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ABSTRACT This work focuses on exponential synchronization for a class of partially coupled heteroge-
neous networks with time-delays and heterogeneous impulses. The synchronization targets are selected as
the common equilibrium solution and the average trajectory, respectively. Some synchronization criteria are
deduced by using Lyapunov function and comparison principle.
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principle, impulse.

I. INTRODUCTION
As an important mathematical model to describe the real
world, complex dynamic networks have aroused strong
research interests from scholars at home and abroad in
recent years. Research on the cooperative collective behavior
of complex networks is a mainstream direction of current
complex network research. Cooperative collective behavior
of networks mainly includes consistency [1], [2], stability
[3]–[5] and synchronization [6], [7].

For a long time, research of complex networks has mainly
focused on homogeneous networks that consist of a single
type of objects and links, and the state of each network
node follows the same evolutionary laws. Homogeneous
networks cannot completely reveal the differences in indi-
vidual state evolution and the corresponding changes in net-
work couplings. Conversely, heterogeneous network models
have advantages in revealing these differences. Therefore,
the study of heterogeneous complex networks has great prac-
tical importance and application values.

When many individuals with different state evolution laws
are coupled together to form a self-organizing and collab-
orative heterogeneous network, their cooperative collective
behavior has great uncertainty. In the process of information
transmission, a time-delay phenomenon inevitably occurs
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due to the influence of factors such as spatial distance, lim-
ited speed of information transmission, node competition,
channel congestion and memory effect. The existence of
time delay causes instability and oscillation of dynamic sys-
tems. Network nodes exchange information through multiple
channels, which may be different for different nodes [8].
Therefore, studying the cooperative collective behavior of
partially coupled heterogeneous networks with time-delay
effects is important. Research on synchronization is widely
investigated.

Synchronization refers to the process that all network
nodes starting from a certain initial state reach the same
state through the dynamic evolution of nodes own state,
the coupling between the nodes, and the external control
operations on the network. Only a few networks can achieve
synchronization by adjusting system parameters, whereas
most of the networks need to use control strategies to realize
synchronization in accordence with the specific character-
istics of the network [9]–[11]. For heterogeneous networks,
the difference in node evolution makes it difficult to achieve
full synchronization by virtue of static linear controllers.
Some new control strategies have been proposed to real-
ize synchronization. Reference [12] used a state-feedback
control strategy to achieve synchronization by adding con-
straints or controllers to each node for compensating the
differences between nodes. Some new synchronization con-
cepts were introduced to replace the full synchronization.
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References [13]–[15] proposed the concept of output syn-
chronization. Cooperative control was added to achieve syn-
chronization by using the output information of neighboring
nodes. References [16] and [17] introduced the concept of
quasi-synchronization that enables the network to achieve
synchronization within a certain error bound.

Compared with continuous control strategies, impulsive
control has obvious advantages because it only needs to
design the controller in sparse time sequence, and has been
successfully applied to many synchronization problems [12],
[18]–[22]. In recent years, research on the synchronization
of heterogeneous networks based on impulsive strategy has
attracted considerable interests. He et al. analyzed the syn-
chronization problem of master-slave heterogeneous network
on the basis of distributed impulsive control [23], and pre-
sented a method to optimize the synchronization error bound
and controller design. Reference [24] discussed the synchro-
nization of heterogeneous networks with impulsive effects
and coupling delays. This process compensates for the dif-
ferences between nodes by adding additional constraints and
control to each node.

This paper studies the synchronization of a class of het-
erogeneous networks. Different from the existing results that
only consider time delays [12] or only consider partial cou-
pling [8], [25], the network model in this paper simultane-
ously considers the effects of time delays and partial coupling
on the cooperative collective behavior of heterogeneous net-
works. Under the action of a class of heterogeneous impulses
that depend on time and node states, the heterogeneous net-
work achieves exponential synchronization. The main results
of this study are twofold. First, the exponential synchroniza-
tion of the partially coupled time-delay network with het-
erogeneous impulses is proven by means of the comparison
theorem and Lyapunov function if the nodes of the hetero-
geneous network have a common equilibrium state; Second,
the partially coupled time-delay network with heterogeneous
impulses exponentially synchronizes to the average state of
the nodes if they do not have a common equilibrium state.
Notations: Throughout this paper, N is the set of pos-

itive integers, In is the n × n identity matrix, Rn is the
n−dimensional column vector space, Rn×n is the set of all
n × n matrices. For A ∈ Rn×n, let λmin(A) and λmax(A)
be the minimum eigenvalue and maximum eigenvalue of
A, respectively. The norm of A is denoted by ‖A‖, ‖A‖ =√
λmax(ATA), where AT is the transpose of A. For A ∈ Rn×n,

A < 0 implies xTAx < 0 for any x ∈ Rn, x 6= 0. For
two matrices A = (aij)m×n and B, their Kronecker product
A⊗B = (aijB)m×n. For a continuously differentiable function
f : Rn

→ Rn, Df denotes the Jacobian.

