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ABSTRACT In the hot rolling process, the prediction of strip crown is the key factor to improve the flatness
quality of the strip. However, the traditional prediction method can only provide prediction values, but
does not quantitatively evaluate the prediction error and stability. While Gaussian process regression (GPR)
provides full probability prediction and estimates the uncertainty in the prediction. Therefore, for the first
time, GPR is applied to predict strip crown. Furthermore, considering the negative influence of unavoidable
outliers in measurement data, this article proposes an improved local outlier factor (LOF) algorithm to
calculate the weights. And a novel Weight-GPR based on improved LOF prediction model is established.
The proposed model not only retains the effective information of outlier values, but also avoids the negative
influence brought by outlier values. The prediction experiments based on the real world production line data
show that the proposed model can be successfully applied to the prediction of the strip crown in hot rolling
process. Also, the performance of the proposed model is compared with typical GPR, ANN and SVM, and
the results demonstrate that the Weight-GPR based on the improved LOF model provides better prediction
accuracy and stability.

INDEX TERMS Gaussian process regression (GPR), outlier detection, strip crown, hot rolling process, local
outlier factor (LOF).

I. INTRODUCTION
Hot rolling process is to use a series of rolls to progressively
thin a cast or semi-finished steels to a desired thickness
products such as the strip and sheet steel [1]. In deforming
the strip, the rolling process causes variations in thickness
across the width of the strip. These variations are commonly
referred to as crown which is an important attributes of strip
quality and has been paidmore andmore attention [2]. A good
strip shape quality is that the strip has a desired crown and
flatness, and it is also an important factor to determine the
competitiveness of strip in the market. Therefore, it is an
urgent problem to precisely predict the crown in hot rolling
process for the early intervention of product quality [3], [4].
The traditional strip crown prediction method is a mechanism
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model established on the basis of some necessary simplifi-
cations and assumptions according to the mathematical and
physical characteristics of the rolling process. For example,
to obtain strip crown, a finite difference method [5] was
introduced to imitate the roll temperature field and thermal
crown. Pour et al. adopted a numerical model to predict
many factors in the process of hot rolling like the rolling
force and work roll wearing crown [6]. With the continuous
improvement of computational ability, finite element method
(FEM) has become a popular technology because it can sim-
ulate various rolling processes well, and has been applied
to the analysis of symmetrical flatness actuator efficiency
for rolling mill [7]. Although these traditional mechanism
models have been widely used, they often behave poorly
when confronted with the problems of strong coupling and
non-linearity among parameters. Moreover, the mechanism
models also have the shortcomings of slow improvement
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speed and high computational complexity. At the same time,
in actual production, the mechanism models will also be
limited by production conditions. Such as aging machines,
intricate operation system, some parameters are difficult to
measure and collect during rolling, changeable tempera-
ture or humidity and so on, which makes the mechanism
models show very low efficiency and limitation in strip crown
prediction [5]. With the development of big data and artifi-
cial intelligence (AI) technology, more and more prediction
methods have been applied and studied in hot rolling process.
The first AI method to be applied in hot rolling process is
Artificial Neural Network (ANN), which uses a set of data to
learn the implicit relationship between the input and output
variables, but does not involve the basic knowledge of rolling.
A mixed GA-ANN model [8] was established to predict and
minimize the shape of hot rolled strip. Alaei et al. [9] devel-
oped an online prediction of work roll thermal expansion
with ANN model. Shardt et al. [10] used ANN to predict the
shape or crown of the strip, and then analyzed the sensitivity
of the influencing factors of shape change. Wang et al. [11]
proposed an ANNmethod optimized by intelligent algorithm
to predict the profile and flatness. Deng et al. [4] proposed an
ANN method for predicting strip crown based on reasonable
data processing strategy. Although ANN has been applied in
strip profile prediction, it also has some disadvantages, such
as slow convergence speed, long training time, large random-
ness of network structure selection, easy to fall into local min-
imum and so on. For better modeling the strip thickness in hot
strip rolling process, Wang et al. [12] proposed a strip crown
prediction model based on support vector regression (SVR),
and optimized the model parameter by using the improved
adaptive mutation particle swarm optimization (AMPSO).

