture as Figure 2 but without using the initial
point cloud, and the point cloud is reconstructed directly from
the input image. Both setups were trained on the training set
of ShapeNet and were tested on the testing set of the same
dataset.

Qualitatively, Figure 5 illustrates the results of the differ-
ent setups of the proposed model. The point clouds gener-
ated by the proposed model without using an initial point
cloud suffer from the uneven distribution of the points on
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TABLE 2. Quantitative comparison between Pixel2Mesh [25] and ours on
ShapeNet.

Category ] Chamfer ] EMD
Pixel2Mesh ~ Ours | Pixel2Mesh  Ours
airplane 4.77 3.29 5.79 3.82
bench 6.24 4.59 9.65 4.31
cabinet 3.81 6.07 25.63 4.94
car 2.68 4.39 12.97 3.61
chair 6.10 6.48 13.99 6.45
lamp 12.95 6.58 13.14 8.45
monitor 7.55 6.39 15.36 5.94
rifle 4.53 2.89 6.67 4.25
sofa 4.90 5.85 16.42 5.03
speakers 7.39 8.39 29.51 7.37
table 4.98 6.26 14.80 6.05
telephone 4.21 4.27 7.24 3.77
vessel 6.70 4.55 8.14 4.89
Mean 591 5.38 13.79 5.30

the whole shape. Many points gather at some parts of the
shape. In the chair example, many points are grouped at the
back corners of the seats and fewer points are in the legs.
However, the model with the initial point cloud produces
chairs with well-distributed points and the chair legs are
well reconstructed. Also, in the table examples, the point
clouds generated without an initial point cloud have poor
reconstructed legs, but they are well reconstructed using an
initial point cloud during training. In the plane examples,
the engines and the tail are not reconstructed and the points
are concentrated on the body of the plane, but they are recon-
structed accurately when using the initial point cloud. From
Figure 5, we conclude that adding the initial point cloud to
the proposed model improves the reconstructed point cloud,
distributes the points evenly on the whole shape parts, and
generates the object details accurately. Quantitatively, Table 3
reports a comparison between the different setups of the
model. It is clearly noticed that the model with the initial point
cloud outperforms the same model without using the initial
point cloud with a large margin in both metrics.

VOLUME 9, 2021



A. ). Afifi et al.: Pixel2point: 3D Object Reconstruction From a Single Image Using CNN and Initial Sphere

IEEE Access

FIGURE 5. Qualitative results of the different setups of the proposed model on ShapeNet (Figure 1). From left to right: input image, ground-truth, results
generated by the proposed model without the initial point cloud, and results generated by the proposed model with the initial point cloud.

TABLE 3. Quantitative comparison of different setups of the proposed
model on ShapeNet.

Category Chamfer EMD
w/oPC wPC | woPC wPC
airplane 4.03 3.29 491 3.82
bench 4.34 4.59 10.20 4.31
cabinet 5.97 6.07 11.18 4.94
car 4.21 4.39 4.69 3.61
chair 7.00 6.48 7.30 6.45
lamp 6.31 6.58 32.08 8.45
monitor 6.62 6.39 19.83 5.94
rifle 2.71 2.89 11.06 4.25
sofa 6.49 5.85 6.24 5.03
speakers 7.86 8.39 20.61 7.37
table 6.47 6.26 7.00 6.05
telephone 4.03 4.27 6.36 3.77
vessel 5.64 4.55 6.58 4.89
Mean 5.52 5.38 13.7 5.30

D. GENERATING PLAUSIBLE SHAPES FROM AMBIGUOUS

2D INPUTS

To validate the performance of the proposed model, we con-
ducted an experiment to test the model whether it can rec-
ognize and generate plausible shapes from 2D images of
the chair class where the geometry of the objects is almost
covered (the back-view of the chair). Figure 6 shows the qual-
itative results of this experiment. For each image, we show the
back and the side views of the reconstructed model along with
the ground-truth with the same viewpoint. It is clearly shown
that the proposed model succeeded in guess the 3D geometry
of the input image and generates plausible shapes that are
consistent with the input images and the ground-truth. Also,
the proposed model manages to memorize and reconstruct
the chair parts such as the legs and the arms without seeing
them in the 2D input images. Figure 6 proves that the pro-
posed model can generate plausible shapes that are consistent
with the ambiguous 2D images and are close enough to the
ground-truth.
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E. ARITHMETIC OPERATIONS ON THE 2D INPUT IMAGE
FEATURE VECTOR

Another interesting experiment is to check if the extracted 2D
features from the input images have meaningful information
or not. To do so, we extract the 2D features from different 2D
images of the same category and apply arithmetic operations
on them to generate a new 3D shape. In [17], it was shown that
vector(King)—vector(Man)+vector(Woman) gives a vector
that the nearest neighbor to it was a vector for Queen. The
experiment performs similar to this idea. We select random
triples, extract their 2D features using the encoder network,
and apply the arithmetic operations (fvl — fv2 + fv3). The
resulting feature is then passed to the generator to generate
the 3D point cloud.

Figure 7 shows the results of applying the arithmetic oper-
ations of some categories. The first experiment was applied
to the airplane category. In Figure 7a, the first image is an
airplane with two engines on each side and the second image
is an airplane with one engine on each side. We subtract the
extracted features of both images and then add the difference
to the third image of an airplane that has just one engine on
each side. As shown in Figure 7a, the generated new shape
is an airplane that has two engines on each side. This means
that the difference between the first two images generates a
feature of an engine and then adds it to the third image results
in a new airplane with two engines.