II. MODEL DESCRIPTIONS AND PRELIMINARIES
We consider the following dynamical networks

ẋi(t) = Aixi(t)+ Bif1(xi(t))+ Cif2(xi(t − τ (t))

+ c
N∑

j=1,j 6=i

dijRHij(xj(t)− xi(t)), i = 1, · · · ,N , (1)

where xi(t) = [xi1(t), · · · , xin(t)]T ∈ Rn is the state vector of
the ith node at time t;Ai,Bi,Ci ∈ Rn×n are constant matrices.
τ (t) is the time-varying delay satisfying 0 ≤ τ (t) ≤ τ ; fi(x) =
[fi1(x1), · · · , fin(xn)]T for x = [x1, · · · , xn]T ∈ Rn, i = 1, 2;
c > 0 is the coupling strength; R = diag{r1, · · · , rn}(ri > 0)
is the inner coupling matrix; D = (dij)1≤i,j≤N ∈ RN×N is
a symmetric matrix which denotes connection weight of the
dynamical networks: dij = dji > 0 if there is a connection
from node j to node i (i 6= j), otherwise dij = 0; Hij =
diag{h1ij, · · · , h

n
ij} is the channel matrix defined as follows:

if there is an information transmission in the kth (1 ≤ k ≤ n)
channel from node j to node i, then hkij = 1, otherwise, hkij = 0.

Let 0ij = diag{γ 1
ij , · · · , γ

n
ij } = dijHij for 1 ≤ i,

j ≤ N , i 6= j, i.e., γ kij = dijhkij, k = 1, · · · , n. Suppose
0ii = −

∑N
j=1,j 6=i 0ij, 1 ≤ i ≤ N . Then the network (1) can

be rewritten as

ẋi(t) = Aixi(t)+ Bif1(xi(t))+ Cif2(xi(t − τ (t))

+ c
N∑
j=1

R0ijxj(t), i = 1, · · · ,N . (2)

We consider (1) or (2) with the following impulsive effects

xi(t
+

k ) = xi(t
−

k )+ µikxi(t
−

k ), (3)

whereµik denotes the impulsive strength; {tk} is an impulsive
sequence satisfying 0 = t0 < t1 < t2 < · · · < tk <

· · · , lim tk = ∞(k → ∞); xi(t
+

k ) and xi(t
−

k ) denote the
limit from the left and the right at time tk , respectively.
In this paper, we assume that the solution to (2) is right-hand
continuous, then xi(t

+

k ) = xi(tk ), i = 1, 2, · · · ,N and k ∈ N .
Remark 1: (2) is heterogeneous because Ai,Bi,Ci vary

with node state xi. The impulse in (3) is also heterogeneous
because µik depends on impulsive time tk and node state xi.

We make the following assumptions:
(A1) f1 and f2 satisfy the Lipschitz conditions:
‖fi(x)− fi(y)‖ ≤ li‖x − y‖, i = 1, 2.
(A2) The impulsive sequence {tk} satisfies that there exists

N0 ∈ Z+ and Ta > 0 such that

T − t
Ta
− N0 ≤ Nζ (T , t) ≤

T − t
Ta
+ N0

for any t0 ≤ t ≤ T , where Nζ (T , t) is the times of impulses
in the interval [t,T ].
Definition 1: The upper-right Dini derivative D+u(t) is

defined as

D+u(t) = limh→0+ (u(t + h)− u(t))/h.

Lemma 1 [9]: Suppose that 0 ≤ τi(t) ≤ τ ,
i = 1, 2, · · · ,m, F(t, u, ū, ū1, ū2, · · · , ūm) : R+ ×
Rm+1

→ R is nondecreasing in ūi for each fixed
(t, u, ū1, · · · , ūi−1, ūi+1, · · · , ūm), i = 1, 2, · · · ,m, and
Ik (u) : R→ R is nondecreasing in u, k ∈ N+. If{
D+u(t) ≤ F(t, u(t), u(t − τ1(t)), · · · , u(t − τm(t))), t 6= tk ,
u(t+k ) ≤ Ik (u(t

−

k )), k ∈ N+,
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and{
D+v(t)≥F(t, v(t), v(t−τ1(t)), · · · , v(t−τm(t))), t 6= tk ,
v(t+k ) ≥ Ik (v(t

−

k )), k ∈N+,

then u(t) ≤ v(t) for −τ ≤ t ≤ 0 implies that u(t) ≤ v(t) for
t ≥ 0.
Lemma 2: Let Q ∈ Rn×n be a positive semi-definite

matrix, then the following inequality holds

2xTQy ≤ xTQx + yTQy

for x, y ∈ Rn.

III. SYNCHRONIZATION CRITERIA
This section aims to supply some synchronization criteria
for the network (1). Difference is found in achieving syn-
chronization when different synchronization targets are con-
sidered, and the network synchronization to the anticipated
states often fails. Therefore, the choice of target states is
extremely crucial to achieve synchronization, especially for
heterogeneous networks. In this paper, we focus on two types
of target synchronization states of (1). The first type is the
common equilibrium solution, and the second type is the
average trajectory.

