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ABSTRACT Existing night vehicle detection methods mainly detect vehicles by detecting headlights or
taillights. However, these features are adversely affected by the complex road lighting environment. In this
paper, a cascade detection network framework FteGanOd is proposed with a feature translate-enhancement
(FTE) module and the object detection (OD) module. First, the FTEmodule is built based on CycleGAN and
multi-scale feature fusion is proposed to enhance the detection of vehicle features at night. The features of
night and day are combined by fusing different convolutional layers to produce enhanced feature (EF) maps.
Second, the OD module, based on the existing object detection network, is improved by cascading with the
FTEmodule to detect vehicles on the EFmaps. The proposed FteGanOdmethod recognizes vehicles at night
with greater accuracy by improving the contrast between vehicles and the background and by suppressing
interference from ambient light. The proposed FteGanOd is validated on the Berkeley Deep Drive (BDD)
dataset and our private dataset. The experimental results show that our proposed method can effectively
enhance vehicle features and improve the accuracy of vehicle detection at night.

INDEX TERMS Convolutional neural network (CNN), nighttime vehicle detection, feature enhancement,
generative adversarial network (GAN), detection network.

I. INTRODUCTION
Vehicle detection is an important application in the field of
target detection. More accurate vehicle detection systems for
day and night conditions will facilitate the development of
more reliable Automatic Driving System (ADS) and Driver
Assistance System (DAS) in the future. In night (lowlight)
condition, the probability of traffic accidents is increased [1]
because less visual information about vehicles and the com-
plex lighting environment is available. (a) Less visual infor-
mation about vehicles. The contrast between the vehicle and
the background is reduced at night, making vehicle features
less obvious. (b) Complex lighting environment. Interference
from various other lights is confused with vehicle headlights
and taillights, which leads to a high rate of false vehicle
detection and presents significant challenges for vision-based
vehicle detection at night.

Most existing vehicle detection methods use the head-
lights and taillights as the primary nighttime vehicle
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detection features. Traditional detection methods that are
not based on convolutional neural networks (CNNs) used
the headlights and taillight to locate vehicles [4]–[11]. Tail-
lights were localized by segmenting the image, and vehi-
cle bounding boxes were predicted by assuming the typical
width of the vehicle [4], [5]. Region proposals were firstly
obtained by paired taillights of vehicles, next the vehicles
whether in these region proposals were determined [6], [7].
In [10], a detection-by-tracking method was proposed to
detect multiple vehicles by tracking headlights/taillights.
These traditional non-CNN vehicle detection methods have
two disadvantages. (1) Vehicle detection is susceptible errors
due to the complex lighting conditions in urban areas,
including vehicle lights, streetlights, building lights, and the
reflected lights from vehicles, which increases the false pos-
itive rate. (2) Vehicle lights are sometimes obscured when
the vehicle is occluded or only the side of the vehicle is
photographed, which increases the missed detection rate.

Vehicle detection methods based on CNN have grad-
ually become the research focus in recent years and
some CNN-based nighttime vehicle detection methods have

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 849

https://orcid.org/0000-0003-0758-518X
https://orcid.org/0000-0001-9287-1206
https://orcid.org/0000-0002-3236-8219
https://orcid.org/0000-0002-8181-0958


X. Shao et al.: Feature Enhancement Based on CycleGAN for Nighttime Vehicle Detection

FIGURE 1. Vehicle detection and behavior analysis of proposed FteGanOd
during nighttime.

been investigated. Lin et al. [23] proposed AugGAN to
translate daylight images into night images for data aug-
mentation, and the images were then used to train existing
detection systems, improving the performance of the detector.
However, only augments data processing systems in existing
night vehicle detection methods. Kuang et al. [1] used a
bioinspired enhancement approach to enhance night images
for feature fusion and object classification in 2017. In 2019,
they combined traditional features and CNN features to gen-
erate regions of interest (ROI) [2], [3]. The above meth-
ods, combining traditional machine learning methods and
deep learning methods for object detecting, belong to multi-
stage learning frameworks. However, they are not an end-
to-end learning framework which makes the training process
cumbersome.

Some object detection methods based on deep learning
(Fast RCNN [29], SSD [33], etc.) can also be used for night
vehicle detection. However, these methods are designed for
daytime object detection and their use in nighttime conditions
results in a low level of feature extraction accuracy from
the network structure and a low rate of vehicle detection
performance.

