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ABSTRACT This research proposes a Multi-swarm and Discrete Firefly Algorithm (MDFA) to deal with
the component sequencing problem (CSP) and feeder assignment problem (FAP) simultaneously for a multi-
head gantry surface-mounted technology (SMT) machine. The MDFA is an improved version of standard
Firefly Algorithm (FA) which is a kind of nature-inspired and population-based metaheuristic. To our best
knowledge, the FA has never been used to deal with the CSP and FAP simultaneously for the multi-head
gantry SMTmachine. Empowered by novel features such as multiple swarms as well as adaptive and discrete
moving step, in addition to using an exploration-to-exploitation strategy, the MDFA is found capable of
searching a solution space effectively. To investigate its effectiveness, the MDFA has been compared to the
standard FA, particle swarm optimization (PSO), and genetic algorithm (GA). The experimental results show
that the MDFA outperforms the others in terms of assembly time.

INDEX TERMS Firefly algorithm, print circuit board assembly, multi-head gantry SMT machine.

I. INTRODUCTION
Printed Circuit Board Assembly (PCBA) is a process con-
necting components such as integrated circuit, capacitor,
resistor with a bare PCB. It is an essential operation for
producing final electronic products.

The PCBA depends on two kinds of operations, insertion
and onsertion, which can be conducted by operator man-
ually or machine automatically. The insertion is an opera-
tion connecting a component with a PCB through pin holes.
In contrast, the onseration is an operation which can attach
a component on a PCB directly. The latter appears to be
more effective. Usually, a small component uses the onsertion
operation performed by machine automatically and some
bigger or special components employ the insertion operation
performed by operator manually. Due to the large amount
of components to be mounted on PCBs, the PCBA tends
to become the bottleneck in an assembly line. Expediting
this process is essential and automatic machines can play an
essential role.

Surface-mounted technology (SMT) machines are capa-
ble of onsertion operation. They have been widely used in
assembly firms to expedite the PCBA [1]. How to best utilize
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these machines has become an important issue. Improving
the assembly time of one PCB for a SMT machine is crit-
ical as a significant benefit can be obtained from a large
batch. There are different kinds of SMT machines currently
used in industry, such as sequential pick-and-place, multi-
head, dual-delivery, turret type, multi-station, and concurrent
pick-and-place machines [2], [3]. In this research, the kind
of multi-head gantry SMT machine (multi-head and sequen-
tial pick-and-place) is focused as they have been widely
used in industry [4], [5]. However, optimizing PCBA pro-
ductivity is a very complicated task due to involving with
many problems, such as PCB grouping, PCB-to-machine
assignment, component-to-machine assignment, component-
to-feeder assignment (FAP), nozzle-to-assembly head assign-
ment (NAP), and component sequencing problem (CSP) [6].
As these problems are impossible to be simultaneously
included in one research, this research only takes the CSP
and FAP into consideration.

Various approaches have been proposed for dealing with
PCBA problems. Integer programming (IP) and Mixed Inte-
ger Linear Programming (MILP) are mathematical models
which have been often used to find the optimal (exact)
solution to a PCBA problem. However, these mathematical
models tend to become computationally intractable when the
problem is of big size due to NP-complete [6]–[9]. This limit
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the applicability of mathematical models. Other alternative
methods are thus required. As an alternative, simple heuristics
are found popular in practice due to the advantages: ease of
use and computational efficiency. However, simple heuristics
are found hard in terms of finding a high-quality solution
also owning to their simplicity. Besides the simple heuristics,
metaheuristics have been increasingly used to dealing with
relevant PCBA problems. This kind of advanced metaheuris-
tics have the capability of driving solutions toward optimality
iteratively. While improving the simplicity problem faced by
simple heuristics, metaheuristics can avoid computationally
intractability problem faced by exact approaches by control-
ling their parameters. Thus, metaheuristics are focused in this
research.

Based on incomplete or imperfect information, meta-
heuristics can find, generate or select a heuristic to find
the optimal/near-optimal solution [10]. Metaheuristics can
basically be classified into the four categories: local search-
based, evolution-based, swarm intelligence (SI)-based and
hybrid. The local search-based metaheuristics finds a better
solution by exploring neighborhoods. The evolution-based
metaheuristics evolves solutions toward optimality through
an evolutionary process. The SI-based metaheuristics depend
on a population of entities and their intelligence to find the
best solution. This kind of metaheuristics is regarded as one
discipline of artificial intelligence which has attracted much
attention in recent research. Metaheuristics such as Genetic
Algorithm (GA), Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), Artificial Bee Colony Algo-
rithm (ABC), Bacterial ForagingOptimization (BFO), Firefly
Algorithm (FA), Fish SwarmOptimization (FWO), and Shuf-
fled Frog-Leaping Algorithm (SFLA), Cuckoo Search Algo-
rithm (CS) are examples of this kind of metaheuristic [11].
A hybrid approach hybridizes different approaches and takes
advantages from these components.

Evolutionary-based metaheuristics have been used to deal
with the PCBA problems. For examples, the [3], [12], [13]
used SAwhereas the [6], [8], [14]–[16] employed GA/Hybrid
GA. The GAs have been used extensively in past
research. However, some novel evolutionary and SI-based
metaheuristics have been increasingly used to solve PCBA
problems in recent years. For instances, for the multi-head
gantry machine, ABC has been used to deal with the Auto-
matic Nozzle Change (ANC), Nozzle Assignment Prob-
lem (NAP), and Component Sequencing Problem (CSP) [17];
SFLA has been used to deal with the CSP [18]; APSO
(adaptive PSO) has been used to deal with the CSP [19].
For the chip shooter machine, PSO2 (an improved PSO) has
been used to deal with the FAP and CSP simultaneously [1];
Improved SFLA has been used to deal with the FAP and CSP
[20]. However, to our best knowledge, there is still a lack of
using FA to deal with the PCBA problems for a multi-head
gantry SMT machine.