However, there are more powerful and effective prediction
methods, such as Gaussian process regression (GPR). Differ-
ent fromANN and SVMmethod, which can only provide pre-
diction values, GPR can also captures the model uncertainty.
It uses themean prediction interval width (MPIW) tomeasure
the stability of the model, thus providing more information
about future possibilities and changes, which ismore useful in
practice [13]–[15]. GPR has become one of themost powerful
probabilistic predicting methods. Its inference can be derived
strictly in the function space by evaluating or approximating
the posterior process, and it provide full probabilistic predic-
tion with an estimation of uncertainty in the prediction [16],
[17]. Moreover, GPR owns its unique advantages. For exam-
ple, compared with SVM, the kernel hyperparameters, like
length scale and noise level, can be simply learned via evi-
dence maximization in GPR. In SVM, it is still a big issue,
and not convincingly solved yet. Consequently, it is free and
flexible to choose proper kernel functions in GPR [15]. As for
the comparison with ANN, the training process of GPR is
more efficient in smaller dataset due to its none-parametric
characters such as well-tuned smoothing [13], [15]. In fact,
GPR has been extensively used in various field such as short-
term wind power prediction [18], fuel consumption predic-
tion [19], some kinds of prediction on lithium-ion batteries

such as remaining useful life [20], and state of health [21].
In industrial production, due to the uncertainty of machine
operation and the complexity of production environment, it is
necessary to evaluate the uncertainty in the prediction results.
So it is imperative to apply GPRmodel to predict strip crown.
In this article, for the first time, GPR model is applied to the
rolling field and to predict the strip crown.

In order to improve the prediction performance of GPR, a
Weight-GPR model is proposed in this article. In hot rolling
process, the actual experimental data are affected by some
negative factors, such as the measurement deviation caused
by the machine and the inherent uncertainty of the working
environment caused by changes in temperature and humid-
ity [22], thus inevitably generating outliers. Due to their
high heteroscedasticity and other side effects, outliers are
partially responsible for irregularities in the model, devia-
tions in parameter settings and incorrect results [23], [24].
Therefore, in order to better restore the authenticity of the
data and obtain reliable analysis results, outliers need to
be processed. Although outliers are usually considered as
errors or noises, they may actually carry some important
information. Removing them may lead to the risk that the
potential correlation and inherent distribution of the entire
data set may be discarded and partially destroyed [25]. There-
fore, in the proposed Weight-GPR model, not only all data
points are retained, but also each data sample is assigned
a weight value related to outliers to reduce the negative
impact of outliers. And the weight value is calculated by an
improved local outlier factor (LOF) algorithm. This density-
based LOF can be used to give a detailed mathematical
value to represent the outlier level of the observation point,
instead of using a binary attribute tag to represent whether
it is an outlier [26], [27]. At the same time, traditional LOF
algorithm is improved by feature weighting technology in
Euclidean space. This also can avoid the problem of ‘‘curse
of dimensionality’’ in Euclidean space for outlier detection
of high-dimensional data [28]–[30]. Finally, a novel Weight-
GPR based on improved LOF is established and applied to
strip crown prediction in hot rolling process.

On the prediction of strip crown, the shortcomings of the
existing work can be summarized as follows: 1) The tradi-
tional mechanism model has the disadvantages of difficult
parameter acquisition and high computational complexity.
2) New data-driven machine learning algorithms, such as
ANN, have the disadvantages of large randomness in net-
work structure selection and easy to fall into local mini-
mum. In this study, GPR model is applied to strip crown
prediction for the first time and improved. Its significance
lies in: 1) GPR can capture the uncertainty of the model,
thus measuring the stability of the model, which is more
useful in practice. 2) The improved GPR model adopts an
improved LOF algorithm to analyze and process the outliers
which eliminates the negative influence of the outliers while
retaining the important information carried by the outliers.
This article is organized as follows: Section 2 introduces the
hot rolling process and description of the experimental data
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FIGURE 1. Sketch of strip profile [4].

in brief. Section 3 introduces some necessary information
about the GP theory and the typical GPR model, then estab-
lishment and principle of the proposed Weight-GPR model
is illustrated in detail. Furthermore, the weight calculating
method based on the improved LOF is provided in Section 4.
In Section 5, the prediction performance of the Weight-GPR
based on improved LOF model is evaluated and compared
with typical GPR, ANN and SVM models. Section 6 shows
the conclusion.

II. HOT ROLLING TECHNOLOGY AND STRIP CROWN
A. HOT ROLLING TECHNOLOGY
Strip Crown is a vital performance index of strip flatness
quality, which is mainly determined by the 3D deformation in
the deformation zone. Crown is defined as the difference of
thickness between the center and a point 40mm from the edge
of the strip, and this is schematically shown in Figure 1 [4].
For most applications steel mill clients require a strip with
little crown or little variation in thickness. The mathematical
formula of strip crown is shown as below:

C40 = hc −
h+ h′

2
(1)

where C40 stands for the strip crown at the edge 40mm, hc is
the thickness at the center of the strip, h and h′ respectively
means the thickness at 40mm on the left and right sides.