A. SYNCHRONIZATION TO THE COMMON
EQUILIBRIUM SOLUTION
We assume that all the isolated nodes in the network (1) (or
(2)) have a common equilibrium solution s(t), that is s(t)
satisfies

ṡ(t) = Ais(t)+ Bif1(s(t))+ Cif2(s(t − τ (t)),

i = 1, · · · ,N , (4)

and the network (1) (or (2)) is anticipated to synchronize to
s(t).

Let ei(t) = xi(t)− s(t), then the error system is

ėi(t) = Aiei(t)+ Big1(ei(t))+ Cig2(ei(t − τ (t))

+ c
N∑
j=1

R0ijej(t), i = 1, · · · ,N , (5)

where g1(ei(t)) = f1(xi(t)) − f1(s(t)), g2(ei(t − τ (t))) =
f2(xi(t − τ (t)))− f2(s(t − τ (t))).

Considering the effect of heterogeneous impulses (3),
we obtain the following network:

ėi(t) = Aiei(t)+ Big1(ei(t))+ Cig2(ei(t − τ (t))
+ c

∑N
j=1 R0ijej(t), t 6= tk , k ∈ N+

ei(t
+

k ) = ei(t
−

k )+ µik ei(t
−

k ).
(6)

The network (6) subject to the initial condition can be
rewritten as

ė(t) = Ae(t)+ BG1(e(t))+ CG2(e(t − τ (t))
+He(t), t 6= tk , k ∈ N+,

e(t+k ) = Uke(t
−

k ),
e(t) = 8(t), t ∈ [−τ, 0],

(7)

where e(t) = (eT1 (t), e
T
2 (t), · · · , e

T
N (t))

T , A = diag{A1,A2,
· · · ,AN },B = diag{B1,B2, · · · ,BN },C = diag{C1,C2, · · · ,

CN }, G1(e(t)) = (gT1 (e1(t)), g
T
1 (e2(t)), · · · , g

T
1 (eN (t)))

T ,

G2(e(t − τ (t))) = (gT2 (e1(t − τ (t))), gT2 (e2(t −
τ (t))), · · · , gT2 (eN (t − τ (t))))

T , 0 = (0ij)N×N , H = c(IN ⊗
R)0,Uk = diag{1+µ1k , 1+µ2k , · · · , 1+µNk }⊗ In, 8(t) ∈
PRC([−τ, 0],RnN ) = {ϕ : [−τ, 0] → RnN

|ϕ is piecewise
right continuous}, endowed with norm ‖ · ‖τ : ‖ϕ‖τ =
sup−τ≤θ≤0 |ϕ(θ )|.
Theorem 1: Suppose that (A1) and (A2) hold, there exist

a positive definite matrix-valued function P(t) and positive
numbers λ̄, α, β and µ ∈ (0, 1) such that

β + µN0+1(α +
lnµ
Ta

) < 0. (8)

For t ∈ [tk , tk+1), k ∈ N ,

P(t) ≤ λ̄InN , (9)

P(t)A+ ATP(t)+ P(t)H + HTP(t)

+ (2− α)P(t)+ λ̄l21‖B‖
2InN + Ṗ(t) ≤ 0, (10)

and

λ̄l22‖C‖
2InN − βP(t − τ (t)) ≤ 0. (11)

For t = tk , k ∈ N ,

UT
k P(tk )Uk < µP(t−k ), (12)

then (1) exponentially synchronizes to s(t).
Proof: Consider the following Lyapunov function

V (t) = eT (t)P(t)e(t).

Taking the derivative of V (t) along the trajectories of (7),
we obtain

D+V (t) = eT [ATP(t)+ P(t)A+ HTP(t)+ P(t)H ]e(t)

+GT1 (e(t))B
TP(t)e(t)+ eT (t)P(t)BG1(e(t))

+GT2 (e(t − τ (t)))C
TP(t)e(t)+ eT (t)P(t)CG2

∗ (e(t − τ (t)))+ eT Ṗ(t)e(t), t ∈ [tk , tk+1).

By Lemma 2 and (A1),

GT1 (e(t))B
TP(t)e(t)+ eT (t)P(t)BG1(e(t))

≤ eT (t)P(t)e(t)+ GT1 (e(t))B
TP(t)BG1(e(t))

≤ eT (t)P(t)e(t)+ λ̄l21‖B‖
2eT (t)e(t);

GT2 (e(t − τ (t)))C
TP(t)e(t)

+ eT (t)P(t)CG2(e(t − τ (t)))

≤ eT (t)P(t)e(t)

+GT2 (e(t − τ (t)))C
TP(t)CG2(e(t − τ (t)))

≤ eT (t)P(t)e(t)

+ λ̄l22‖C‖
2eT (t − τ (t))e(t − τ (t)).