Proposed by Yang [21], FA is a SI-based metaheuristic
which mimics the brightness and attractiveness characteris-
tics of fireflies. The objective is to find the optimal solution in

a solution space. The FA compares each pair of fireflies with
the brighter firefly attracting the less bright one. The position
of a firefly corresponds to a solution in the solution space. The
FA has been widely for with various applications, including
optimization of loading pattern for nuclear reactor core [22],
capacitated facility location problem [23], dynamic multidi-
mensional knapsack problems [24, job shop scheduling prob-
lem [25], mechanical design optimization problems [26] big
data optimization [27], project scheduling [28], production-
distribution network design [29], capacitated vehicle routing
problem [30], computer-aided process planning [31], stock
market prediction [32], and feature selection [33], [34],
etc. The [35] provides details of FA applications. However,
the conventional FA tends to fall into the local optima [34],
which highlights the necessity of a further improvement.
In addition, in terms of application, it is found that the FA
has never been employed for dealing with PCBA problems,
which provides a room for such research. In this research,
an improved FA is proposed with the aim to enhance the
searching capability for the conventional FA and apply the
improve FA to deal with two PCBA problems for SMT
machines.

The main contents and contributions of this work are
summarized as follows.

1) An improved FA, termed as Multi-swarm and Discrete
Firefly Algorithm (MDFA), is proposed for dealing
with the CSP and FAP simultaneously for a multi-head
gantry SMT machine. The MDFA includes some novel
features such as multi-swarm, adaptive step, and the
use of an exploration-to-exploitation strategy. The
multi-swarm helps diversify fireflies. The adaptive
step enables a firefly to approach an elite effectively.
The exploration-to-exploitation strategy gives higher
momentum for fireflies to explore the solution space
at the earlier iterations. But, at latter iterations higher
momentum is given to fireflies to exploit fewer elites.
These features enable fireflies to search a solution
space effectively. These novel features differ theMDFA
from the standard FA.

2) The MDFA has been successfully applied to a new
application area, i.e., to deal with the CSP and FAP
simultaneously for a multi-head gantry SMT machine.
To our best knowledge, FA has never been used for
this purpose. To investigate its effectiveness, theMDFA
have been compared with other metaheuristics, includ-
ing standard FA, PSO, and GA. The results showed
that the MDFA outperforms the others. In addition,
the MDFA has been compared to a lower bound of
a MILP. The MILP is specific for the CSP which
can be regarded as a traveling sales problem. The
results show that the MDFA can find the shortest
path (assembly sequence of components) under some
small-sized experimental instances, which demon-
strates good capability of the MDFA.

The rest of this paper is organized as follows. Section II
includes a literature review on the multi-head gantry SMT
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machine, relevant studies, approaches. Section III includes
problems definition and mathematical model formulation.
Section IV develops the MDFA. Section V shows the exper-
imental results and discussion. Finally, Section VI has a
conclusion and future research directions.

II. LITERATURE REVIEW
A. THE MULTI-HEAD GANTRY SMT MACHINE
Figure 1(a) shows a physical multi-head gantry SMT
machine. The Figure 1(b) shows a schematic drawing of its
top view. Typically, a gantry SMT machine includes a feeder
carrier for accommodating feeders, a table for fixing the
PCB, a gantry for moving robot arm in the horizontal and
vertical directions. The robot arm is equipped with a number
of assembly heads for picking up and placing components
through grippers or nozzles. The components are stored in
different feeder positions or on different tray positions. The
package and size of a component can determine the use of
feeder or tray. To start assembling, assembly heads have to
pick up components firstly. The movement of these assembly
to pick up components from the feeder or tray forms a fetch
cycle. These assembly head picks up components one by one
according to planned sequence. After this, the gantry moves
the robot arm back to the PCB where the assembly heads
start placing components on the PCB. When one placement
cycle is completed, the robot arm starts the next fetch cycle
of components and then back to the PCB for placement.
Above procedure repeats until all components for one PCB
are completed.

Typically, a multi-head gantry SMT machine supports
different kinds of feeders such as stick feeder, tape feeder
and tray carrier to ensure component availability [2]. The
stick feeders are used for ‘‘sticks’’ (or ‘‘tubes’’) while the tape
feeders are used for reels. Each feeder contains a specific type
of component. The tray is used to carry some components not
kept in stick, tube or tape and components of small pitch (high
precision) are often carried by tray. The physical dimensions
of the sticks and reels can determine the type of feeder and
the machine used.

The total assembly time required for one PCB are affected
by the assembly sequence of components and the storage
positions of these components, corresponding to the CSP and
FAP, respectively. To achieve a good result, it needs to deal
with the two problems carefully.

B. OPERATIONAL FLOW OF MULTI-HEAD GANTRY SMT
MACHINE
Amulti-head gantry SMT machine appears to be more effec-
tive than a single-head gantry SMT machine as multiple
assembly heads can grasp more components in one fetch
cycle. The components within a same fetch cycle is defined as
a ‘‘group.’’ The formation of component groups become crit-
ical as it can affect the total assembly time for the completion
of one PCB. For example, if the distances of components of
a same group are far from each other, it will definitely lead
to longer assembly time. In addition, the storage positions

FIGURE 1. (a) A real multi-head gantry SMT machine. (b) A schematic
drawing of top view of multi-head gantry SMT machine.

of the components to be fetched are another factor affecting
the assembly time. Obviously, the optimization of the PCBA
problem indeed is very complicated.