B. STRIP CROWN INDUSTRIAL DATA
Figure 2 shows the complete rolling process in a typical hot
rolling workshop. The process consists of 6 key parts: the
reheating furnace, the roughing mill, the hot coil box and
flying shear, the finishing mill, the laminar cooling, and the
coiler. The finishing mill rolling is consists of 7 groups of
stands. Each group stand is composed of a pair of working
rolls and a pair of larger supporting rolls. A single batch
consists of a coil of rough steel, which enters the reheating
furnace to be reheated to the appropriate temperature. Next,
the strip passes through the roughing mill, where its thick-
ness and width are reduced to close to the desired value.
Then, the strip enters the finishing mill section, where the
strip is carefully milled to the required width and thickness.
The profile of the strip can be controlled by changing the
bending forces between the two work rolls [31]. After the
last stand, the thickness distribution, profile and flatness of
strip and the parameters of the rolling process are measured
by corresponding equipment and sensors. Next, the strip is
cooled by water to an appropriate final temperature. Finally,
the strip is coiled and is ready for shipment.

There are many factors that affect the strip crown, which
are mainly related to the roller, strip and rolling conditions in

the rolling process. According to the measured parameters in
the rolling process, nine important attributes are selected as
input variables for strip crown prediction. They are Cooling
water flow of rolling mill (%), Entrance temperature (◦C),
Exit temperature (◦C), Strip width (m), Entrance thickness
(mm), Exit thickness (mm), Bending force (kN), Rolling
force (kN) and Entry profile (µm). Among them, the Cooling
water flow of rolling mill can reflect the roll state. TheWidth,
Thickness and Entry profile of the strip can reflect the state
of the strip. Rolling force, Bending force and temperature
can reflect rolling conditions [11], [12]. 474 samples of
strip data is collected from a 1780mm hot rolling process
production line in HBIS GROUP COMPANY, located in
HeBei Province, China. Among them 67% (315) are used
for training and establishing the prediction models and 33%
(159) are used for testing and validating the effectiveness of
the models. Furthermore, the measurement data should be
processed with z-score normalization to the same scale to
reduce the impact of different magnitudes and dimensions.
Figure 3 is a fractal dimension visualization diagram of exper-
imental data, showing the distribution of 9 input variables.
As shown in figure 3, the input data varies greatly in different
dimensions. In order to avoid the increase of model error
caused by the large difference of data in different dimensions,
it is necessary to z-score normalize.

III. THE NOVEL WEIGHT-GPR MODEL
Training data is defined as a set S of n observations S =
{(xi, yi)|i = 1, 2, 3, · · · , n}, where the xi ∈ Rd denotes
hot rolling industrial data with nine attributes, and yi is the
predict crown value. The training inputs and outputs are
aggregated into matrixes X = [x1, x2, . . . , xn] and Y =
[y1, y2, . . . , yn] respectively. The testing inputs and outputs
are also aggregated into matrixes X∗ = [x∗1 , x

∗

2 , . . . , x
∗
n ] and

Y ∗ = [y∗1, y
∗

2, . . . , y
∗
n].

A. TYPICAL GPR MODEL
Gaussian Process (GP) is a collection of random variables,
any finite number of which have a joint Gaussian distribu-
tion, introducing a distribution over functions [32]. It is pre-
cisely defined by the mean function and covariance function,
expressed as follow:

f (x) ∼ GP(m (x) , k
(
x, x ′

)
) (2)

where m (x) = E (f (x)) and k
(
x, x ′

)
= E[(f (x)− m (x))(

f
(
x ′
)
− m

(
x ′
))
]. In GP, the mean function m (x) encodes

the central tendency and is always set to be zero. And the
covariance function k

(
x, x ′

)
, also called the kernel function,

describes the information about the shape and structure which
we expect the function to have.

Based on the GP theory, the typical GPR model is always
assumed that the relationship between inputs and outputs has
the following mathematical form:

yi = f (xi)+ ε (3)
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FIGURE 2. Schematic diagram of the hot rolling process.