The second example was applied to the chair category. The
main image is for a chair with arms. The other images are
chairs without arms. We want to test if we can subtract the
arms from the first shape and add them to the new shape.
Figure 7b shows that when subtracting the feature of a chair
that doesn’t have arms from a chair that has arms and then
adds the new feature to a third one we get the same shape of
the third chair but with arms. This means that the difference
between the two features generates a feature that has the chair
arms information. And when adding this feature to a new
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FIGURE 6. Qualitative results of 3D reconstruction for the ambiguous 2D inputs. From left to

right: 2D input image, grount-truth view-1, generated output view-1, ground-truth view-2,
generated output view-2.

image generates a shape that is similar to the input image that is for a table without the bottom shelf. When we subtract
contains the transferred arms. the feature of the second image from the feature of the first

A third example was applied to the table category. The first image and add the result to the third feature of a new image
image is for a table with a bottom shelf and the second image

results in a table with the bottom shelf. The generated table
118
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FIGURE 7. Results of applying arithmetic operations on 2D features
extracted by the encoder for different shapes.

is similar to the third image plus the bottom shelf. As can be
seen in Figure 7c, the generated tables are similar to the third
images where, for example, the table with long legs preserves
its geometry after adding the new feature.

As shown in Figure 7, the proposed model extracts mean-
ingful features that contain meaningful information. These
features can be used to generate real shapes that have extra
parts.

F. Pix3D DATASET RESULTS

The proposed model was trained on synthetic images that are
clean and the objects appear well in the images. To test the
performance of the model in real scenarios, the Pix3D dataset
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is used. This dataset contains a large collection of real images
and the corresponding metadata such as masks along with
ground-truth 3D CAD models of different object categories.
The shared categories between ShepNet and Pix3D datasets
are used to test and evaluate the proposed method. The
testing images are preprocessed. The images are cropped to
center-position the object of interest in the image and masked
the background using the corresponding mask. Then the
image is resized to match the training image size (128 x 128).
The proposed model isn’t fine-tuned on the Pix3D dataset, but
it is directly tested on the dataset images.

Table 4 reports the quantitative results of comparing the
proposed model against PSGN and 3D-LMNet on Pix3D
images. The three models were trained on ShapeNet and
tested on Pix3D. The reported performance of PSGN and
3D-LMNet are taken from [16]. Table 4 shows that the
proposed model outperforms the other models by a large
margin in both metrics and on all object categories. This
demonstrates the efficiency of the proposed model on real
data.

TABLE 4. Single-view reconstruction results on the real-world Pix3D
dataset. All metrics are scaled by 100.

Category Chamfer EMD
PSGN  3D-LMNet Ours | PSGN  3D-LMNet Ours
chair 8.05 7.35 6.82 12.55 9.14 745
sofa 8.45 8.18 3.95 9.16 7.22 3.28
table 10.82 11.20 5.22 15.16 12.73 517
Mean 9.11 8.91 533 12.29 9.70 5.30

Figure 8 visualizes the reconstruction results of some
selected Pix3D images generated from the proposed model
along with 3D-LMNet. 3D-LMNet performs well on
real-world images, but our model performs better and the
generated point clouds are more accurate and very similar
to the ground-truth. Our model distributes the points evenly
on the whole object shape and covers the object parts accu-
rately. This shows that the proposed model generalizes well
to the real-world images and generates accurate models that
describe the input images even though the images are from a
different distribution than the training set.

G. FAILURE CASES

The proposed model fails to generate very accurate shapes in
some cases. Figure 9 shows some failure cases. Most thinner
and narrower parts of the objects are missed such as the
chair armrests and the airplane tail. Also, the objects with
extra parts that don’t usually exist are also missed such as a
monitor with two bases or a table with three legs on each side.
Normally, the narrow and extra parts are missed because the
network didn’t learn to predict them. However, if this happens
in one example, the network tries to generate and estimate the
closest shape to the input image as the table with the six legs
in Figure 9 (the last row). The proposed model reconstructs
and generates a plausible point cloud that is close to the input
image but it misses the leg in the middle.
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FIGURE 8. Qualitative results on chair, sofa, and table categories from Pix3D dataset. From left to right: input image, ground-truth, results generated

from 3D-LMNet, and results generated from the proposed model.
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FIGURE 9. Failure cases of our method on ShapeNet. Failures happen because of extra unexpected or
thin and narrow parts. From left to right: input image, ground-truth, generated point cloud.

VI. DISCUSSION & CONCLUSION

Though single-view 3D object reconstruction is a challenging
task, the well-created human eyes have the ability to infer
and predict the geometry of a scene and the objects within it
from a single image. With more complicated scenarios such
as high occlusion of the objects, the human brain is able to
guess a number of plausible shapes that could match what is
seen. This is because of the prior information that is stored
in the human brain and is retrieved, utilized, and updated
when seeing new scenes. Recently, different research fields
have exploited the ability to reconstruct objects from a single
image in many applications such as the field of robotics in
object grasping and manipulation. However, it is an ill-posed
problem and many plausible reconstructions could be a solu-
tion for one single view due to the uncertainty.

In this paper, we have proposed a simple, yet powerful,
CNN model to generate the point clouds of an object from
a single image. 3D data can be represented in different ways.
Point clouds have been proven to be a common and simple
representation. The proposed model trained end-to-end on
synthetic data with 3D supervision. It takes a single image of
an object and generates a point cloud with a fixed number of
points (N = 2048). Qualitative and quantitative evaluations
on synthetic and real data demonstrate that the proposed
model is able to generate point clouds that are very close
to the ground-truth and more accurate in comparison with
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other methods. Moreover, we show that the initial point cloud
has improved the final results as it distributes the points on
the whole object shape evenly. The qualitative results show
that the points are grouped in some object parts densely
while other parts have fewer points when the proposed model
doesn’t use the initial point cloud. Furthermore, the perfor-
mance of the proposed model on the real-world dataset illus-
trates the outstanding generalization to the new and unseen
images and scenes.
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