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ABSTRACT The production and real-time usage of streaming data bring new challenges for data systems due
to huge volume of streaming data and quick response request of applications. Message queuing systems that
offer high throughput and low latency play an important role in today’s big streaming data processing. There
are several popular message queuing systems in production usage and also many in-lab message queuing
systems in academia. These systems with different design philosopies have different characteristics. It is
non-trivial for a non-expert to choose a suitable system to meet his specific requirement. With this premise,
our primary contribution is to provide the community with a fair comparison among message queuing
systems, using a standardized comparison metric and reproducible experimental environment. Five typical
message queuing systems (including Kafka, RabbitMQ, RocketMQ, ActiveMQ and Pulsar) are evaluated
qualitatively (in analysis) and quantitatively (in experimental results). This article also highlights the distinct
features of each system and summarizes the best-suited use cases of each system. The fair comparison and
the insight analysis provided in this article can help users choose the best-suited message queuing systems.

INDEX TERMS Big data, streaming processing, message queuing system.

I. INTRODUCTION
In the era of information explosion, huge amounts of data
are being produced, transmitted and consumed continuously
every day. Streaming data are generated continuously by
thousands of data sources, which typically send data records
simultaneously. Streaming data include a wide variety of
data such as log files, online purchase records, geospatial
data, information from social networks, and financial trading
floors. The production and real-time usage of these streaming
data bring new challenges for data systems due to its huge
volume and quick response time request. Traditional dis-
tributed file systems (e.g., HDFS [1]), cloud storage systems
(e.g., Amazon S3 [2]), and key-value store systems (e.g.,
Apache Cassandra [3]) are not competent to support real-time
processing of these streaming data [4]. The distributed
message queuing systems play an increasingly important
role in streaming data processing applications, such as
high quality real-time search, analysis, and recommendation
services.
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Message queuing systems store messages (data) and allow
different terminals to connect to the queue to publish or
consume messages. The distributed message system consists
of multiple Brokers (worker machines) that work together
to provide the message service. The entity that publishes
messages to the system is named producer, and the entity
that subscribesmessages from the system is named consumer.
The messages are grouped into Queues or Topics to separate
the messages that belong to different producers/consumers.
Messages sent by the producer must specify which Topic they
are sent to.

Message queuing systems can improve stream processing
in the following four scenarios: (1) Asynchronous Process-
ing. In synchronous processing, the data producer needs to
receive a response from the data consumer before send-
ing the next data record. With a message queuing system,
the producer sends a message (i.e., data record) to the sys-
tem and then continues to produce next message without
synchronizing with the consumer side, which avoids wasting
resources while waiting for the feedback. (2) Decoupling of
Producers and Consumers. In practice, a system commu-
nicates with multiple systems through different interfaces.
The coupling of producer-consumer systems increases the
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burden of programmers since they have to handle the con-
nections to different systems.With a message queuing system
as middleware, the producer is only responsible for publish-
ing the message to the queue without any consideration of
the diverse communication mechanisms with different con-
sumers. (3) Peak Shaving. In the high concurrency scenario,
servers can crash because of toomany requests in a short time.
A message queuing system can be introduced to buffer the
data, where consumers can pull the message data according
to their own processing capacities. (4) Log Service. The
logs of some production systems are potentially extremely
large. Message queuing system can be used to provide log
service, responsible for receiving, storing and forwarding log
data and offering guarantees on the strict order based on
log generation [5].

Many message queuing systems have been proposed and
widely used, such as Kafka [6], RabbitMQ [7], RocketMQ
[8], ActiveMQ [9], and Pulsar [10], etc. These systems
have different design architectures and have their own
characteristics, which makes them suitable for different sce-
narios. However, it is non-trivial for a non-expert to choose
a suitable system according to his specific requirement.
Although there are prior works on system comparisons,
we think they have some shortcomings: (1) Only 2-3 system
candidates are selected for comparison, and the comparison
is not comprehensive enough. (2) The functions of system
might be overestimated from its official report, and there is
no fair experimental comparison to quantitatively compare
performance differences.