FIGURE 3. Fractal dimension visualization diagrams of different attributes. (a) Entry profile (µm), Rolling force (kN) and Bending force (kN). (b) Strip
width(m), Entrance temperature (◦C) and Cooling water flow of rolling mill (%). (c) Entrance thickness(mm), Exit thickness(mm) and Exit
temperature (◦C).

where the noise ε added to the f (x) is regarded to
follow an independent, identically Gaussian distribution,
with zero mean and variance σ 2

n . Suppose that F =

[f (x1) , f (x2) , . . . , f (xn)]T performs under the framework
of GP, that is:

P (F |X) ∼ N (0,K ) (4)

where K is the covariance matrix and Kij = k(xi, xj) accord-
ing to GP theory [14]. The element Kij is the covariance
between values of the latent functions f (xi) and f (xj), which
encodes about the prior knowledge of the nonlinear relation
between them. The distribution of Y conditioned on F and X
can be given as follow:

P (Y |F,X) = N (f , σ 2
n I ) (5)
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where I is the N × N identity matrix. The marginal distribu-
tion of Y is described in the following form:

P (Y |X) =
∫
P (Y |F,X)P (F |X) df = N (0,K + σ 2

n I ) (6)

GPR is used to predict the distribution of the observed func-
tion values f ∗ at the test inputs X∗. The joint distribution over
Y and f ∗ can be written as follow:[

Y
f ∗

]
∼ N (0,

[
K (X ,X)+ σ 2

n I K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

]
) (7)

By using the standard rules of typical GP, the prediction
distribution of the observed function values is:

P
(
f ∗|X ,Y ,X∗

)
∼ N (m, σ 2

s ) (8)

where m = K (X∗,X)
[
K (X ,X)+ σ 2

n I
]−1

y, σ 2
s =

K (X∗,X∗) − K (X∗,X)
[
K (X ,X)+ σ 2

n I
]−1

K (X ,X∗).
Besides an expected prediction value (mean value) of the
latent function f ∗, the predicted output also includes a mea-
surement of the uncertainty level according to the calculated
variance.

B. ESTABLISHMENT OF THE WEIGHT-GPR MODEL
Tomake GPRmodel learn the potential correlation and inher-
ent distribution of the dataset as much as possible, all of
detected outliers were reserved instead of removing. How-
ever, the side effects, such as the model misspecification,
biased parameter establishment and incorrect results, caused
by outliers cannot be neglected. Therefore, each data sample
including the norm ones is assigned with a specifically calcu-
lated weight value in [0], [1]. And in proposed Weight-GPR
model, it is assumed that the relationship between inputs and
outputs has a distinct mathematical form which differs from
that of the typical GPR model. It has the following form:

wiyi = wif (xi)+ ε (9)

f (x) = ∅ (x)T β (10)

where ∅(x) stands for the nonlinear function which maps
the D-dimensional input vector x into an M dimensional
feature space, β is a vector of weights (parameters) of the
nonlinear model and the noise ε also follows an independent
distributed Gaussian distribution: ε ∼ N (0, σ 2

n ). Aggregate
all the weight values into a matrix �, which is n-diagonal.

� =

 w1 · · · 0
...

. . .
...

0 · · · wn

 (11)

Based on the new proposed mathematical form and the GP
theory, the establishment of theWeight-GPRmodel is derived
and presented step by step in the following. Use the inference
in Bayesian linear model for reference to predict the function
values f ∗ [12], the conditional distribution can be presented

by

f ∗|x∗,X ,Y ∼ N (
1
σ 2
n
∅
(
x∗
)T A−1∅ (x)�2Y ,

∅
(
x∗
)T A−1∅ (x∗)) (12)

where A = σ−2n ∅ (x)�
2
∅ (x)T +

∑
−1
p .

Nonetheless, according to the equation (12), it can be found
that if the size of matrix A is too large, it may cause great
calculation complexity when the matrix is being inverted.
Therefore, we try to rewrite the equation in the followingway:

f ∗|x∗,X ,Y ∼ N (∅
(
x∗
)T ∑

p

(
�2K + σ 2I

)−1
y,∅

(
x∗
)T

×

∑
p
∅
(
x∗
)
− ∅

(
x∗
)T

×

∑
p
∅ (x)

(
�2K + σ 2I

)−1
∅ (x)T ∅

(
x∗
)
)

(13)

where by using the kernel method, we can define

K = ∅ (x)T
∑

p
∅(x) (14)

Consequently, the following formula is obtained:

1
σ 2
n
∅(x)(�2K + σ 2

n I ) =
1
σ 2
n
∅(x)(�2

∅ (x)T∑
p
∅ (x)+ σ 2

n I ) = A
∑

p
∅ (x) (15)