In a word, low-light environment, complex lighting, and
the specialized structure of nighttime detection network are
three challenges in nighttime vehicle detection. A low-light
environment increases the rate of missed vehicles because of
the faint features of the vehicles; complex lighting leads to
a higher false detection rate when dealing with more com-
plex traffic scenes; and the specialized nighttime detection
network is still incomplete. However, generative adversarial
network (GAN) is a style transfer network that can translate
nighttime images into daytime images. GAN uses encode
modules to extract features from nighttime images and uses
decode modules to restore the daytime images.

Therefore, we propose a novel nighttime vehicle detection
framework named FteGanOd (feature translate-enhancement
generative adversarial network for object detection) to over-
come the above challenges. FteGanOd includes a feature
translate-enhancement (FTE) module and an object detec-
tion (OD) module, as shown in Fig. 1. (1) FTE firstly uses
CycleGAN to translate images from night to day. The multi-
scale features from CycleGAN are next used to fuse the
encoded (nighttime) features and decoded (daytime) features

to form the enhanced feature (EF) maps. Encoded features
contain important information of night vehicle headlights
and taillights; decoded features contain daytime features for
enhancing the background brightness while suppressing most
of the light sources. (2) The OD module (improved YOLO,
RCNN or SSD) extracts abstract vehicle features and detects
vehicles on the EF maps.

The remainder of this paper is given as follows:
In Section II, the methods of vehicle detection at night,
detection networks based on CNN and GAN are introduced.
Section III describes our night detection network FteGanOd
in detail. Section IV introduces the experimental processes
and discusses the experimental results. Finally, conclusions
and possibilities for future work are presented in Section V.

II. RELATED WORK
A. NIGHTTIME VEHICLE DETECTION
The headlights/taillights are used as key information in locat-
ing vehicles for almost all nighttime vehicle detection algo-
rithms. Searching for red or highlight lights in night images
is the main technique to obtain region proposals in previous
methods, which has been proven effective in most literature.

For obtaining ROIs of vehicles, the following techniques
can be adopted: threshold-based segmentation methods
[5], [12], [18], paired vehicle lighting-based methods [6]–[8],
[14]–[16], saliency map-based methods [17], [27], and artifi-
cially designed feature-based methods [13]. After the ROIs
are obtained, we need to further determine whether these
candidate regions contain vehicles. X. Dai [18] used Hough
transform to detect the circles of the headlights and further
segment the areas to locate vehicles. Pradeep et al. [14]
used red thresholding to obtain ROIs and searched for paired
taillights based on the shape similarity and region size to
detect vehicles. Chen et al. [27] generated ROIs based on
the saliency method and applied the deformable parts model
(DPM) to detect vehicles. Kosaka et al. [13] used SVM to
classify vehicles after using Laplacian of Gaussian operation
to detect the blobs.

In recent years, CNN-based methods are increasingly
developed in the research field of vehicle detection at
night. [20]–[23] used GAN-based data augmentation meth-
ods to expand the training dataset for improving the perfor-
mance of the detector. Cai et al. [19] combined visual saliency
and prior information to generate ROIs and used CNN as a
classifier. Kuang et al. [1] proposed a bioinspired method to
enhance image contrast and brightness, and further extracted
the fusion features of LBP, HOG and CNN. They also [3]
proposed a feature extraction method based on tensor decom-
position and feature ranking. In [2], Nakagami-image-based
method and CNN feature were combined to generate ROIs.
References [1]–[3] extracted different features to generate
region proposals by combining traditionalmethodswith CNN
methods. Mo et al. [24] managed to solve the problem of
confusion between other lights and vehicle lights by training
a CNN-based highlight detector.
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Existing nighttime vehicle detection methods with visual
images mainly use vehicle lights for detection. Especially,
the CNN-based methods have stronger adaptability and
robustness than non-CNN methods.

B. OBJECT DETECTION BASED ON DEEP LEARNING
The object detection methods based on deep learning can be
grouped into two detection methods: two-stage detection and
one-stage detection.

1) TWO-STAGE DETECTION
RCNN is the first two-stage object detection network [28].
First, a selective search algorithm generates a series of region
proposals; next, the proposals are input into CNN to extract
features; finally, SVM is used to predict whether each region
proposal contains an object. A series of improved networks
based on RCNN were proposed, such as Fast RCNN [29],
Faster RCNN [30], SPP-Net [31], etc. These networks use
different methods to remove redundant parts in the detection
network to improve detection speed and accuracy.