Specifically, this article makes the following contributions:
First, We summarize the main features of a message queuing
system as our evaluation metrics (in Section 2), including
production features, quality-of-service guarantee features and
performance related features. Second, We introduce and ana-
lyze five popular message queuing systems (in Section 3),
including Kafka, RabbitMQ, RocketMQ, ActiveMQ and Pul-
sar. We choose them because 1) these systems are relative
popular, and their communities are more active than others.
2) these message queuing systems are representative in mul-
tiple aspects, such as implementation language (Java, Scala,
or Erlang), functionality support (batching, priority queu-
ing, and delay queuing), and communication protocol (TCP,
AMQP, Customized, and Hybrid). According to the features
we summarize in Section 2, we analyze the architecture of
each message system, and as a summary and supplement
to the differences of these systems, we offer a table at the
end of this section. Third, we develop a test framework
to fairly evaluate the performance of the system, we also
design several experiments to compare the performance of
Kafka, RabbitMQ,RocketMQ,ActiveMQ,Pulasr with various
parameters(in Section 4).

The rest of the article is organized as follows. Section III
summarizes the main features of message queuing systems.
Section IV analyzes the pros and cons of Kafka, RabbitMQ,
RocketMQ, ActiveMQ, and Pulsar. Section V measures the
performance features of these message queuing systems.

Section VI offers several guidelines to choose the best-suited
system given different application requirements. Section II
presents some work related to the article. Section VII con-
cludes the article.

II. RELATED WORK
In this section, we present existing studies that discussed the
message queuing systems. The authors of [11], [12] com-
pared message queuing systems qualitatively. [11] focused
on system usage comparison, including installation and doc-
umentation, etc. The communication and architecture of the
several message queuing systems are compared in [12]. The
performance comparison between RabbitMQ and ActiveMQ
is studied in [13]. The performance comparison between
Kafka and RabbitMQ is studied in [14] and [15]. A quanti-
tative and qualitative evaluation is performed in [5], [16], but
their experimental results are from the built-in test tools of
each system, which may lead to fairness issues.

Most of the existing studies are focused on only two or
threemessage queuing systems. To the best of our knowledge,
there is no detailed study that provides a multi-dimension
comprehensive comparison on the five popular systems.
In addition, though the quantitative comparison is performed
for the test systems, their experimental results are obtained
by using the built-in test tools that provided by the systems.
This is not fair and convincing enough. We fill this gap by
developing a test framework and performing a fair compar-
ison. We also discuss the best-suited use cases for different
systems, which will help users choose a message queuing
system according to the application requirement.

III. MESSAGE QUEUING SYSTEM FEATURES
In this section we summarize the main features of message
queuing systems, which can be used to establish a com-
mon framework for comparison between message queuing
systems.

A. PRODUCTION FEATURES
We summarize a few production features and design choices
of the message queuing systems as follows:

1) DEVELOPMENT LANGUAGE
Different message queuing systems use different develop-
ment languages, the characteristics of language will also
bring corresponding advantages to systems. For example, due
to the widespread use of the Java language, the message
systems implemented by Java are also very convenient for
developers to conduct secondary development, and as a result
they usually have faster updates.

2) COMMUNITY ACTIVITY
Community activity level implies the popularity of a mes-
sage queuing system. Popular products will have a better
integration and compatibility with the surrounding ecosys-
tem. The more active community can have more contributors
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discovering bugs and fixing bugs, and as a result the system
continues to be more stable and be faster improved.

3) COMMUNICATION PROTOCOL CHOICE
Message protocol needs to be applied when realizing mes-
sage queuing function. The protocols used in each message
system are different. According to whether the message pro-
tocols used are open to industry, they can be classified into
open protocols and private protocols. The widely used open
message protocols include AMQP [17], XMPP [18], REST
[19], and STOMP [20]. Some systems extend basic proto-
cols according to their own requirements, while some use
customized messaging protocols. These protocols are called
private protocols.