Now multiplying by A−1 from left and
(
�2K + σ 2

n I
)−1

from
the right meanwhile, it can get:

1
σ 2
n
∅ (x)A−1 =

(
�2K + σ 2

n I
)−1∑

p
∅ (x) (16)

Finally, through the matrix inversion lemma we can sim-
plify the mean and variance of posterior distribution of the
predicted point respectively as it shows below. the mean
function:

1
σ 2
n
∅
(
x∗
)T A−1∅ (x)�2Y = K

(
X∗,X

)
B−1Y (17)

the variance function:

∅
(
x∗
)T A−1∅ (x∗) = K

(
X∗,X∗

)
−K

(
X∗,X

)
B−1K (X ,X∗) (18)

where B = K (X ,X)+�−2σ 2
n I

Above process is implemented in the view of the weight
space, while there exists an alternative and even simpler way
of obtaining the identical results by deriving the inference
directly in the view of the function space.

The new proposed mathematical form wiyi = wixi+ ε can
be transformed into another form:

yi = xi +
ε

wi
(19)

Based on this transformed formula, we can obtain the
condition distribution and marginal distribution respectively:

P (Y |F,X) = N (F, �−2σ
2
nI ) (20)
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P (Y |X) =
∫
P (Y |F,X)P (F |X) df = N (0,K + σ 2

n I )

(21)

Consequently, it is inferred that the joint distribution over Y
and f ∗ can be presented as:[

Y
f ∗

]
∼ N (0,

[
K (X ,X)+�−2σ

2
nI K (X ,X∗)

K (X∗,X ) K (X∗,X∗)

]
(22)

Using the standard rules for typical Gaussians process,
the prediction distribution of the function values is:

P
(
f ∗|X , y,X∗

)
∼ N (m, σ 2

s ) (23)

where m = K (X∗,X)B−1y and σ 2
s = K (X∗,X∗) −

K (X∗,X)B−1K (X ,X∗).

C. COVARIANCE FUNCTION AND
HYPERPARAMETER OPTIMIZATION
Despite GPR-based model is powerful due to its own advan-
tages such as its nonparametric and flexibility, it is the
specific kernel function that matters most in patterns and
capacities of generalization [33]. Consequently, capturing a
proper kernel function is key to achieve better interpretability
and further extrapolation [34], [35].

In this article, instead of the traditionally used kernel func-
tion, the squared exponential covariance function, we adopt
the rational quadratic function with automatic relevance
determination distance measure. Compared with traditional
covariance functions, it proves that rational quadratic func-
tions are equal to the adding some various kinds of square
exponential covariance functions with different length scale l.
Thus, according to the theory, rational quadratic covariance
function can fit the data smoothly across different length
scales [36], which is defined below:

k
(
x, x ′

)
= σ 2

f

(
1+

1
2α

(
x − x ′

)T M (
x − x ′

))−α
(24)

where M = diag (l)−2 , l = [l1, l2, . . . , lD]T . With
this explicit selected covariance function, the Weight-
GPR model owns the hyperparameters including θ =

(lnl1, lnl2, . . . , lnlD, lnσf , lnα, lnσn). Hyperparameters opti-
mization can be achieved by maximizing the log-marginal
likelihood of θ . Given that y|X ∼ N (0,K + σ 2

n I ), the log-
marginal likelihood is expressed as:

logP (y|X , θ) = −
1
2
yTB−1y−

1
2
logB−

n
2
log2π (25)

and conjugate gradients method is applied to obtain the best
hyperparameters.

IV. CALCULATE AND ASSIGN THE WEIGHT VALUES
A. OUTLIER DETECTION FOR HIGH-DIMENSIONAL DATA
Outlier detection can be mainly grouped into five categories:
distribution-based, depth-based, distance-based, clustering-
based and density-based outlier detection [28]. Among them,
the outlier detection based on distribution, depth or distance

adopts the overall criteria, which is not accurate for some
special dataset [26]. Moreover, the deviation between differ-
ent points is large enough to be considered, so the outlier
detection algorithm based on density performs better than
others [37]. Therefore, in this article, one of the most preva-
lent density-based LOFmethod was adopt, which is proposed
by Breunig et al. [38] However, when the traditional LOF
algorithm is applied in high-dimensional data, the negative
impact caused by the problem ‘‘curse of dimensionality’’ in
Euclidean space need to be considered [29]. And it means
that the discrimination between the nearest and farthest neigh-
bours is becoming weaker and weaker with the dimension
increasing, which make the outlier detection fail to perform
well as expected. To avoid the bad performance caused by
the sparse high-dimensional data, the feature-weighting tech-
nique is introduced and applied in the Euclidean space of the
LOF algorithm. Traditionally, when calculating the Euclidean
distance, all data features, also called attributes, get the same
treatment. The calculation formula is presented:

d
(
xp, xq

)
=

√∑D

i

(
x ip − x iq

)2
(26)