2) ONE-STAGE DETECTION
One-stage detectors, represented by SSD [33] and YOLO
[34]–[36], have broken through the detection speed bottle-
neck of two-stage detectors. However, detection accuracy is
reduced compared with two-stage methods, especially for
small objects. YOLOv3 and SSD use multi-scale detection
to improve small target detection performance.

These detection networks have better performance in the
ideal (day) environment. However, the accuracy is lower
when applied to night vehicle detection. We propose adding
the FTE module before the CNN-based detection framework
to detect vehicles by combining features of night and day.

C. GAN: GENERATIVE ADVERSARIAL NETWORKS
GAN, with a generator and a discriminator, has achieved
sound results in some applications such as super-
resolution [37] and de-raining [38]. Most of these applica-
tions involve with image generation by GAN to augment
training data, which can be used to generate a ‘‘false’’ image
similar to real image samples.

GAN-based image-to-image translation refers to the task
of converting images from one scene to another different
scene. Pix2pix [39], [40] uses paired images as supervision
to achieve image-to-image translation. However, it is diffi-
cult to obtain pairs of both day and night image samples
in fixed places because the vehicle move too much to cap-
ture traffic images. To solve the problem of inputting day
and night paired images, CycleGAN [26] is firstly proposed
with cycle consistency loss to realize image translation with
unpaired images. Image translation realizes the conversion of
the object features in an image. For example, after the image
is translated from night to day, the background brightness of
the image becomes brighter and the vehicles are easier to be
recognized.

CycleGAN only needs images of different domains dur-
ing training rather than expensive ground-truth paired image
data, which is of great significance for practical applications.
Therefore, we will use the structure of CycleGAN for feature
translation at night.

III. PROPOSED METHOD
In this section, we elaborate on the proposed method for
vehicle detection at night. To resolve the effect of weak
environmental light or complex vehicle’s light at night,
we propose a feature cascade network structure FteGanOd to
enhance vehicle features and improve vehicle detection accu-
racy. FteGanOd consists of two modules: feature translate-
enhancement (FTE) module and object detection (OD)
module. The FTE module adopts CycleGAN as the basic
network to realize the translation of scenes from night to day
by learning on unpaired input data. The OD module cascades
with the FTE module to extract fused and enhanced daytime
features and detect vehicles with higher detection accuracy.

A. PROPOSED FTEGANOD NETWORK
The ability to train with unpaired images as input is a typical
advantage of CycleGAN for adapting different traffic scenes.
The disadvantage of CycleGAN is that it cannot learn the
category and position of the vehicle object when mapping the
nighttime image to daytime image. Therefore, we conducted
an in-depth study on this and realize the translation of local
vehicle features and global scene features from night to day.
We propose an FTE module based on CycleGAN and the
feature cascadedODmodule to overcome the disadvantage of
CycleGAN and improve the detection accuracy. Unlike other
training methods, here we train the FTE and OD modules
together to guide FTE optimization in a direction that makes
the vehicle features more prominent.

Fig. 2 shows the feature cascade structure of the proposed
FteGanOd network, which is composed of four parts (A), (B),
(C) and (D). (A) + (B) is the FTE module, where (A) is the
generator based on CycleGAN that translate the image from
night to day, (B) is the enhancement part that fuses the night
and day multi-scale features map from (A) to enhance the
vehicle features and finally generate the enhanced feature EF
map as input for Part (C). Part (C) is the OD module based
on the existing detector structure (such as YOLOv3, etc.).
Part (D) is for generating daytime images x_fake in training
process.

B. FTE MODULE
1) IMAGE TRANSLATION
The proposed FTE module is based on the CycleGAN net-
work as shown in Fig. 2. Suppose the feature map fi at layer
i with dimension hi × wi × ci, i ∈ N. Let E i be a generic
function which acts as the basic generator block, which in our
implementation consists of a convolution layer followed by
an instance normalization and an activation function. E iencode
is the operation of encoding the input image as multi-scale
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FIGURE 2. Architecture of the proposed FteGanOd: Input night image x , (A) + (B) is the FTE module to translate and enhance the features of vehicles in
night images. In (A), Gday process maps images from night domain to day domain. Features f1 - f3 are the encoded feature maps to extracted night
image features from x ; features f5 - f7 are the decoded feature maps that translate the nighttime features into daytime features. In (B), multi-scale
feature are fused to obtain enhanced features (EF). Finally, EF is fed into the OD module (C). In (D), the convolutional layers are used to generate the
fake daytime image x_fake.

feature maps.