Fig. 2 shows the operational flow for a multi-head gantry
SMT machine (with H assembly heads) to assemble one
PCB. Relevant steps are detailed as follows.

1) Given H and N , where H is the total number of
assembly heads on the robot arm and N is the number
of components to be assembled for one PCB

2) Set h = 1, where the h indicates the assembly head
No. Set k = 1, where k indicates the assembly order of
a component to be pick-up. Set c = 1, where c indicates
the current cycle No. of assembly.

3) Count the total assembly cycle C required for comple-
tion N components by using C = QUOT(N/H ) + 1,
the QUOT function derives the quotient of the division.
For example, C = QUOT(22/4)+ 1 = 6.

4) If (c ≤ C) then go to the step 5) else go to step 15)
5) If (h <= H ) go to step 6) else go to step 9)
6) The robot armmoves to the feeder slotm (1 < m < M )

containing the component j at the assembly order k
and pick one component j. The moving time is denoted
as T1.

7) The robot arm picks up the component j at the
assembly order k . The pick-up time is denoted
as T2.
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FIGURE 2. The operational flow a multi-head gantry SMT machine.

8) k = k + 1; h = h+ 1; go to step 5)
9) Set h = 1; set k = k − H ; go to step 10)

10) If (h <= H ) go to step 11) else go to step 13)
11) The robot arm moves to the PCB to the placement

position of the component j at the assembly order k .
The moving time is denoted as T3.

12) The robot arm places the component j at the assembly
order k . The placement time is denoted as T4.

13) k = k + 1; h = h+ 1; go to step 10)
14) If (k < N ) then go to step 4) else go to step 15)
15) Stop; the PCB is completed and moves to the next

station
The actual operational time required for a component j is

dependent on its assembly order and its storage positions in
either feeder or on tray. A mathematical model for dealing
with the FAP and CSP of the multi-head gantry SMTmachine
is formulated in Section III.B.

C. RELEVANT STUDIES
Fig.3 shows approaches for dealing with PCBA problems,
including mathematical model, heuristic, and metaheuristic.
Themathematical models are traditional approach for dealing
with the PCBA problems. The [7] uses a MILP model to
deal with PCBA problems, including component-to-machine
allocation problem and CSP. Two strategies were proposed.
One is C strategy and another is P strategy. The C strategy
aims to minimize the total number of changeovers whereas
the P strategy aims to minimize the assembly time. Real
company data were used to investigate the two strategies
and the results showed the applicability of the two proposed
strategies. The [8] developed MILPs to solve the NAP, FAP,
and CSP simultaneously for a multi-head SMT machine.
A two-stage procedure was proposed. A MILP is firstly used
to solve the NAP in the first stage. Then, in the second stage,
another MILP was used to find the solution to the FAP and
CSP simultaneously. The main objective was to minimum the
total assembly time. However, the proposed MILPs can only
deal with small-size problems due to NP-hard.

Heuristics have been used in some other PCBA studies.
The [4] proposed a heuristic to deal with the CSP and FAP.
With a grouping concept, the heuristic appears to take advan-
tage of the nature structure of a PCB. That study considered
physical constraints of PCB. Simulation experiments were
performed to validate the effectiveness of this heuristic. The
[36] used constructive heuristics to deal with the FAP and
CSP simultaneously. In that heuristic components of sim-
ilar speed and turret rotation speed tare grouped together.
Penalties were applied in cases of feeder carrier movements,
changes in turret rotation speed and changes in PCB table
speed. An initial solution to the FAP and CSP was first
derived, then a two-opt heuristic was used to find a better
solution. This heuristic can find a final solution that closes
to a lower bound. However, the required computational time
increases along with the problem size. The [37] formulated a
MILPmodel to deal with the FAP andCSP simultaneously for
a sequential pick-and-place machine. The MILP determines
an assembly sequence for components and their storage slots.
Some heuristics were also investigated for solving the two
problems. Heuristics such as nearest neighbor, nearest inser-
tion, furthest insertion, and random generation were used to
initialize an assembly sequence. On the other hand, heuristics
such as 2- opt, 3-opt, and Or-opt were used to improve
the initial assembly sequence. Simulation results showed the
heuristic approach was able to improve the current heuristic
used in a factory by 25%.

Metaheuristics have been increasingly used to deal with
PCBA problems. The [3] proposed an iterative approach to
deal with the CSP and FAP simultaneously for a pick-and-
place SMT machine with 4 assembly heads. The iterative
approach includes SA and heuristic. The CSP was treated
as sequence dependent traveling salesman problem while
the FAP was treated as the Quadratic Assignment Problem.
Having compared to the SA and ABC, the experimental
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FIGURE 3. Approaches available for solving PCBA problems.

results are in favor of the iterative approach. The [6]
employed a GA to determine the assembly time for PCBA.
The [13] proposed a hybrid genetic algorithm (HGA)
for solving the CSP and FAP simultaneously for a chip
shooter machine. The minimization of total assembly time
was focused. Different heuristics including nearest-neighbor
heuristic and 2-opt heuristic were used. The experimental
results showed that the HGA performed good in terms of
in terms of assembly time. The [15] proposed another HGA
for solving the CSP and FAP for a chip shooter machine.
In addition, different heuristics such as nearest neighbor
heuristic, 2-opt heuristic and an iterative swap procedure
were used. The authors concluded the HGA outperformed
the standard GA. The [19] optimized the CSP and FAP
simultaneously for a pick-and-place machine by using an
adaptive PSO. The objective was to minimize the traveling
time of assembly heads and change time of nozzles. The
adaptive PSO hybridizes PSOwith some heuristics for assem-
bly head assignment and reel grouping. The experimental
results showed the adaptive PSO outperformed GA. The
[14] also developed HGA to deal with the FAP and CSP
simultaneously. In that study, components were first into
‘‘key’’ or ‘‘free’’ type, with their relationships being stored in
a matrix. Then, the HGA was applied to solve the two prob-
lems. The HGA was found effective. The [18] proposed an
improved Shuffled Frog-leaping Algorithm (SFLA) to solve
the CSP for a gantry multi-head SMT machine. The SFLA
allows all frogs to take part in memetic evolution as well as
variation. The experiment results showed that the improved
SFLA outperforms SFLA and GA in terms of convergence
accuracy at a higher computational cost. The [1] proposed an
improved PSO to solve the FAP and CSP simultaneously for
a chip shooter machine. The PSO2 was found to outperform
PSO and two GAs.