However, in a real dataset there is always the possibility that
different features may have different degrees of relevance,
which should be taken into account through the feature-
weighting method [37]. In this article, feature weights are
obtained based on the Spearman correlation, which is a
kind of typical nonlinear correlation measurement methods
to measure the monotonic relationship between data. The
formula is shown as follow:

d
(
xp, xq

)
=

√∑D

i
ρi

(
x ip − x iq

)2
(27)

ρi = 1− (6
∑ d2i

n
(
n2 − 1

) ) (28)

where ρi is the feature weights, di is the difference between
ranks of two data and n stands for the number of data points.

B. IMPROVED LOF ALGORITHM
In this section, after applying the feature-weighting technique
in the Euclidean space of LOF algorithm, some necessary
steps were summarized in order to explain the principle of
the proposed improved LOF algorithm.
Step 1:Measure the similarity of points
The Euclidean distance value improved by the feature

weighting technique is used to measure the similarity of the
points, and the expression is as follow:

d (p, o) =

√∑D

i
ρi
(
pi − oi

)2 (29)

where p and o stand for two different samples in the training
inputs X .
Step 2: Calculate the k-distance of points
In this part, dk (p) denotes the k-distance of point p, and if

it meets such two rules below:
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In the set X , there exists at least k samples o′ ∈ X/{p}, and
d
(
p, o′

)
≤ d(p, o)

In the set X , no more than (k-1) samples o′ ∈ X/{p}, and
d
(
p, o′

)
< d(p, o) then it holds that

dk (p) = d(p, o) (30)

where k ∈ N+ is the number of neighbor observations of the
observed point p
Step 3: Find the k-distance neighborhood of observed

points
Nk (p) denotes the k-distance neighborhood of observation

p, which represents the specific points within k-distance. And
these points are grouped into a new set Q.
Then the following formula is given:

Nk (p) = {Q ∈ X/{p}|d (p,Q) ≤ dk (p)} (31)

Step 4: Calculate reach-distance of observed points
With respect to point o, the reach-distance of observed

point p is denoted as reach__distk (p, o), and is calculated by:

reach__distk (p, o) = max(d (p, o) , dk (p)) (32)

Step 5: Calculate local reachability density of observed
points

The local reachability density of observed point p is
denoted as lrdk (p), given by:

lrdk (p) =
k∑

o∈Nk (p) reach__distk (p, o))
(33)

Step 6: Calculate LOF values of observed points
The LOF of observed point p is given by:

LOFk (p) =
1
k

∑
o∈Nk (p)

lrdk (o)
lrdk (p)

(34)

It can be obviously observed that the LOF values of the
observed points are the ratio of the average local reachability
density of neighborhoods to its local reachability density. And
it is expected that, for the normal sample, the average local
reachability density of neighborhoods is close to the local
reachability density of itself, which means the corresponding
LOF value approaches to 1. In contrast, if the observed point
is an outlier, the LOF value is greater than 1, and that the
higher outlier level is, the higher LOF value is, which means
the LOF value can represent the outlier level. Moreover, the
k value is used to adjust the number of the observed data
samples.Moreover, we improved the performance of the LOF
algorithm by adjusting the k value properly.

C. THE WEIGHTS OF WEIGHT-GPR MODEL
Theoretically, according to the principle of Weight-GPR
model, the higher LOF value of the observed point is,
the lower weight value is assigned. As for the normal point,
the weight value is equal to 1. Ideally, only when the LOF
value is very high, such as +∞ in an extreme case, can the
assigned weigh value be set to 0. Therefore, a mathematical
transforming formula between LOF values and weight values
is constructed after considering the real distribution of LOF

FIGURE 4. Weight values distribution based on LOF values.

TABLE 1. The detail information about the LOF values of the training data.

values of our experimental dataset. And finally, we experien-
tially establish a relationship as follows:

wi =
0.6

1− LOFmax
× LOF i +

0.4− LOFmax
1− LOFmax

(35)

where the weight value of normal data is set as 1 and that
of the particular data with the highest LOF value is set as
0.4. In addition, before trainingWeight-GPR model, the LOF
values of the corresponding training data should be calculated
first. The detailed distribution of their LOF values can be
intuitively observed in figure 4 and table 1. To sum up,
the flow chart of the strip crown prediction process is shown
in figure 5.