Then, we obtain

D+V (t) = eT [P(t)A+ ATP(t)+ P(t)H + HTP(t)

+ (2− α)P(t)+ λ̄l21‖B‖
2InN + Ṗ(t)]e(t)
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+ eT (t − τ (t))[λ̄l22‖C‖
2InN − βP(t − τ (t))]

∗e(t − τ (t))+ αV (t)+ βV (t − τ (t))

≤ αV (t)+ βV (t − τ (t)), t ∈ [tk , tk+1).

By (30), we have

V (tk ) = eT (tk )P(tk )e(tk ) = eT (t−k )U
T
k P(tk )Uke(t

−

k )

< µeT (t−k )P(t
−

k )e(t
−

k ) = µV (t
−

k ). (13)

For any ε > 0, let v(t) be the unique solution to the following
comparing system

v̇(t) = αv(t)+ βv(t − τ (t))+ ε, t 6= tk ,
v(t+k ) = µv(t

−

k ), k ∈ N+
v(t) = V (t), t ∈ [−τ, 0],

(14)

By (13),(13) and (14), using Lemma1, we obtain

V (t) ≤ v(t) for t ≥ 0. (15)

In the following, we estimate the solution of (14). We start
from solving the linear system

v̇(t) = αv(t), t 6= tk ,
v(t+k ) = µv(t

−

k ), k ∈ N+
v(t) = V (t), t ∈ [−τ, 0].

(16)

The solution to (16) is

v(t) = V (0)µmeαt , t ∈ [tm, tm+1),m ∈ N .

Using the idea of variation of parameters, we suppose that
(14) has a solution of the form

v(t) = C(t)µmeαt , t ∈ [tm, tm+1),m ∈ N ,

where C(t) is undetermined.
Substituting v(t) into (14), we obtain

C ′(t) = [βv(t − τ (t))+ ε]e−αtµ−m, t ∈ [tm, tm+1),m ∈ N .

Therefore, for any m ∈ N , and t ∈ [tm, tm+1), we have

C(t)− C(0) = C(t)− C(tm)+
m∑
k=1

[C(tk )− C(tk−1)]

=

∫ t

tm
[βv(s− τ (s))+ ε]e−αsµ−mds

+

m∑
k=1

∫ tk

tk−1
[βv(s− τ (s))+ ε]e−αsµ−k+1ds

.
=

∫ t

0
[βv(s− τ (s))+ ε]e−αsµ−ks ds,

where µ−ks = µ
−k when s ∈ [tk , tk+1), 0 ≤ k ≤ m.

Hence, for any m ∈ N , and t ∈ [tm, tm+1),

v(t) = C(0)µmeαt +
∫ t

0
[βv(s− τ (s))+ ε]

∗eα(t−s)µm−ks ds,

where µm−ks = µm−k when s ∈ [tk , tk+1), 0 ≤ k ≤ m.
C(0) = V (0) = 8(0)TP(0)8(0).

By (A2), for t ∈ [tm, tm+1) and s ∈ [tk , tk+1), 0 ≤ k ≤ m,
t − s
Ta
− N0 ≤ m− k + 1,

and then

µm−ks ≤ µ
t−s
Ta
−N0−1 =

1
µN0+1

e
lnµ
Ta

(t−s)
, (17)

µm ≤
1

µN0+1
e
lnµ
Ta

t
. (18)

Let η = −(α + lnµ
Ta

), ξ = λ̄

µN0+1
sup−τ≤t≤08(t)

T8(t),

µ0 = µ
N0+1. Substituting (17) and (18) into (17), we obtain

v(t) < ξe−ηt +
∫ t

0

e−η(t−s)

µ0
[βv(s− τ (s))+ ε]ds. (19)

Let φ(x) = βeτx − µ0(η − x), then φ′(x) > 0. By (8),
φ(0) = β − µ0η = β + µN0+1(α + lnµ

Ta
) < 0. Obviously,

φ(+∞) = +∞.
Therefore, there exists a unique λ such that φ(λ) = 0,

which derives

βeλτ = µ0(η − λ). (20)

Since µ0η − β > 0, we have

v(t) ≤ ξ < ξe−λt +
ε

µ0η − β
, t ∈ [−τ, 0]. (21)

We claim that (21) holds for all t ≥ 0.
If not, there exists a t∗ > 0 such that

v(t∗) ≥ ξe−λt
∗

+
ε

µ0η − β
, (22)

and

v(t) < ξe−λt +
ε

µ0η − β
, t < t∗. (23)

By(19) and (23), we obtain

v(t∗) < ξe−ηt
∗

+

∫ t∗

0

e−η(t
∗
−s)

µ0
[βv(s− τ (s))+ ε]ds

< e−ηt
∗

{ξ +
ε

µ0η − β
+
βξeλτ

µ0

∫ t∗

0
e(η−λ)sds

+
ηε

µ0η − β

∫ t∗

0
eηsds}

= e−ηt
∗

{ξ +
ε

µ0η − β
+

βξeλτ

µ0(η − λ)
(e(η−λ)t

∗

− 1)

+
ε

µ0η − β
(eηt

∗

− 1)}

= e−ηt
∗

{ξeηt
∗

e−λt
∗

+
ε

µ0η − β
eηt
∗

}

= ξe−λt
∗

+
ε

µ0η − β
.