E iencode = fi−1 7→ fi

where, fi = Rwi×hi×2b+1+i

and, wi = hi = N/2i−1; i = 1, 2, 3 (1)

where f0 is the input night image of the network with a size
of N × N , let N = 416. The dimension of the feature
map Rw×h×c contains [h × w × c] dimensional activations,
c is the number of channels in the intermediate activations
of the generator, c = 2b+1+i, here we let b = 4. E idecode
is the operation of decoding the translated daytime features
to the final output restored image.

Eb+idecode = fb+i 7→ fb+i+1

where, fb+i = Rwi×hi×22b−i+1

and, wi = hi = N/2b−i−1; i = 1, 2, 3 (2)

The final output fake daytime image x_fake is f8.
After the proposed FteGanOd network was trained,

the encoded and decoded feature maps were obtained and
some of them are shown in Fig. 3. The input nighttime image
x is gradually encoded by several convolution layers to form
the feature map f1 to f3. The vehicle features and contours
in the feature map f1 of the first convolution layer are not
obvious due to the low-light background at night, as marked
in the red boxes. Compared with f1, the noise of feature map
f2 has been aggravated, but we can still see the basic shapes
of the vehicles through the position of the road. After further

FIGURE 3. Features f1 - f7 are the feature maps from different
convolutional layers of the Gday, respectively. The input night image x
goes through the Gday to obtain the final translation daytime image
x_fake. ‘size’ represents the actual size of the feature map. The red boxes
mark the location of the vehicles.

encoding f2 to form the high-level semantic feature map f3,
which represents the feature vector of the vehicles and the
background in the night domain, we can still see the faint
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features of the vehicle in the little differences from image
contrast. Subsequently, a converter composed of 9 Resnet
blocks maps the night domain feature vector f3 into the day
domain feature vector f5 through f4. Resnet blocks complete
the mapping of nighttime features to daytime features by
keeping the similar features in both domains and by convert-
ing different features.

Next, the decoder translates the feature f5 of the daytime
domain into low-level feature f6. It can be seen from f5
that it already has a clearer vehicle shape and some details.
In f6, the contrast between the vehicle and the background is
further improved and the daytime style is salient. Compared
with f1, the noises on vehicles and roads in feature map f7
are significantly reduced and the vehicle details are greatly
exhibited, which helps the detector to recognize the vehi-
cle, even for distant vehicles. Finally, the daytime image
x_fake is generated with clearer shapes and details than the
input image x. Although some small areas have an unnatural
appearance, the vehicles have been clearly distinguished from
the background.

2) MULTI-SCALE FEATURE FUSION AND ENHANCEMENT
In Fig. 3, if the daytime images x_fake is used directly
to detect vehicles, the relevant night information (vehicle
lights and reflections) of the image x would be lost to some
extent. Therefore, nighttime features should be adopted to
enhance the vehicle features. As shown in part (B) of Fig. 2,
we propose multi-scale feature fusion to fuse features of fi
(nighttime) and f2b−i (daytime) to enhance vehicle features
and further improve the detection accuracy of vehicles.

Fusion of multi-scale features may cause aliasing
effects [32] and high feature dimension. To solve this prob-
lem, before we fuse the different scales of nighttime fea-
tures and daytime features, every feature map is first passed
through a convolutional kernel to reduce the aliasing effect,
reduce the dimensions of the features, and resize the features
of different scales into the same scale. Choosing an EF scale
of half the size of the input image (208 × 208) can reduce
the network complexity. If the EF scale size is 416 × 416,
the calculations in part (B) of Fig. 2 will increase exponen-
tially, and even will double the computational complexity of
the detection network.