New metaheuristics such as ABC, BFO, SFLA, and FWO
have been rarely used to deal with the PCBA problems,

especially in dealing with the CSP and FAP simultaneously
for a chip shooter machine. The [17] proposed a modified
ABC algorithm (MABCA) to optimize PCB production. The
objective was to maximize throughput and minimize total
assembly time. That study considered the automatic nozzle
changer (ANC) assignment problem, NAP, and CSP which
were solved by a three-phase procedure. First, a proportional
distribution method was used for the optimization of ANC
assignment. Then, the NAP was solved by taking factors
including component height, component thick, and compo-
nent shape restrictions into consideration. Finally, the CSP
was solved by using a 2-opt algorithm with constraints
including placement and predetermined nozzle assignment
taking into account. Experiments results showed good results
obtained from the MABCA in terms of assembly time. The
[20] proposed an improved SFLA (I-SFLA2) to deal with
the FAP and CSP simultaneously for a chip shooter. The
experiments showed that the I-SFLA2 outperformed the
PSO2 proposed in [1] as well as the improved SFLA proposed
in [18].

III. MATHEMATICAL MODEL
A. PROBLEM DEFINITIONS
The CSP and FAP of a multi-head gantry SMT machine are
defined as follows.
Definition 1 (Component Sequencing Problem (CSP)):

Given a set of components (j = 1 to N , where N is the total
number of components) and their placement locations on a
PCB, the CSP is a problem of finding a placement sequence
of components, with each component j being assigned with a
placement order k (k ∈ [1, . . . ,N ]).
Definition 2 (Feeder Assignment Problem (FAP)): Given

a set of feeder positions (M1 = [1, . . . ,m1], where m1 is the
total number of feeder positions) and a set of tray positions
(M2 = [1, . . . ,m2], where m2 is the total number of tray
positions on a multi-head gantry SMT machine, the FAP is a
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problem of assigning each type of component to a feeder slot
f (f ∈ M1) or a tray position p (p ∈ M2) to this machine.
Each feeder/tray position contains one type of component
only.
Definition 3 (Simultaneous CSP and FAP): Given a set of

components (j = 1 to N , where N is the total number
of components), the placement location of each component,
a set of feeder positions (M1) and a set of tray positions (M2)
of a multi-head gantry SMT machine, the simultaneous CSP
and FAP is a problem of determining a placement sequence
for these components. Each component is assigned with an
assembly order k (k ∈ [1, . . . ,N ]) and each component
is assigned with a feeder/tray position f (f ∈ M1 ∪ M2).
Each feeder/ tray position contains one type of component
only.

B. MATHEMATICAL MODEL FORMULATION
Referring to [1], [20], and [38] this section formulates
a mathematical model of simultaneous CSP and FAP for
a multi-head gantry SMT machine. To this end, relevant
assumptions and notations are made firstly.

1) ASSUMPTIONS
1) The type of each component is known before assembly.
2) Each component type is only assigned to one feeder and

vice versa.
3) The X–Y table moves at a constant speed in the x and

y direction.
4) The assembly starts from the original point (0,0).

2) NOTATIONS
a: INDICES
i,j a component number (1 ≤ i, j ≤ N )
f a feeder slot position number
t the component type of component j; t ∈ {1,M}
k an assembly order of a component (1 ≤ k ≤ N )

b: SETS
M The set of feeder numbers and tray position;

M = M1 ∪M2.
M1 the set of feeder numbers; M1 = {1, . . . ,m1}

where m1 is total number of feeder slots in the
feeder carrier

M2 the set of tray position numbers;
M2 = {1, . . . ,m2} where m2 is
total number of tray positions in the tray

c: PARAMETER
N total number of components to be mounted
M total number of component types, i.e., the

total number of feeder slots plus tray
positions available for the machine.

H total number of assembly heads
v the average moving speed of robot arm
tf The time for a robot arm moving to

the next feeder/tray position

d: OPERATION TIMES
T0j the average round trip time for robot arm

moving to feeder/tray and return
T1j The time for the robot arm to move from

the storage position of component i to the
storage position the component j (variable time).
The distance is denoted as D1(i, j).

T2j The time for an assembly head to pick up a
component (fixed time)

T3j The travel time for the robot arm to move
from the placement location of component i to
the placement position of component j
(variable time).
The distance is denoted as D3(i, j).

T4j The total time for an assembly head to
mount a component (fixed time).

T5j The additional average time switch between
M1 (feeder slots) and M2 (tray).

e: DECISION VARIABLES
Xij =1 if component j is assigned with the k

assembly order and component i is assigned with
assembly order k-1; =0, otherwise

Ytf =1 if component type t is assigned to
the feeder f ; =0, otherwise

Zij the number of components remains to assign
after leaving node i and before entering node j
in terms of network analysis.

Tj the assembly time of component j.