This contracicts (22), and then (21) holds for all t ≥ 0.
Letting ε → 0, we obtain from (15) and (21) that

V (t) ≤ v(t) ≤ ξe−λt .

Therefore, (1) exponentially synchronizes to the common
equilibrium solution.
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Remark 2: The positive definite matrix P(t) is used
to design the Lyapunov function V (t). In [24], a linear
matrix-valued function P(t) connecting two fixed matrices in
each impulsive interval is designed to construct the Lyapunov
function. Compared with the synchronization criteria in [24],
Theorem 1 in this work has a wider application.

In Theorem 1, if P(t) is constant P, then we can easily
obtain the following result.
Corollary 1: Suppose that (A1) and (A2) hold, there exist

a positive definite matrix P and positive numbers λ̄, α, β and
µ ∈ (0, 1) such that (9) holds and

λ̄

β
l22‖C‖

2
≤ λmin(P) ≤ λmax(P) ≤ λ̄, (24)

P(A+ H )+ [AT + HT
+ (2− α)InN ]P

+ λ̄l21‖B‖
2InN ≤ 0, (25)

and

UT
k PUk < µP, (26)

then (1) exponentially synchronizes to s(t).
Remark 3: In Corollary 1, inequality UT

k PUk < µP
implies that the impulses in (1) are synchronizing up to
|1 + µk | < 1. Theorem 1 can be applied to investigate the
synchronization problem of dynamical networks when the
impulses are synchronizing, desynchronizing (|1+ µk | > 1)
or inactive (|1 + µk | = 1). If the impulses are inactive
or desynchronizing, then P(t) is used to offset the negative
impulsive effects, as shown in (12).
Remark 4: The impulsive intervals are usually assumed

to be bounded when the synchronization problem with
impulsive effects is considered, especially with inactive or
desynchronizing impulsive effects. This assumption limits
the frequency of these negative impulses in a fixed time
period. This work uses the average impulsive interval to limit
the impulsive interval bounds. Thus, the results in this work
are less conservative.

B. SYNCHRONIZATION TO THE AVERAGE TRAJECTORY
In this subsection, we consider the following average state

s(t) =
1
N

N∑
k=1

xk (t).

Let ei(t) = xi(t)− s(t). Obviously,
∑N

i=1 ei(t) = 0.
Since

ṡ(t) =
1
N

N∑
k=1

[Akxk (t)+ Bk f1(xk (t))

+Ck f2(xk (t − τ (t)))+ c
N∑
j=1

R0kjxj(t)]

=
1
N

N∑
k=1

[Ak (s(t)+ ek (t))+ Bk f1(s(t)+ ek (t))

+Ck f2(s(t − τ (t))+ ek (t − τ (t)))],

we obtain

ėi(t) = Ai(s(t)+ ei(t))+ Bif1(s(t)+ ei(t))

+Cif2(s(t − τ (t))+ ei(t − τ (t)))+ c
N∑
j=1

R0ijej(t)

−
1
N

N∑
k=1

[Ak (s(t)+ ek (t))+ Bk f1(s(t)+ ek (t))

+Ck f2(s(t − τ (t))+ ek (t − τ (t)))]

= Ai(s(t)+ ei(t))

+Bi(
∫ 1

0
Df1(s(t)+ ωei(t))dω)ei(t)

+Bif1(s(t))+ Ci(
∫ 1

0
Df2(s(t − τ (t)))

+ωei(t − τ (t)))dω)ei(t − τ (t))+ Cif2(s(t − τ (t)))

+ c
N∑
j=1

R0ijej(t)−
1
N

N∑
k=1

Ak (s(t)+ ek (t))

−
1
N

N∑
k=1

Bk (
∫ 1

0
Df1(s(t)+ ωek (t))dω)ek (t)

−
1
N

N∑
k=1

Bk f1(s(t))−
1
N

N∑
k=1

Ck (
∫ 1

0
Df2(s(t − τ (t))

+ωek (t − τ (t)))dω)ek (t − τ (t))

−
1
N

N∑
k=1

Ck f2(s(t − τ (t))).

Then

ė(t) = He(t)+ diag{A1 + B1

∫ 1

0
Df1(s(t)+ ωe1(t)dω,

· · · ,AN + BN

∫ 1

0
Df1(s(t)+ ωeN (t))dω}e(t)

+ diag{C1

∫ 1

0
Df2(s(t − τ (t))+ ωe1(t − τ (t)))dω,

· · · ,CN

∫ 1

0
Df2(s(t − τ (t))+ ωeN (t − τ (t))dω)}

∗e(t − τ (t))

−
1
N

∧1, · · · ,
∧

N
· · · · · ·∧

1, · · · ,
∧

N

 e(t)
−

1
N

∨1, · · · ,
∨

N
· · · · · ·∨

1, · · · ,
∨

N

 e(t − τ (t))
+

 11
...