Denote Fconv, Fdeconv, and Fconcat as the convolution,
deconvolution, and concatenate operation separately. The
feature fusion unit follows the operations, as described in
(3)–(7). Fconv means the feature map through a kCBL_n_s

convolution kernel with size n × n and stride s, as shown
in Fig. 2.

gi = Fconv(fi, k
CBL_n_s
i ),

g2b−i = Fconv(f2b−i, k
CBL_n_s
2b−i )

i = 1, 2 (3)

gi = Fdeconv(fi, k
DCBL_n_s
i ),

g2b−i = Fdeconv(f2b−i, k
DCBL_n_s
2b−i )

i = 3 (4)

The feature fi is first adjusted through a convolution layer
with learnable weights for scale matching and dimensionality

FIGURE 4. Detection module OD based on YOLOv3 structure.

reduction. This step is designed to adjust the size hi × wi to
N/2×N/2 and reduce the number of channels by half to ci/2.
Next these features are concatenated to form fconcat_i.

fconcat_i = Fconcat (gi, g2b−i), i = 1, 2, 3 (5)

The concatenated features fconcat_i of Eq. (5) are further
fused and their dimensions are reduced through a 1 × 1
convolution kernel respectively and are concatenated again.

νi = Fconv(fconcat_i, kCBL_1_1)
fconcat_EF = Fconcat (νi)

i = 1, 2, 3 (6)

Finally, the enhanced fusion features fEF is obtained by
Eq. (7).

fEF = Fconv(fconcat_EF , kCBL_3_1) (7)

The feature fEF will be fed into the OD module for vehicle
detection.

C. OD MODULE
After nighttime features and daytime features are fused in
Section B, here the detection module OD is proposed to
extract vehicle features and detect them on the enhanced
fusion features EF.

The traditional detection methods use the daytime RGB
image x_fake as the input for the detection module, which is a
two-period network, and further introduces more parameters
and computation complexity. In order to solve these prob-
lems, we propose a detection module OD, which is cascaded
with the FTE module through EF to form a one-period net-
work. The enhanced fusion features from FTE are directly
used as the input of OD instead of RGB images to realize the
end-to-end training and detection of the whole network and
to reduce the network layers and parameters.

It can be seen from Fig. 2 that part (C) is the
OD module, which can be selected as YOLOv3, SSD,
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FIGURE 5. Overview of training framework: The green route in the figure
corresponds to that in Fig. 2, and the rest is the structure used only for
training.

Faster-RCNN, or other networks. Here we take the
YOLOv3 framework as an example to illustrate our detection
module OD. This example can also be applied to other
detectors. As shown in Fig. 4, the upper part is the original
structure of YOLOv3 using a 416 × 416 RGB image as the
input. YOLOv3 adopts Darknet-53 for feature extraction and
has the minimum feature scale of 13 × 13, which is 1/32 of
the input size. Since the EF size is half (208 × 208) of the
original input of YOLOv3, the scale of the feature map after
×32 down-sampling will be reduced to 7× 7 if the traditional
structure of YOLOv3 is used. Small-scale objects will not be
detected when the feature map’s resolution is reduced by half.
In order to maintain the resolution of the feature scale, we
take the network structure of Layer2 - Layer7 of YOLOv3 as
our OD module to avoid the lower detection of small targets,
as shown in the bottom part of Fig. 4, which removes the
largest scale convolution layers in Darknet-53, reduces one
down-sampling operation, and replaces the RGB image with
EF module.

In order to verify the effectiveness of the proposed OD
module, we use three detection networks (YOLOv3, SSD
and Faster RCNN) including both one-stage and two-stage
methods as detection modules.

D. LOSS AND TRAINING
In this section, we detail the loss of the FteGanOd network
and the joint training of the FTE module and OD module.

Fig. 5 shows the training framework of our FteGanOd,
the green route corresponds to the green route in Fig. 2,
the red route parts of Fig. 5 are the structures used for training.
Referring to the CycleGAN network [26], FTE contains two
generators (Gday and Gnight) and two discriminators (Dday
and Dnight). Gday is the generator that translates images from
day to night. On the contrary, Gnight is the generator that
translates images from night to day. The Day-fake (shown
as the blue circle in Fig. 5) output from Gday is the fake
daytime image data, and Day-real is the practical real daytime
image data. Dnight and Dday are used to judge whether an
image is real or fake in the nighttime and daytime image
data, respectively. Here only the part of training of Gday is
described.

The loss of the OD module (LDet) includes bounding box
regression loss (Lloc) and classification loss (Lcls). The loss
of FTE module consists of three terms: the cycle consistent
loss (Lcyc_night), the discrimination loss (LD_night) and the
detection loss (LDet).