The entire placement process can be regarded as a series of
pick-and-place cycles. The time for the robot arm moving to
the feeder containing the component j at the assembly order
k (i.e. the T1j) is estimated by (1).

T1j =



T0+ D1 (i, j) · tf , if Mod (k + H ,H) = 1
D1 (i, j) · tf , if Mod (k + H ,H) 6= 1

and (i, j ∈ M1)
or (i, j ∈ M2)

T5+ 1 (i, j) · tf , if Mod (k + H ,H) 6= 1 and

(i ∈ M1 and j ∈ M2)
or (i ∈ M2 and j ∈ M1)

(1)

There are three cases for determining the T1j. In the first
case, the Mod is a function acquiring the remainder of a
division operation. If Mod (k + H ,H) = 1 it indicates that
the component j (at the assembly k) is the 1st component,
thus an average round trip time (T0) is added additionally.
For example, given H = 4 and k = 1 for the component
j, the Mod (k + H ,H) = Mod (1+ 4, 4) = 1 so that the
component j is identified as a first component. The D1(i, j)
is the distance between the feeder slots of component i and j,
which is estimated by (2).

D1 (i, j) = |p (i)− p (j)| (2)
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where p (i) and p (j) are feeder/tray positions of component i
and j, respectively. The p(0) is set to 0.
In the second case, the Mod (k + H ,H) 6= 1 which

indicates that the component j is not the 1st component in a
component fetch cycle and the condition, i, j ∈ M1 or i, j ∈
M2,means both components i and j are in either feeder or tray
zone. In the third case, the condition, (i ∈ M1 and
j ∈ M2) or (i ∈ M2 and j ∈ M1), means that component i
and and j are in different storage zones, thus an average switch
time (T5) is required additionally. The T3j is a variable time
estimated by (3).

T3j = D3 (i, j) /v (3)

As the robot arm of a gantry SMT placement machine
can move along X and Y direction simultaneously, we use
chebychev measurement to calculate the distance of any two
placement positions of components. Given Pi = (x1, y1),
Pj′ = (x2, y2) as two placement positions for components i
(at the assembly order k-1) and j (at the assembly order k),
respectively. The distance between the two components is
determined by (4).

D3 (i, j) =
√
(x1− x2)2 + (y1− y2)2 (4)

The total assembly time required for the component j is
determined by (5).

Tj = T0j + T1j + T2j + T3j + T4j + T5j (5)

The mathematical model for the problems is formulated as
follows.

Min Z =
∑N

j=1

∑N

k=1
TjXij (6)

s.t. Tj ≥ 0 ∀1 ≤ j ≤ N (7)∑N

i=1
Xij = 1 ∀1 ≤ j ≤ N (8)∑N

j=1
Xij = 1 ∀1 ≤ i ≤ N (9)∑TP

t=1
Ytf = 1 ∀1 ≤ f ≤ M (10)∑M

f=1
Ytf = 1 ∀1 ≤ t ≤ M (11)

Zij ≥ 0 ∀1 ≤ i, j ≤ N (12)

Zij ≤ (N − 1)Xij ∀1 ≤ i, j ≤ N (13)∑N

j=1
Zji =

∑N

j=1
Zji + 1 ∀1 ≤ i ≤ N (14)

Xij,Ytf , Zij ∈ {0, 1} ∀1 ≤ i, j, k ≤ N ;

∀1 ≤ t, f ≤ M (15)

Equation (6) is the objective function minimizing the total
assembly time for one PCB. Constraint (7) defines the con-
dition for the variable Tj. Constraints (8) and (9) relate to
the variables Xij. Constraint (8) assures that each component
is assigned with one order only. Constraint (9) ensures each
component is mounted once only. Constraint (10) and (11)
associate with the variable Ytf . Constraint (10) requires that
each feeder slot stores one type of component only. Con-
straint (11) stipulates that each component type is assigned

to exactly one feeder slot. Constraints (12), (13) and (14)
associate with the variable Zij which assigns sequence of
components through a network perspective. Inequality (12)
defines that unassigned number of components ≥ 0 when
leaving the node i and entering the node j. Inequality (13)
states that on leaving a node i it is sufficient to have not more
than N − 1 component to be assigned. Equation (14) is a
conservation constraint for node i. Constraint (15) stipulates
that Xij,Ytf , and Zij are binary variables.

IV. DEVELOPMENT OF THE MULTI-SWARM AND
DISCRETE FIREFLY ALGORITHM (MDFA)
A. STANDARD FA
Proposed by Yang [21], FA mimics the behavior of fireflies.
Each position of a firefly corresponds to a solution in the
solution space. Through signal radiation, a brighter firefly
can attract a less-bright one. The FA defines the three basic
features.
• Brightness
Equation (16) defines the brightness of a firefly, which is

a value depends on the distance between two fireflies and
the atmospheric absorption coefficient. Each firefly has a
brightness.

I (r) = I0e−γ r
2

(16)

where
I : is the intensity of the light source, γ is the

absorption coefficient.
r : is the distance between the two considered

fireflies
γ : is a given medium with a fixed light absorption

coefficient.
I0: is the intensity of the light source when r = 0.

• Attractiveness
Equation (17) is used to calculate the attractiveness of a

firefly.
β (r) = β0e−γ r

2
(17)

where
β0: is the attractiveness of the firefly when r = 0.
• The next position
For each pair of fireflies a less-bright firefly is attracted by

a brighter one and (18) is used to determine the next position
for an attracted one.

Xj (t+1)=Xj(t)+β0e−γ r
2 (
Xi(t)−Xj(t)

)
+αR(−0.5, 0.5)

(18)

where

α: is the mutation coefficient which is generally
a self-adaptive parameter decreasing through
iterations

R: is a normal randomized number between
(−0.5, 0.5).