1N


+

 ∇1...
∇N ,
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where∧
i

= Ai + Bi

∫ 1

0
Df1(s(t)+ ωei(t)dω,

∨
i

= Ci

∫ 1

0
Df2(s(t − τ (t))+ ωei(t − τ (t)))dω,

1i = (Ai −
1
N

N∑
k=1

Ak )s(t)+ (Bi −
1
N

N∑
k=1

Bk )f1(s(t)),

∇i = = (Ci −
1
N

N∑
k=1

Ck )f2(s(t − τ (t))),

i = 1, 2, · · · ,N .

Let

2(t) = diag{A1 + B1

∫ 1

0
Df1(s(t)+ ωe1(t)dω, · · · ,

AN + BN

∫ 1

0
Df1(s(t)+ ωeN (t))dω},

4(t − τ (t))

= diag{C1

∫ 1

0
Df2(s(t − τ (t))+ ωe1(t − τ (t)))dω,

· · · ,CN

∫ 1

0
Df2(s(t − τ (t))+ ωeN (t − τ (t))dω)},

5(t) =
1
N

∧1, · · · ,
∧

N
· · · · · ·∧

1, · · · ,
∧

N

 ,
ϒ(t − τ (t))

=
1
N

∨1, · · · ,
∨

N
· · · · · ·∨

1, · · · ,
∨

N

 ,
9(t) =

 11
...

1N


and

�(t − τ (t)) =

 ∇1...
∇N ,

 ,
then the error system with initial condition reads as
ė(t) = He(t)+2(t)e(t)+4(t−τ (t))e(t−τ (t))−5(t)e(t)

−ϒ(t − τ (t))e(t − τ (t))+9(t)+�(t − τ (t)),
e(t+k ) = Uke(t

−

k ).

Theorem 2: Suppose that (A1) and (A2) hold, there exists
a positive definite matrix P(t), positive numbers λ̄, α, β and
µ ∈ (0, 1) such that

2β + µN0+1(α +
lnµ
Ta

) < 0, (27)

and for t ∈ [tk , tk+1), k ∈ N ,

P(t) ≤ λ̄InN , (28)

HTP(t)+ P(t)H +2T (t)P(t)+ P(t)2(t)

−5T (t)P(t)− P(t)5(t)+ (4− α)P(t)+ Ṗ(t) ≤ 0,

4T (t − τ (t))P(t)4(t − τ (t))

+ϒT (t − τ (t))P(t)ϒ(t − τ (t))

≤ βP(t − τ (t)). (29)

Let η = −(α + lnµ
Ta

), ξ = λ̄

µN0+1
sup−τ≤t≤08

T (t)8(t) and λ

be the unique solution to 2βeτx −µN0+1(η− x) = 0, satisfy

9T (t)P(t)9(t)+�T (t − τ (t))P(t)�(t − τ (t))

≤ βξe−λ(t−τ (t)).

For t = tk , k ∈ N ,
UT
k P(tk )Uk < µP(t−k ), (30)

then (1) synchronizes to the average state s(t) =
1
N

∑N
k=1 xk (t).
Proof: Let V (t) = eT (t)P(t)e(t). Then

D+V (t) = eT (t)[HTP(t)+ P(t)H +2T (t)P(t)

+P(t)2(t)−5T (t)P(t)− P(t)5(t)+ Ṗ(t)]e(t)

+ eT (t − τ (t))4T (t − τ (t))P(t)e(t)

+ eT (t)P(t)4(t − τ (t))e(t − τ (t))

− eT (t − τ (t))ϒT (t − τ (t))P(t)e(t)

− eT (t)P(t)ϒ(t − τ (t))e(t − τ (t))

+9T (t)P(t)e(t)+ eT (t)P(t)9(t)

+�T (t − τ (t))P(t)e(t)+ eT (t)P(t)�(t − τ (t)).

By Lemma 2,

eT (t − τ (t))4T (t − τ (t))P(t)e(t)

+ eT (t)P(t)4(−τ (t)t)e(t − τ (t)

≤ eT (t)P(t)e(t)

+ eT (t − τ (t))4T (t − τ (t))P(t)4(t − τ (t))e(t − τ (t)),

eT (t − τ (t))ϒT (t − τ (t))P(t)e(t)

− eT (t)P(t)ϒ(t − τ (t))e(t − τ (t))

≤ eT (t)P(t)e(t)

+ eT (t − τ (t))ϒT (t − τ (t))P(t)ϒ(t − τ (t))e(t − τ (t)),

9T (t)P(t)e(t)+ eT (t)P(t)9(t)

≤ eT (t)P(t)e(t)+9T (t)P(t)9(t),

�T (t − τ (t))P(t)e(t)+ eT (t)P(t)�(t − τ (t))

≤ eT (t)P(t)e(t)+�T (t − τ (t))P(t)�(t − τ (t)).