For image x of night domain, the image translation cycle
should be able to bring x back to the original image, i.e., x →
Gday(x)→ Gnight(Gday(x)) ≈ x. This is called forward cycle
consistency, the cycle consistency loss defined as:

Lcyc_night = Ex∼Pdata_night(x)[
∥∥Gnight(Gday(x))− x

∥∥
1]

LD_night = Ex∼Pdata_night(x)[log(1− Dday(Gday(x)))]

+Ey∼Pdata_day(y)[logDday(y)] (8)

Loss LDet is added to the loss function of the FTE module,
which is an important part of optimization allowing it to focus
on enhancing the fused features of the target region and the
vehicle. The loss Lcls in LDet is for the recognition of target
features. It has more effect on feature fusion enhancement
than Lloc, so different weights are applied to Lcls and Lloc.
The loss of the FTE module is:

LFTE = Lcyc_night + LD_night + λ1Lcls + λ2Lloc (9)

Here, λ1 = 1.4, λ2 = 0.7 (empirically defined). The
optimization of FTE and OD are carried out parallel.

IV. EXPERIMENTAL METHODOLOGY
The experiments on the FteGanOd network are described
conducted in this section. We first introduce the datasets
used for training and testing, following with the evaluation
method, the experimental process and the training method of
our proposed FteGanOd network. Finally, the results of our
experiments are analyzed and discussed.

A. DATASET
Public dataset and private dataset are adopted to evaluate the
proposed FteGanOd network. The public dataset, Berkeley
Deep Drive (BDD) dataset1 [25], has 100,000 real driv-
ing scene images, including training set (70,000), test set
(20,000), and validation dataset (10,000). It is currently the
large-scale, diverse and complex driving dataset with anno-
tations. The labels of the images include 10 categories (bus,
truck, car, person, train, etc.), different weather (sunny, rainy,
etc.), multiple types of scenes (roads, city streets, etc.), time
(dawn/dusk, day, night).
We selected all the night images from the BDD based

on the time labels and further modified the label cate-
gory. We defined vehicle category as dataset containing only
bus, truck and car. Our training dataset (25,338 images)
were selected from the BDD training set with more than
260,000 vehicle targets; our validation dataset (3526 night
images) was selected from BDD validation dataset with
more than 37,000 vehicle targets. Our training and valida-
tion dataset, referred as DATASET1 (hard), contain various

1https://bair.berkeley.edu/blog/2018/05/30/bdd/
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TABLE 1. Explanation of Datasets.

weather, scenes, occluded and truncated targets, i.e., many
difficult-to-recognize targets. DATASET1 (hard) is also a
high-density dataset with an average of about 10 vehicles
per image. Therefore, we carefully selected 3000 images
(2000 for training and 1000 for testing) from the DATASET1
(hard). A vehicle with the bounding box less than 25 pixels
and the vehicle that were difficult to distinguish were
removed after the image was resized to 416 × 416 to form
a low-density (average 5 vehicles per image) dataset, called
DATASET1(easy).

Our private dataset was obtained by using the monoc-
ular camera on our intelligent driving car in urban areas
from Changchun and Shenzhen cities in China. We selected
20,877 frames from the private dataset as DATASET2 dataset,
80% of which (16,700 frames) were used for training and
20% (4177 frames) for verification. The category of the
vehicle was defined as the same way as DATASET1. The
original image resolution of DATASET1 and DATASET2 is
1280 × 720 pixels, which was resized to 416 × 416 or
300 × 300 for our experiments. Fig. 6 shows some samples
of the datasets of DATASET1 and DATASET2. It can be
seen that the multi-lane, high-density traffic that increase the
environmental complexity and detection difficulty. TABLE 1
is the detail explanation about the datasets.

B. PERFORMANCE EVALUATION
Based on the OD module, we used three networks frames
YOLOv3, SSD and Faster RCNN as the detection model
to compare with the state-of-the-art object detection meth-
ods. These networks were verified on DATASET1 and
DATASET2.

1) EVALUATION METHOD
In order to evaluate the experimental results, we use the
following commonly used indicators for vehicle detection.
(1) Precision-Recall (PR) curve is used to describe the rela-
tionship between precision and recall. False detection rate
(FDR) can be computed as FDR = 1 - precision. Recall is
also called true positive rate (TPR), and the miss rate can
be presented as Miss Rate = 1 - recall. (2) The established

FIGURE 6. Samples of our datasets with ground truth bounding boxes:
(a) is from DATASET1 (hard). In a complex lighting environment, small
targets and blocked vehicles in the distance are difficult to identify
(red bounding boxes); (b) is from DATASET1 (easy); (c) is from DATASET2.

mean average precision (mAP) is widely used to evaluate the
performance of object detection algorithms. Average preci-
sion (AP) is proportional to the area under the PR curve.
Since there is only one category in this experiment, AP is
equivalent to mAP. (3) We employ the frames per second
(FPS) to quantitatively evaluate the detection speed of dif-
ferent networks. Moreover, the intersection over union (IOU)
higher than 0.5 of the prediction bounding box and the ground
truth box is considered to be assigned a positive label.