In the right hand side of (18), the second term is due to
attraction and the third term is a randomness.
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TABLE 1. The pseudo code of the standard FA.

The pseudo code of the FA standard is shown in Table 1
[39].
• Multiple swarms scheme
Unlike the standard FA that contains all fireflies within

one single group, the MDFA separates fireflies into multiple
swarms so that a firefly can be attracted and affected more
elites. One is the best one of a same swarm and another us
the global one in this population. Equation (19) is used to
determine the number of swarms at the iteration t .

S(t) = R(
√
P+
√
P/2− t ·

√
P/T ) (19)

where R is a function rounding a real value to a nearest
integer. For example, R(5.8) = 6 and R(3.2) = 3.
• The use of exploration-to-exploitation strategy
The FA is found likely to face the problem of oscillatory

behavior when dealing with a combinatorial optimization
problem, which means that the FA can find the solution faster
in some cases but this is not true in other cases [35]. The
balance of exploration and exploitation during the search
process for FA is still an open issue [35].

To this issue, the MDFA uses an exploration-to-
exploitation strategy which is implemented by (19). This
formula determines the number of swarms at each iteration.
In fact, it decreases the number of swarms when increasing
the iteration. For example, given P = 100 (the total number
of fireflies) and T = 100 (the total number of iterations),
the number of swarms at the 1st iteration obtained from the (1)
is S(t = 1) = 14, but at the last iteration, t = 100, the derived
number of swarms is S(t = 100) = 2. This means that
fireflies are deployed to search 14 areas initially but finally
they are deployed to search 2 areas only. This also means that
at the 1st iteration fireflies have the maximum momentum
to explore the solution space but at the last iteration the
maximummomentum are used to exploit fewer elite fireflies.

At the half iteration, t = 50, the momentum for exploration
and exploitation is balance.
• Transformation from real values to discrete values
Using FA to deal with combinatorial optimization prob-

lems requires a mapping between the discrete variables (usu-
ally permutation of integer) in the problem space and the
continuous variables in the search space where the firefly
operators (like moving fireflies) act [35]. In this research,
the ROV technique is used to transform real values in the
continuous variables to discrete integers in the solution space.
• The development of next moving step for fireflies
The adaptation of FA parameters to changing environment

is expected to improve the solutions found quickly [35]. This
is also an open issue. To this issue, the MDFA uses adaptive
step to move fireflies.

Unlike the standard FA, the MDFA uses a different mov-
ing step for a firefly. Assume that Xi (t) = [Xi,k (t) ;
k = 1, . . . ,D] and Xj (t) = [Xj,k (t) ; k = 1, . . . ,D] are
two positions vectors of the fireflies i and j with the firefly i
attracting the firefly j, the adaptive moving step of the firefly
fly j is then defined by (20).

1Di,j (t) = Di,j (t)⊕AV j (t) , (20)

The Di,j (t) is termed as total distance vector and the
AV j (t) is termed as adaptive binary vector. The Dij (t) is
a vector indicating the total distance between the fireflies
i and j. It is determined by (21).

Di,j (t)= [Xi,k (t) ∼ Xj,k (t) ; k = 1, . . . ,D] (21)

where the operator ‘‘∼’’ works as (22).

Xi,k (t) ∼ Xj,k (t)

=

{
0, if Xi,k (t) = Xj,k (t)
Xi,k (t), if Xi,k (t) 6= Xj,k (t)

for the k-th element,

(22)

The AV j(t) is determined by Equation (23).

AV j,k (t) =

{
0, if R() ≥ R1i,j (t);
1, if R() < R1i,j (t);

(23)

the R() is a random number and the R1i,j(t) is a value
controlling the probability for the generation of binary
value 1. Both R( ) and R1i,j(t) are within the range [0,1]. The
R1i,j(t) is determined by (24).

R1i,j(t) =


1Di,j (t)− 2

D
, if 1Di,j (t) > 2;

0, if 1Di,j (t) ≤ 2;
(24)

The 1Di,j (t) is defined in (24). Finally, the operator ‘‘⊕’’
works as (25).

Di,j (t)⊕ AV j,k (t)

=

{
Di,j (t) , if AV j,k (t) = 1
0, if AV j,k (t) = 0

for the k-th element,

(25)

VOLUME 9, 2021 1649



H.-P. Hsu: PCBA Planning for Multi-Head Gantry SMT Machine Using MDFA

TABLE 2. The logic flow of the MDFA.

• The next position
To determine the next position of the particle j, (26)

is used.

Xj (t + 1) = Xj (t)�1Di,j (t), (26)

The operator ‘‘�’’ works with the following steps:
1) Take the first non-zero value out of the 1Di,j (t) and

replace the value at the same position in the vector
Xj (t) . Following this, the replaced value takes the
position of the non-zero value in the Xj (t).

2) Repeat above step until there is no non-zero value in
the 1Di,j (t).

3) Copy the current Xj (t) as the Xj (t + 1).

B. THE MAIN LOGIC FLOW OF MDFA
The main logic flow of MDFA is different from the FA’s
logic flow (Table 1). The logic flow of the MDFA is shown
in Table 2.

V. EXPERIMENTS
More experiments have been conducted to compare the
MDFA with FA, GA, PSO as well as a lower bound of
mathematical model (MILP) under different problem sizes
including 10 × 5 × 5, 20 × 5 × 5, 40 × 5 × 5, and
60× 5× 5.

TABLE 3. The parameter settings for different approaches.