4) CONSUMPTION MODE
There are two modes of consumption: Push and Pull. (1)
Push mode requires that the message system actively pushes
messages to the consumer. This mode has better real-time
performance, but requires a certain flow control mechanism.
Once the system pushes a large number of messages to the
consumer, it will incur heavy load to consumer to make it
slow or even crash the service. (2) Pull mode refers to that the
consumer actively requests pull messages from the message
system. In this mode, the consumer can consume message
data according to its own capacity and send pull request to
the system every other time interval. However, this requires
consumer to set a reasonable message pull interval, which is
not trivial. Too frequent pull requests will incur significant
heavy burden to the message system, but if the pull requests
are not frequent enough it would inevitably cause data latency
problem.

5) SYSTEM ARCHITECTURE
Distributed message queuing systems typically have two
architectures: master-slave and peer-to-peer. In master-slave
architecture, Brokers are divided into a master and multiple
slaves. The master provides service and the slaves serve as its
backup. Once the master goes down, the slaves can take over
related service. In peer-to-peer architecture, all Brokers have
the same status, and each message is backed up in multiple
Brokers to be resistant to message loss and machine failure.

6) MESSAGE QUEUING MODEL
There are two message queuing models in message ser-
vice: point-to-point and publish-subscribe. In point-to-point
model, every message will be sent to a specific Queue,
only one corresponding consumer can obtain this message.
In publish-subscribe model, every message has a category
called Topic, a subscriber to a Topic can consume all of
its messages, and a Topic can be subscribed by multiple
consumers.

7) USABILITY
The usability of a system is also an important production
feature, which helps them get start easily. The usability can be

evaluated in several aspects, such as the easiness of installa-
tion, the completeness of documentation, the functionalities
of management and monitoring, etc. A system with high
usability can attract more users by saving their time on learn-
ing to use and maintain it.

8) COMPATIBILITY
Message queuing system can play the role of message mid-
dleware for many-task computing on a big-data platform
[21]. Therefore, compatibility with other tools such as storage
and processing is also an important feature that should be
considered. We mainly analyze the compatibility of mes-
sage queuing systems with the mainstream storage system
HDFS [1] and the big data processing system Spark [22] and
Flink [23].

B. QUALITY-OF-SERVICE GUARANTEE FEATURES
As a middleware system providing message buffering ser-
vice, the message systems are defined by several required
and desired guarantees. Especially for distributed message
systems, these quality-of-service guarantees become more
important in production usage.

1) DELIVERY GUARANTEE
To ensure that messages are transmitted between producers
and consumers, there are generally three delivery guarantees:
(1) at-most-once:Messages are transmitted at most once, they
may be lost, but will never be transmitted repeatedly. (2) at-
least-once: Messages are transmitted at least once, they will
never be lost, but may be repeated. (3) exactly-once: Every
message must be transmitted once and only once. For most
message queuing systems, only at-most-once guarantee or at-
least-once guarantee is provided [24]. It is difficult to realize
exactly-once guarantee.

2) ORDERING GUARANTEE
In a message system, it is very important to ensure that
messages are sent and consumed in the same order. In some
application scenarios, the order of messages is very strict.
There are three ordering guarantee variants: (1) no-ordering:
This is an ideal case for performance. Because no ordering
guarantee is provided, no additional resources are used in
this mode. (2) partition(or queue)-ordering: In some message
queuing systems, a partition is the basic unit for parallel oper-
ations. In this mode, messages are guaranteed to be ordered
within a partition, but it is not guaranteed across partitions.
Though requiring more resources than the previous mode,
it can also have high performance. (3) global-ordering: In
order to provide a global ordering guarantee across different
channels, it requires lots of resources to keep synchroniza-
tion between producers and consumers, which significantly
degrades the performance of message systems.