2) TRAIN CYCLEGAN
CycleGAN is the basic network of the FTE module,
the source code of CycleGAN is publicly available.2 The
trained CycleGAN model was used as the pre-training model
for the FTE, which helped to improve the stability and con-
vergence speed during training FTE. The training parameters
use the default settings. The training was finished when the
average loss per 10 batches stabilized.

3) TRAIN DETECTORS
We adopt YOLOv3, SSD300 and Faster RCNN networks as
the detectors.3 The input image resolution of YOLOv3 and
Faster RCNN is 416 × 416, while SSD300 is 300 × 300.
The best model was saved and used as a pre-trained model
for our detection module OD.

2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
3In order to realize the cascading of enhanced module and detection

networks, and to compare the performance between different networks,
the codes used are all based on the pytorch framework.

YOLOv3: https://github.com/eriklindernoren/PyTorch-YOLOv3
SSD: https://github.com/amdegroot/ssd.pytorch
Faster RCNN: https://github.com/jwyang/faster-rcnn.pytorch
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FIGURE 7. Image translate, fusion and enhancement results: (a) Original image. (b) Translate result by
CycleGAN. (c) Translate-enhanced image generated by FTE.

4) TRAINING OUR NETWORK
We used three object detection networks as the structure of
the OD module, and cascaded those with the FTE module to
get three different nighttime detection networks. The detailed
training steps are as follows.

The training process and loss are shown in Fig. 5. We used
pre-trained models and fine-tuning network parameters to
reduce training time. The generator of FTE was initialized
using CycleGAN trained network weights, fine-tuning the
generator parameters with a smaller learning rate (we set
the learning rate to 0.00001 - 0.0001). Similarly, we used
the weights trained by the detector in 3) to initialize OD
and fine-tuned with a smaller learning rate. We randomly
initialized the weight of the feature fusion of FTE and set
a large initial learning rate (0.001 - 0.01). The input image
resolution was set to 416 × 416 (including the network with
the SSD300-based structure as the detection module). Image
preprocessing mainly included random brightness, color jit-
tering and random mirror.

To ensure that each method got the best results, we trained
each network for 50 epochs. The validation phase was
performed during the training period, and the best model
was saved. Due to the different parameters of each net-
work, the training time were different. The training time for
YOLOv3, SSD, Faster RCNN, and our method were about
52 hours, 20 hours, 46 hours and 63 hours, respectively.

5) EXPERIMENTAL PLATFORM AND
COMPUTATIONAL PERFORMANCE
The proposed network was implemented with the pytorch
framework running on a PC with Intel(R) Xeon(R)
E5-2650V4 CPU 2.2GHz and NVIDA GTX1080Ti GPU.
The machine was running Linux Ubuntu 16.04 with NVIDA
CUDA 9.0 and cuDNN 7.0.

TABLE 2. Comparison of AP with different networks.

C. RESULTS AND DISCUSSIONS
The experimental results are presented and discussed in this
section. The proposed method was validated on different
datasets as shown in TABLE 2.

On DATASET1 (hard), the AP of FteGanOd +
YOLOv3 improve by 6.4% compared with YOLOv3, the AP
of FteGanOd + SSD improve 5.4% compared with SSD,
and FteGanOd + Faster RCNN improve 4.7% compared
with Faster RCNN. On DATASET1 (easy) and DATASET2,
the APs of the cascaded networks increase by about 6%.

Fig. 7 shows the comparison of the translation, fusion
and enhancement results between traditional CycleGAN
(Fig. 7 (b)) and our proposed FteGanOd (Fig. 7 (c)) testing on
DATASET1 (hard). The results from traditional CycleGAN
(Fig. 7 (b)) are quite different from the real daytime images
because lots of detail textures are lost, such as the blurred
contour of cars and weak taillights, which decreases the
accuracy of the vehicle detection. Fig. 7 (c) shows the fused
and enhanced results of our proposed FteGanOd with sharp
vehicle contours and clear taillights compared with Cycle-
GAN from the enlarged parts. This increased detail helps
to distinguish the vehicles in the low-light environment and
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FIGURE 8. Detection results from DATASET1(hard): (a) Original image. (b) FTE results. (c) Detection results with FteGanOd + YOLOv3.
(d) Detection results with YOLOv3.