A. PARAMETER SETTING
Parameter values involving with PCB, multi-head SMT
machine are set as follows. For the PCB, W = 40 cm (the
width) and L = 90 (the length) are used. For the multi-head
gantry SMT machine, T0 = 1, T2 = 0.2, T4 = 0.2, and
T5 = 2 (s); v = 5 cm/s H = 4, M1 = 5; M2 = 5; tf = 1
(s) (moving speed between feeder slots/tray positions) are
used.

Table 3 shows the parameter values setting for these com-
paring approaches. The N indicates the total number of con-
tainers; the P indicates the total number of particles; the n_ls
indicates the total number of local searches for particles;
T indicates the total number of iterations). In the SGPSO,
the (19) is used to determine the S(t) which indicates the total
number of swarms; P/S(t) is the total number of particles
in a swarm; the number 0.5 is set for θ (the probability of
mutation). A problem size is defined as N × m1× m2.

B. AN ILLUSTRATION OF SMALL-SIZE EXAMPLE
In this section we demonstrate the best result obtained
from the MDFA for a small size of problem 10 × 5 × 5
(Table 4 ).

In Table 4, the k in the 1st row indicates the assembly order
of component j; the j in the 2nd row is component id, the t(j)
in the 3rd row indicates the type of component j; the xj in the
4th row indicates the x coordinate of component j; the yj in
the 5th row indicates the y coordinate of component j; the T1
in 6th row indicates the pick-up times of components from
feeders/tray before placing the component j; the T3 in the 7th

indicates the of component j from feeder/tray; The Tj in the
8th row is the total process time including T1 and T2; the Bj
in the 9th row is the start assembling time of component j; the
Ej in the 10th row is the end assembly time of component j.
The MDFA finds the best solution with the sequence 5-10-

2-1-3-6-8-7-9-4 of components. The component 1 is assigned
to tray position 9; the components 2,3 and 8 are assigned
to feeder 2; the component 4 is assigned to tray position 6;
the component 5 is assigned to feeder 4; the component 6 is
assigned to tray position 7; the component 7 is assigned to
feeder 1; the components 9 and 10 are assigned to feeder 3.

C. EXPERIMENTAL RESULTS OF BIG EXPERIMENTAL
INSTANCES
Table 5 shows the experimental results of big experimental
instances. The findings are summarized as follows.
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TABLE 4. The best result found by different approaches.

• At the problem size 10× 5× 5, the MDFA has achieved
the best performance in terms of Z . The average gap over
the PSO is 26.5%; 22.6% over GA, and 44.3 % over FA.

• At the problem size 20 × 5 × 5, the MDFA extends
its advantage. The average gap over the PSO is 90.2%;
91.9% over GA; and 102.3 % over FA.

• At the problem size 40 × 5 × 5, the MDFA continues
to extend its advantage. The average gap increases up to
137% over the PSO; 138.9% over GA; and 152.0 % over
FA.

• At the problem size 60 × 5 × 5, the MDFA continues
to extend its advantage. The average gap increases up to
163.8% over the PSO; 164.3% over GA; and 176.3 %
over FA.

D. STATISTICALLY TEST
Referring to [40], [41], the experimental results in Table 6 are
investigated by using t-test at the significance level α = 0.05.

For t-test, Ho is set as the null hypothesis assuming that the
average Z values of these comparing approaches are equal in
terms of assembly time; H1 is the hypothesis assuming that
the average Z values of these comparing approaches are not
equal. Table 6 shows the t-test statistical testing results of
these comparing approaches against the MDFA. In this table,

TABLE 5. The experimental results of different problem sizes.

TABLE 6. Average Z values and their T-test results obtained from the four
approaches under different problem sizes.

the Y+ means that the MDFA significantly outperforms the
comparing algorithm at this significance level; Y- indicates
that theMDFA is significantly inferior to the comparing algo-
rithm; N denotes there is no difference between the MDFA
and the comparing algorithm. The p-values obtained from the
t-test are found all less than 0.005. For example, the p-values
of the FA, GA and PSO at the problem size 10× 5× 5 are
0.0000118444, 0.0004929538, and 0.0000036408, respec-
tively. As a result, the H0 is rejected and H1 is accepted.
Therefore, it is concluded that the proposed MDPA is statis-
tically superior to the other three approaches. The statistical
results demonstrate the robustness of the proposed MDFA in
the statistical sense.
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E. COMPARISION TO A LOWER BOUND
In this section, theMDFA is compared to a lower bound based
on the MILP developed in section III. B.
To find a lower bound, the constraints (10) and (11)

in the original MILP are removed. As a result, the MILP
is downgraded to the traveling salesman problems (TSP)
which aims to find the minimum path for a salesman to
travel all cities once. A city’s location now corresponds
to a component’s position on a PCB. To solve the down-
graded MILP model, the open source software GLPK
(https://www.gnu.org/software/glpk/) is used. The GLPK
(GNU Linear Programming Kit) package is intended for
solving large-scale linear programming (LP), mixed integer
programming (MIP), and other related problems. It is a set
of routines written in ANSI C and organized in the form of a
callable library which can solve a problem to find the optimal
solution Z∗.

To compare to the Z∗ found by the MILP, the MDFA is
set with these parameter values T0 = T1 = T2 = T4 =
T5 = tf = 0, and v = 5 (cm/s). These settings make the
MDFA to focus on finding the minimum path for assembly
heads to assemble all components on the PCB. As a result
the minimum assembly time (Z or T3) can be derived and
compared to the Z∗.

Table 7 shows the results obtained from the MDFA and
downgraded MILP. It is found that the MDFA is capable of
finding the optimal solutions at the problem 10 × 5 × 5 as
it hits the optimal Z∗ for 9 experiments out of 10 with the
average gape being only about 0.3%.