3) RELIABILITY
Message queuing systems should be strong against software
and hardware failures. If one or more machines are down,
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other machines can be used without affecting the system.
This relies on the synchronization and replication of mes-
sages, which will take up additional hardware and software
resources.

4) SCALABILITY
The scalability means that a message queuing system can
continue to scale as demand increases. For instance, the pro-
cessing ability can be easily changed by adjusting the number
of messages, partitions, or producers/consumers. This can
be achieved by adding new machines (or other hardware
resources) to the system.

5) TRANSACTION SUPPORT
The transaction requirement requires that: either a complete
sequence of messages is sent (received), or none of them is.
For instance, the transaction can be successfully committed
only after the consumer has consumed the entire message
queue.

C. PERFORMANCE FEATURES
Regarding the performance features, two key metrics are the
latency (or response time) and the throughput [15].

1) LATENCY
Latency measures how long it takes for a message to be
transmitted between endpoints. In message systems, typically
the main latency contributors are as follows [16]: (1) The
calculation cycle required for packet metadata processing,
such as validating, routing, which is usually independent
of the packet size. (2) The calculation cycle required for
packet replication, which is usually related to packet size. (3)
Memory access latency. The level of latency depends on the
access operation and its location and method. For example,
write versus read, DRAM versus disk, and sequential access
versus random access. (4) Overhead for some specified cases.
In order to ensure the reliability of message transmission,
the message queuing provides some special guarantee mech-
anisms as mentioned in previous subsection, which will
bring extra overhead and increase the latency. For example,
the three ordering guarantee modes have varying degrees of
impact on performance, thus affect latency. (5) Dequeuing
latency. When a queue is not empty, it has a behavior of FIFO
(fist-in-first-out), which will bring the dequeuing latency.

Low latency describes a message queuing that is optimized
to process a very high volume of data messages with minimal
delay (latency). These systems are designed to support oper-
ations that require near real-time access to rapidly changing
data and bring a good user experience.

2) THROUGHPUT
Throughput means the number of messages or message bytes
that can be pumped through a message queuing system per
time unit. High throughput means that messages are less
likely to be backlogged. The five factors that affect latency
discussed above also affect throughput. Experienced system

designers use various techniques to improve throughput, such
as batch processing. But it is known that there is a funda-
mental trade-off between latency and throughput with stream
processing style optimizing for latency and batch processing
style optimizing for throughput. However the common ques-
tion to ask is how much data to batch together to get good
throughput? Because this trade-off is important, most mes-
sage systems such as Kafka [25] allow users to specify how
much data they want accumulated on the system side before
the system should complete user’s fetch request. In Section V,
wewill evaluate the throughput and latency of each system by
varying the batch size.

IV. REVIEW OF MESSAGE QUEUING SYSTEMS
In this section, we give brief description of five typical
distributed message queuing systems including Kafka, Rab-
bitMQ, RocketMQ, ActiveMQ, and Pulsar. We also compare
them in different aspects and provide a summary table to
highlight the main difference.

A. KAFKA
Kafka [6] is a distributed, separable, redundant, and persistent
logging service developed by Scala based on the TCP proto-
col. Kafka has an active community, which makes it more and
more popular these days. In Kafka, messages are classified
into different Topics, and each Topic can be divided into mul-
tiple partitions, which are distributed and stored on different
Brokers (a cluster of worker machine). By introducing the
partition concept, the messages are uniformly distributed to
multiple partitions, which help improve the parallelism of the
system [26]. In addition, multiple consumers can simultane-
ously read messages from one or more partitions to improve
parallel processing capabilities.