V. EXPERIMENT RESULTS AND CASE ANALYSIS
A. PREDICTION PERFORMANCE EVALUATION
Four criteria are introduced to evaluate the performance
of the prediction model. They are root mean square error
(RMSE), mean absolute error (MAE), mean absolute percent-
age (MAPE) and coefficient of determination (R2), which are
defined respectively as follows:

RMSE =

√∑N
i=1

(
yi − y∗i

)2
N

(36)

MAE =
1
N

N∑
i=1

|yi − y∗i | (37)

MAPE =
1
N

N∑
i=1

∣∣∣∣yi − y∗i
yi

∣∣∣∣× 100% (38)

ρi = 1− (6
∑ d2i

n
(
n2 − 1

) ) (39)
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FIGURE 5. The flow chart of the strip crown model prediction process.

where yi and y∗i are themeasured values and prediction values
respectively, N is the total number of predicted data.

The GPR-based models can also provide more information
about the possibility and changes in the future due to it
can measure the stability of models [44], [45]. The stability
of GPR-based models is evaluated by the mean prediction
interval width (MPIW), as follows:

MPIW =
1
n

n∑
i=1

(U (yi)−L (yi)) (40)

where U (yi) and L (yi) are the upper bound and lower bound
of the predicted value, and the confidence of error interval is
set to 95%.

B. EFFECTIVENESS OF THE IMPROVED LOF ALGORITHM
In this section, the effectiveness of the improved LOF algo-
rithm was verified by comparing with the traditional LOF
algorithm. After the measurement data being processed with
z-score normalization, feature weights of the nine differ-
ent attributes based on Spearman correlations are measured
respectively. The results are shown in detail in figure 6. It can
be observed that different attributes have different degrees of
relevance of the target output. Take the Entry profile (µm)
for example, its calculated feature weighting value is 0.955,
which proves the greatest impact on the target output. Then
three most important attributes are specifically selected and
their space distribution scatter plots are given according to
the improved LOF and traditional LOF, respectively, and the
outlier degree is represented by the color scale, are shown
in figure 7. The samples pointed by the red arrows are part

of the identifiable outliers with high outlier level and should
be assigned with rather lower weight values. In fact, as it
actually shows, for the specific points, the weight values
assigned by the improved LOF method are much lower than
the weights assigned by the traditional LOF method, which
can be found through the color scale. As for the black arrows,
they are specifically point out to the circled regions where
the samples that are supposed to be outliers in the view of
the space distribution. However, they are not identified and
detected by the traditional LOF method partly due to ‘‘curse
of dimensionality’’ problem in Euclidean space. Therefore,
it is obviously that the proposed LOF algorithm is not nega-
tively affected by the ‘‘curse of dimensionality’’ problem in
Euclidean space, and gives an effective outlier detection for
our dataset.

Further, 20 particular samples are carefully selected in the
regions pointed by the six arrows in figure 7. Since the weight
values of these samples are much lower than others, they are
grouped into a new testing dataset. After using the training
dataset mentioned in section 2.2 to establish two different
Weight-GPR models, which are based on the improved LOF
and traditional LOF methods respectively, we try to use these
two models to predict the corresponding target values of this
new testing dataset and evaluate the prediction performance.
The results are presented in table 2. And considering the
small size of this new testing dataset, we only choose RMSE,
MAPE, MAE as evaluation standards. The results in table 2
show it is more difficult to predict for the dataset with a large
number of outlier values. However, the prediction perfor-
mance of the Weight-GPR based on improved LOF is better
than that of Weight-GPR based on traditional LOF.
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FIGURE 6. Feature weights of the nine different attributes with the Exit profile (µm).

FIGURE 7. Outlier detection for high correlated attributes. (a) Traditional LOF method. (b) Improved LOF method.

To further highlight the effectiveness of the improved LOF
algorithm, the two established Weight-GPR models above
are applied to predict the original testing dataset (159 data
samples). The prediction results are presented in figure 8.
It can confirm that although the twomodels are in good agree-
ment with the true data, the Weight-GPR based on improved
LOF performs better in most outlier samples, as indicated by
the arrow. And the results of evaluation criteria are shown
in table 3. The results show that Weight-GPR based on the
improved LOF shows better performance with the lower R2

and MPIW, and the higher RMSE, MAE and MAPE (%).
Comparing table 2 and table 3, it is found that Weight-GPR
based on improved LOF has better prediction performance
than Weight-GPR based on traditional LOF, both for the
dataset with more outlier values and for the dataset with less
outlier values.