Takes the 1st experiment of the problem size 10× 5× 5 as
an example, Table 8 shows that the best assembly sequence of
components is 10-2-6-1-9-3-7-8-4-5 which takes 39.7 (s) to
complete assembling these components. The MILP obtains
the following result:
INTEGER OPTIMAL SOLUTION FOUND
Time used: 0.2 secs
Memory used: 0.8 Mb (843202 bytes)
Optimal tour has length 198
From node To node Distance
1 6 21.2
2 10 13.6
3 9 24.1
4 8 11
5 4 33
6 2 12
7 3 20.9
8 7 26.5
9 1 23.1
10 5 12.8

Model has been successfully processed
The result shows that the 1-6-2-10-5-4-8-7-3-9 is the min-

imum path which has a same loop as that found by the
MDFA. The path length is 198 cm which requires 39.7
(198/5) (s) of traveling time, same to that found by MDFA.
However, the MILP becomes computationally intractable at
the problem size 20× 5× 5.

TABLE 7. The comparisons between MDFA and MILP.

TABLE 8. The best result obtained from MDFA.

F. DISCUSSION
1) Our experiments show that the standard FA underper-

forms other approaches in solving the simultaneous
CSP and FAP for a multi-head gantry SMT machine.
In the standard FA, each pair of fireflies are compared
and the brighter one attracts the other. However, such
comparisons may lead to an ineffective search as the
brighter one is not certainly being an elite in the whole
population. This tends to result in invalid searches.
In contrast, the MDFA lets a firefly to be always
attracted by an elite, either the best of a group or the
whole swarm, which is expected to result in more effec-
tive searches for fireflies. The experiments showed a
good result from this change.

2) The [35] highlights the need of balancing exploration
and exploitation for FA due to its oscillatory behavior.
This means the FA finds the best solutions faster in
some cases but slower in others when dealing with
a combinational optimization problem. The balancing
of exploration and exploitation during firefly search is
still an open issue [35]. To this issue, the MDFA uses
the exploration-to-exploitation strategy. This strategy
creates the maximum exploration momentum at the
initial run so that the most number of areas in the solu-
tion space are searched by fireflies. This gives the best
chance to find the possible optimal areas. However,
at the latter search iterations, the MDFA transits more
momentum to the exploitation of fewer elites which
have been proven to be outstanding in the performance.
The exploitation on these elites is expected to have a
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FIGURE 4. Trend of Z values of different approaches under different
iterations.

high chance to find a better solution than the random
search in the solution space given the few remaining
iterations. At the last iteration, the maximum momen-
tum is used to exploit fewer outstanding elites. This is
a new strategy for FA.

3) One novel feature of the MDFA is that it employs
discrete operators (operation) to deal with the CSP
and FAP which are combinational problems with dis-
crete domains. The discrete operators can operate the
position vectors of a firefly precisely without the need
of transforming values within continue domain. The
experimental results show that these discrete operators
used in this research can handle the two problems well
and result in a better solution.

4) The [35] highlights that multi-swarm population
scheme may diversify fireflies so as to better respond
to changing environment. In this research, the multi-
swarm scheme is adopted and the experiments show a
good result.

5) In [42] the PSOwas found better than the FAwhen used
to extract features from fingerprint. In this research,
the experimental results also show the PSO is better
than FA in dealing with the CSP and FAP simulta-
neously for a multi-head gantry machine. However,
the PSO is inferior to the MDFA which is an improved
version of standard FA.

6) Fig. 4 shows an example of the trends of Z values found
by different approaches under different iterations at the
problem size 20 × 5 × 5. The FA has a fixed value
(the minimum of all pair comparisons) due to the only
one iteration. The MDFA, GA and PSO were set to run
500 iterations. It is found that these approaches improve
he best Z along with the increase of iterations. The
MDFA finds the best solution at the 66th iteration (Z =
48.70056301). The GA finds the best solution at the
33th iteration (Z = 101.9563891). The PSO finds the
best solution at the 28th iteration (Z = 95.1373374).
This figure shows the MDFA has a better capability to
improve the solution. In this case, the PSO performs the
2nd best, followed by the GA. The FA, though finds the

best solution initially, it lacks the capability to improve
the solution.

VI. CONCLUSION
The SMT machines are prevail in industry and they can
affect the productivity of PCBA considerably. The SI and
evolutionary-based metaheuristics is a branch of AI which
can help the achievement of ‘‘intelligent manufacturing’’ in
the context of Industry 4.0.

Though many metaheuristics are available for dealing with
PCBA problems, to our best knowledge, the FA has never
been used to deal with the CSP and FAP simultaneously for
a multi-head gantry SMT machine. The main contribution of
this research is the development of an improved FA, i.e., the
MDFA, for dealing with the two problems for a multi-head
gantry SMT machine. In addition to using the exploration-
to-exploitation strategy, the MDFA is empowered by some
novel features, such asmulti-swarm scheme, adaptivemoving
step, and discrete operators. To investigate its effectiveness,
the MDFA has been compared with the standard FA, GA and
PSO by using different problem sizes, including 10× 5× 5,
20×5×5, 40×5×5 and 60×5×5. The experimental results
show that the MDFA outperforms the others significantly in
terms of total assembly time. The MDFA has been further
compared to a downgraded mathematical model (MILP).
The experimental results show that the MDFA is capable of
finding an approximate solution.

The future research directions are suggested as follows.
In this research, the MDFA focuses on dealing with the CSP
and FAP for the multi-head gantry SMT machine. In future
research, the extension of the research scope to include the
NAP can be considered. In addition, the MDFA can be
applied to deal with other kinds of SMTmachines, such as the
chip shooter machine. Finally, further improvements on the
MDFA can be conducted to further strengthen its searching
capability.
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