FIGURE 9. PR curves of each network on different datasets.

reduces the interference from streetlights, leading to higher
accurate vehicle detection.

Fig. 8 shows the comparison of vehicle detection results
between YOLOv3 and our proposed FteGanOd method on
dataset DATASET1 (hard). It can be seen that FteGanOd
detects more vehicles than YOLOv3 in lowlight condi-
tion. Therefore, the proposed FteGanOd with FTE and OD
modules significantly reduces the number of false positive
detection.

Fig. 9 shows the PR curve of each network tested on differ-
ent datasets. It can be seen that our proposedmethod achieved
higher precision at the same recall rate. It can be seen from
Fig. 9(a) that at recall = 0.5, the precision of FteGanOd +
Faster RCNN is 0.824, Faster RCNN is 0.633, representing
an improvement of about 19%. When the precision is fixed
at 0.8, the recall of FteGanOd + Faster RCNN is 0.519,
compared to 0.451 for Faster RCNN, an improvement of
about 7% Therefore, our proposed FteGanOd method has
higher precision and recall than other methods.

TABLE 3 shows the detection speed and parameters of
each network with input batch size= 1 using the same testing
dataset.

After adding our proposed FTE module, the detection
speed decreases. FteGanOd + YOLOv3 achieves the detec-
tion speed of 16.2 FPS, and the average inference time for an
image is about 0.061 s.

TABLE 3. Computational performance.

D. COMPARISON WITH EXISTING METHODS
Most recent studies on nighttime vehicle detection validate
their methods on their own private datasets, which are not
available in public. It is difficult for us to compare our method
with them as we have no benchmark dataset for night vehicle
detection. Due to different scenes, there are great differences
between these datasets. Fig. 10 shows some sample images
from other datasets published in related papers. They used
different density and complexity datasets. Therefore, we can-
not directly compare our experimental results with theirs.

However, we can analyze the different results from other
perspectives. TABLE 4 lists the detection accuracy from
other literature. Fig. 10 shows the corresponding sample
images published in their papers. Most methods were evalu-
ated using low-density traffic conditions and low-complexity
backgrounds. The datasets we used (DATASET1 (easy)
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FIGURE 10. Sample images of other datasets published in related paper:
(a) Images with complex scenes used in [1]; (b) Light blob detection
dataset from [13]; (c) Night image from [14]; (d) Night image and
detection result from [15]; (e) image from [24] with annotations. (f) Night
image and detection result from [22].

TABLE 4. Comparison of accuracy and datasets.

and DATASET2) contain an average of 5 target vehi-
cles per image, and are more complex than those private
datasets [1], [13]–[15], [24], [22]. Our method can adapt to
different light conditions under natural driving conditions.
It can be seen that our method (e.g. FteGanOd + Faster
RCNN) either outperforms or achieves similar detection rates
on more complex datasets compared with existing methods
on lower complexity datasets. The method of [22] achieved
a precision of 97.1% and a recall of 55.0%. Our method
(FteGanOd + Faster RCNN) achieve a higher precision of
97.8% at the same recall.

V. CONCLUSION
In this paper, we propose an effective night detection method
called FteGanOd that cascades the feature translate- enhance-
ment FTE module and the object detection OD module. This
method is designed to solve the problem of low detection of
vehicles at night on city roads with weak/complex lighting
environment and dense traffic flow. The proposed FTE mod-
ule uses unpaired input image and CycleGAN to translate
the nighttime images into daytime images, and further fuses
multi-scale feature to enhance the vehicle features at night.
The enhanced features retain the important information of
vehicle lights at night and augment the vehicle features during

the day. Our experimental results show that the proposed
method effectively enhances the features of nighttime vehi-
cles and suppresses the interference from other lights. It is
helpful to improve the detection accuracy and reduce the
false/missed detection rate. In addition, we found that there
are some small targets in the remote distance in DATASET1
(hard) were missed after passing through the FTE module.
This likely occurred because small targets were weakened
and recognized as part of the background. To improve the
detection rate for remote small targets at night is the important
work we need to study in the future.
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