C. COMPARISON CASE AND ANALYSIS
Using the same training data, the Weight-GPR model
based on the improved LOF method, typical GPR (GPML

toolbox), ANN (MATLABneural network toolbox) and SVM
(LIBSVM toolbox) are used for crown prediction. Addition-
ally, the optimal parameters of these models are determined
by ten-fold cross-validation. Mean Squared Error cost func-
tion is applied in ANN and SVM models. Also, the SVM
model utilizes the popular radial basis kernel function. And
its optimal parameters are obtained by the grid-search. For the
ANN model with feed forward-backpropagation structure,
the sigmoid activation function is used in a single hidden
layer, and the weights and biases are updated according to the
Levenberg-Marquardt optimization algorithm. After trying
numbers ranging from 5 to 20, the number of hidden nodes
is determined to be 15. In the case of the two GPR-based
models, their hyperparameters are optimized by the gradient
decent optimization algorithm. And it should be mentioned
that in this optimization method, the Polack-Ribiere flavour
of conjugate gradients is used to compute search directions,
and a line search using quadratic and cubic polynomial
approximations and the Wolfe-Powell stopping criteria is
used together with the slope ratio method for guessing initial
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TABLE 2. Prediction performance evaluations of Weight-GPR models based on improved and traditional LOF methods for the 20 particular samples with
high outlier level.

FIGURE 8. Prediction results of Weight-GPR models based on improved and traditional LOF for the testing dataset.

TABLE 3. Prediction performance evaluations of Weight-GPR models based on improved and traditional LOF methods for the testing dataset.

FIGURE 9. Prediction results comparison of different models.

step sizes [41], [42]. Additionally, a bunch of checks aremade
to make sure that exploration is taking place and that extrap-
olation will not be unboundedly large, along with applying
Cholesky factorization to reduce the calculating complexity.
As regards the selection of k value used in improved LOF
method, having taken into the quantity of the training data,
the k value ranging was adjusted from 25 to 35 continuously
according to the performance of Weight-GPR model and
chose 30 finally.

Figure 9 compares the strip crown prediction results of the
four different models on the testing dataset. It shows that all
the models can capture and predict the tendency of the true
values, but the prediction values of Weight-GPR model are
closer to the true values than others. The detailed prediction
performance evaluation results are presented in table 4 and
figure 10. Compared with the other three models, the pro-
posed Weight-GPR model has the higher R2 and the lower
MAPE, RMSE and MAE, which means that the proposed
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TABLE 4. Prediction performance evaluations of different models for the testing dataset.

FIGURE 10. Evaluation histogram comparison of different models.

model can performmore accurate in the prediction of the strip
crown. Moreover, in the view of MPIW value, it is lower than
the typical GPR model, which indicates that the stability of
the proposed model is better than that of typical GPR.

VI. CONCLUSION
In this article, GPRmodel is applied to strip crown prediction
in order to quantitatively evaluate the prediction error and sta-
bility. Considering the existence of outlier values in the ture
data of the factory, this article proposes a novel Weight-GPR
based on improved LOF prediction model by combining
feature-weighting technology with LOF algorithm. It also
can resolve ‘‘curse of dimensionality’’ problem in Euclidean
space caused by the high-dimensional industrial data. The
proposed model not only retains the effective information of
outlier values, but also avoids the negative influence brought
by outlier values. Compared with Weight-GPR based on the
traditional LOF, the proposed model shows the better predic-
tion performance and stability. The prediction experiments
based on the real world production line data show that the
proposed model can be successfully applied to the prediction
of the strip crown in hot rolling process. Also, the perfor-
mance of the proposed model is compared with typical GPR,
ANN and SVM. The results show that the proposedmodel has
the higher R2 and the lower MAPE, RMSE and MAE, which
means that the proposed model can perform more accurate
in the prediction of the strip crown. Moreover, in the view of
MPIW value, it is lower than the typical GPR model, which
indicates that the stability of the proposedmodel is better than
that of typical GPR.

Although the GPR proposed in this article has paid atten-
tion to the quantification of prediction errors, it is still based
on point prediction. If the training data is sparse, the target

is multi-valued or affected by probability events, then the
point prediction is not so reliable and accurate. Recent studies
have proved that interval prediction is more reliable and infor-
mative than point prediction. Therefore, the application of
interval prediction in rolling field is a topic ongoing research.
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