Therefore,

D+V (t) ≤ eT (t)[HTP(t)+ P(t)H +2T (t)P(t)

+P(t)2(t)−5T (t)P(t)− P(t)5(t)

+ Ṗ(t)+ 4P(t)]e(t)

+ eT (t − τ (t))[4T (t − τ (t))P(t)4(t − τ (t))

+ϒT (t − τ (t))P(t)ϒ(t − τ (t))]e(t − τ (t))

+9T (t)P(t)9(t)

+�T (t − τ (t))P(t)�(t − τ (t)).
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Then, we obtain

D+V (t) ≤ αV (t)+ βV (t − τ (t))+ βξeλ(τ−t). (31)

Obviously,

V (tk ) < µV (t−k ). (32)

Similar to the proof of Theorem 1, we consider the following
modified comparing system

v̇(t) = αv(t)+ βv(t − τ (t))
+ βξeλ(τ−t) + ε, t 6= tk ,

v(t+k ) = µv(t
−

k ), k ∈ N+
v(t) = V (t), t ∈ [−τ, 0],

(33)

By Lemma1,

V (t) ≤ v(t) for t ≥ 0. (34)

We use the method of variation of parameters to estimate the
solution of (33), and suppose that the solution of (33) has the
form of

v(t) = C(t)µmeαt , t ∈ [tm, tm+1),m ∈ N .

Substituting v(t) into (33), we obtain, for any m ∈ N ,
t ∈ [tm, tm+1)]

C(t) = C(0)+
∫ t

0
[βv(s− τ (s))+βξeλ(τ−t)+ε]e−αsµ−ks ds,

where µ−ks = µ
−k when s ∈ [tk , tk+1), 0 ≤ k ≤ m.

Then, using the same estimation in the proof of Theorem 1,
we have, for any m ∈ N and t ∈ [tm, tm+1),

v(t) = C(0)µmeαt

+

∫ t

0
[βv(s− τ (s))+ βξeλ(τ−s) + ε]eα(t−s)µm−ks ds,

< ξe−ηt

+

∫ t

0

e−η(t−s)

µ0
[βv(s− τ (s))+ βξeλ(τ−s) + ε]ds,

where µm−ks = µm−k when s ∈ [tk , tk+1),
0 ≤ k ≤ m, µ0 = µN0+1 and ξ, η and λ are defied as in
Theorem 2.

We show that

v(t) < ξe−λt +
ε

µ0η − 2β
(35)

holds for all t ≥ 0.
If not, there exists a t∗ > 0 such that

v(t∗) ≥ ξe−λt
∗

+
ε

µ0η − 2β
, (36)

and

v(t) < ξe−λt +
ε

µ0η − 2β
, t < t∗. (37)

By(35) and (37), we obtain

v(t∗) < ξe−ηt
∗

+

∫ t∗

0

e−η(t
∗
−s)

µ0
[βv(s− τ (s))+ βξeλ(τ−s) + ε]ds

< e−ηt
∗

{ξ +
ε

µ0η − 2β

+

∫ t∗

0

eηs

µ0
[βξe−λ(s−τ (s)) + βξeλ(τ−s)]ds

+
ηε

µ0η − 2β

∫ t∗

0
eηsds

≤ e−ηt
∗

{ξ +
ε

µ0η − 2β
+

2βξeλτ

µ0(η − λ)
(e(η−λ)t

∗

− 1)

+
ε

µ0η − 2β
(eηt

∗

− 1)}

= e−ηt
∗

{ξeηt
∗

e−λt
∗

+
ε

µ0η − 2β
eηt
∗

}

= ξe−λt
∗

+
ε

µ0η − 2β
,

which is contradictory to (1), and the proof is completed.
Remark 5: An error system is usually nonstandard when

a heterogeneous network is considered to synchronize a
non-common equilibrium point. Thus, investigating the full
synchronization for heterogeneous network is difficult. The
quasi-synchronization is raised, thereby allowing all node
states tend to a manifold rather than a fixed point [23]. This
work transforms the error system into a standard form when
the average trajectory is selected as the target state and gives
a full synchronization criterion.
Remark 6: Linear matrix inequality (LMI) is unsuitable to

solve (32) and (33) due to the presence of
∫ 1
0 Dfi(s+ ωej)dω

and
∫ 1
0 Dfi(s(t − τ (t))+ ωej(t − τ (t)))dω. However, finding

solutions to (32) and (33) is possible in some special cases.
The details can be found in [26].
Remark 7: The time-dependent Lyapunov function plays

an important role when heterogeneous impulses are
considered. Reference [24] investigated the exponential syn-
chronization of time-delay homogeneous networks with het-
erogeneous impulses by virtue of Lyapunov function and
the comparison principle. Different from [24], here we con-
sider time-delay heterogeneous networks with heterogeneous
impulses and deduce a synchronization criterion such that all
nodes synchronize to the average trajectory. Reference [26]
used matrix decomposition techniques to synchronize a het-
erogeneous network to the average trajectory. However, this
method is unsuitable for time-delay heterogeneous networks.
In this work, we use the Lyapunov function combined with
the comparison principle to investigate the exponential syn-
chronization for a class of time-delay heterogeneous net-
works with heterogeneous impulses.
Remark 8: we need carefully analyze the decay rate of