As shown in FIGURE 1, there are multiple producers, bro-
kers, consumers and a Zookeeper [27]. Kafka employs a peer-
to-peer architecture rather than a master-slave architecture,
where all brokers maintain the same status. Producers use the
Push mode to publish messages to the Broker, and all con-
sumers in a group work together to consume all partitions of a
subscribed Topic by Pull mode. Each partition is a sequential,

FIGURE 1. Kafka architecture.
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immutable message queue that can be added continuously.
Messages in a partition are assigned a sequence number,
called offset, which is unique in each partition. Under normal
circumstances, the offset increases linearly as the consumer
consumes the message. But the actual offset is controlled by
the consumer, who can reset the offset to re-read the message.
Each partition can only be digested by a single consumer
in a consumer group and the messages in a partition are
guaranteed to be ordered. The producers are not necessary
to be managed by the cluster resource manager Zookeeper.
This is because that producers are transient and can be closed
at any time without coordination. But the Consumers and the
Brokers need to be managed by Zookeeper to achieve load
balancing.

The high availability/reliability of Kafka is achieved
through backup mechanism (i.e., each partition has several
replications), and the replicas are stored on different Bro-
kers and are synchronized. There is a leader replica and
multiple follower replica, and all the write/read loads are
directed to the leader replica. Once the worker where the
leader replica locates fails, a new leader will be elected
from the followers to continue the service. In addition,
Kafka supports transactional message and delivery guarantee.
It support at-least-once delivery guarantee by default, and
allows at-most-once guarantee by setting the producer to
submit asynchronously. Exactly-once guarantee can also be
implemented but requires cooperation with the target storage
system.

When using earlier versions of Kafka, users need to install
Zookeeper first. In the latest version, Kafka has built-in
Zookeeper, which eliminates the installation steps. Kafka
has a very detailed document. Users can easily and quickly
learn how to use different versions of Kafka. However, Kafka
relies on logs for management and monitoring, so it does not
have a very user-friendly interface. In addition to persisting
messages to log files, Kafka is also compatible with HDFS,
it provides a connector calledConfluent HDFS Connector for
writing data from Kafka to Hadoop HDFS. Kafka is easily
integrated into stream processing systems. Flink can consume
messages from Kafka by flink-connector-kafka. Similarly,
Spark can use Kafka as a data source through a tool called
spark-streaming-kafka.

1) PROS AND CONS
Kafka is famous for its high throughput, which can be
attributed to the following three factors. 1) Kafka makes
use of zero-copy to avoid repeated copy operations [6]. The
traditional data read from disk and data sending to the net-
work involves 4 copy operations: a) from disk to page cache,
b) from page cache to user space, c) from user space to socket
buffer, and d) from socket buffer to network. The zero-copy
technology only copies the data of the disk file to the page
cache once, and then sends the data from the page cache
directly to the network, avoiding repeated copy operations
to improve performance. 2) Kafka uses batching of data to
improve the throughput and reduce the RPC overhead [6].

3) Kafka employs data compression techniques to improve
the efficiency of data transmission [28]. It supports three
compression algorithms: GZIP, Snappy, and LZ4.

B. RabbitMQ
RabbitMQ [7] is an open source implementation of AMQP
protocol developedwith Erlang(amultipurpose programming
language for developing concurrent and distributed systems)
and also has a very active community. Erlang inherently sup-
ports distributed computation (by synchronizing the cookies
in the Erlang cluster nodes), so RabbitMQ does not rely a
third-party cluster manager like Zookeeper. RabbitMQ clus-
ter has two modes: normal cluster mode and mirror cluster
mode.

As shown in FIGURE 2, RabbitMQ achieves high avail-
ability through Queue Mirroring. The Queue concept in Rab-
bitMQ is similar to Kafka’s partition. Each mirrored queue
consists of one master and one or more mirrors where each
Broker contains all the data in a Queue. The master is hosted
on one node commonly referred as the master node. Each
Queue has its own master node. All operations for a given
queue are first applied on the Queue’s master node and then
propagated to mirrors. Once failure occurs, consumers can
be forwarded to digest data from the mirror queue in other
Brokers by Pushmode or Pull mode. Exchange can be used as
a forwarding agent, which helps implement route conversion
and forward messages to the corresponding queue. After
Exchange is bound to a queue, messages are distributed to the
message queue according to different binding rules according
to the type of Exchange, either one message is distributed to
multiple message queues or one message is distributed to a
message queue.