Lyapunov function over time when we consider exponential
synchronization of networks. Estimating the Lyapunov func-
tion is difficult when time-delays and impulses are simul-
taneously considered. The reason lies in that time-delays
and impulsive intervals are usually mixed up. The compar-
ison theorem supplies us a method of applying ODE theory
to investigate synchronization of networks. After obtaining
some preliminary estimation to the Lyapunov function, com-
parison theorem allows us to consider an ODE. Then we can
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FIGURE 1. Synchronization error ei1(t), i = 1, 2, . . . , 6.

use the method of variation of parameters to investigate the
effects of time-delays and impulses, and obtain an accurate
estimation of the Lyapunov function. In recent years, Lya-
punov function combined with the comparison principle has
beenwidely applied in impulsive systems [9]–[11], [21], [27].

IV. NUMERICAL EXAMPLES
In this section, a numerical example is presented to illustrate
the effectiveness of the theoretical results.

The common equilibrium solution s(t) satisfies the
following system described by

ṡ(t) = Ais(t)+ Bif1(s(t))+ Cif2(s(t − τ (t)))

where s(t) = (s1(t), s2(t), s3(t))T , A1 = −0.1I3, B1 = 0.09 0 −0.1
0 0.02 0
−0.06 0 −0.1

, C1 =

 0.1 0 −0.2
0 0.2 0
−0.5 0 −0.1

, A2 =
0.6A1, B2 = 0.8B1, C2 = 0.8C1, A3 = 0.7A1, B3 = 0.9B1,
C3 = 0.8C1, A4 = 0.5A1, B4 = 0.7B1, C4 = 0.7C1, A5 =
0.4A1, B5 = 0.4B1, C5 = 0.6C1, A6 = 0.3A1, B6 = 0.5B1,
C6 = 0.5C1, f1(s(t)) = (0.5(|s1 + 1| − |s1 − 1|), 0, 0)T , and
f2(s(t − τ (t))) = (0.5(|s1(t − τ (t)) + 1| − |s1(t − τ (t)) −
1|), 0, 0)T . Then, Lipschitz constants can be got l1 = l2 = 1.
Referring to the topology of the heterogeneous partial

couple network in the work of Lu et al. [28], the network is
described by

ẋi(t) = Aixi(t)+ Bif1(xi(t))+ Cif2(xi(t − τ (t))

+ c
N∑

j=1,j 6=i

dijRHij(xj(t)− xi(t)), i = 1, · · · , 6,

where xi(t) = (xi1(t), xi2(t), xi3(t))T , c = 1, R = 0.02I3,

D=


−11.3 7 0 0.2 0 4.1
4.2 − 11.2 7 0 0 0
0 4.1 − 11.1 7 0 0
0 0.1 4.1 − 11.2 7 0
0 0 0 3.9 − 10.9 7
7 0 0 0 4 − 11

,
The channel matrix of Hij can be seen in the work [28].

FIGURE 2. Synchronization error ei2(t), i = 1, 2, . . . , 6.

FIGURE 3. Synchronization error ei3(t), i = 1, 2, . . . , 6.

Let N0 = 2, 0 < τ (t) < τ , τ = 0.25, according to
Corollary 1, by solving the linear matrix inequalities (9), (27),
and (28), we can find a feasible solution with Ta = 0.01,
α = 11.2, β = 1.55, µ = 0.9, P = 0.1I18.

Consequently, by Corollary 1, we can obtain exponen-
tial synchronization of the heterogeneous systems. Fig.1,
Fig.2 and Fig.3 depict the trajectory of the error state
ei(t) = xi(t)− s(t), i = 1, 2, 3, 4, 5, 6.

V. CONCLUSION
In this paper, we investigate the synchronization for a class
of partially coupled heterogeneous impulsive networks with
time-delays, and obtain some sufficient conditions to realize
exponential synchronization. The main results are divided
into two parts, where the networks are anticipated to syn-
chronize to the common equilibrium solution and the average
trajectory. The method is based on Lyapunov function and the
comparison principle. The results serve as a useful supple-
ment to the full synchronization of heterogeneous impulsive
networks with time-delays. The heterogeneity of networks
makes the form of the error system unstandard if the nodes
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have no common equilibrium point. Fortunately, we obtain
some standard error system by linearization when we select
the average trajectory as the synchronization target. The con-
ditions in Theorem 2 are difficult to solve by using LMI.
Thus, we will modify or simplify these conditions in future
works.
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