FIGURE 2. RabbitMQ architecture.

In a RabbitMQ cluster, there can be two type of nodes,
memory node and disk node. There is at least one disk
node in the cluster, on which configuration information and
meta-information are stored. It should be noted that Rab-
bitMQ’s architecture has poor scalability due to the complete
replication design.
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RabbitMQ provides a Web UI for the system. Users can
easily manage the queue and monitor the status of the
cluster. It is also easy to install. The documentation tuto-
rials cover the basics of creating messaging applications.
RabbitMQ does not support persisting messages to other
storage systems, such as HDFS. In previous versions of
Spark, the MQTTutils tool can directly create rabbitmq data
sources. However, Spark removed this tool after version
1.6. Flink and RabbitMQ are compatible via the connector
Flink-Connector-RabbitMQ.

1) PROS AND CONS
RabbitMQ is a general-purpose message Broker which sup-
ports various standardized protocols and support multiple
functionalities, such as priority queuing, delay queuing.
Many useful plugins are provided which makes it convenient
to manage. However, it is not as fast as Kafka because of
its transactional mechanism. Publisher Confirm mechanism
is proposed to solve the problem of transaction overhead
and at the same time guarantee message delivery(it supports
at-least-once and at-most-once). RabbitMQ can persist mes-
sages to disk, but the ordering of messages is not guaranteed.

C. RocketMQ
RocketMQ [8] is developed in Java, it is first used in Alibaba
and later opensourced to public. RocketMQ is also supported
in Aliyun and supports a set of customized communication
protocols.

The architecture of RocketMQ is shown in the FIGURE 3.
A set of NameServers, working as the cluster manager, com-
pose a lightweight Topic routing registration center that sup-
ports dynamic Broker registration and routing query (from
producers and consumers). RocketMQ has the concept of
queue in each Topic, which is similar to the partition con-
cept in Kafka. Multiple queues may exist on a Broker. The
messages in the queue are guaranteed to be ordered. When
sending messages, the user only specifies Topic, and the
Broker selects which queue to be sent to according to the
routing information of Topic. When a consumer subscribes
to messages, it decides which queue messages to subscribe to
based on the load balancing policy.

FIGURE 3. RocketMQ architecture.

To ensure reliability, RocketMQ uses a master-slave archi-
tecture. A cluster of Brokers consist of multiple groups of
master/slaves. Master can read and write, but slaves can only
read, wheremaster synchronizes thewritten data to the slaves.
If a master fails, consumers can still consume messages from
slaves (by Push or Pull mode), but producers cannot write
messages to it. All the data are persistence on disk, and mes-
sages are guaranteed to be delivered at least once. RocketMQ
supports delay queuing and implements batch transmission,
as well as transactional message. In addition, RocketMQ is
easy to scale.

When using RocketMQ, you need to start the namesrv
service before starting the broker, and you can only moni-
tor the system status through the log output of the current
directory. Some contributors in the RocketMQ community
have developed a simple management interface that users
can install by themselves. In the documentation, a user guide
is provided, including examples of using various functions,
such as batch processing, message filtering. There are many
RocketMQ-related projects contributed and maintained by
the community. These projects include many tools to inte-
grate with other stream processing systems, such as Flink
(RocketMQ-Flink) and Spark (RocketMQ-Spark). Although
RocketMQ does not support HDFS, it is compatible with the
mainstream database systems.

1) PROS AND CONS
RocketMQ stores all messages in the same physical file.
The centralized store design improves the efficiency when
increasing number of topics. As will be shown in our experi-
mental evaluation, the increasing number of topics/partitions
will cause a drastic decline of Kafka’s throughput, while
Apache RocketMQ delivers a stable performance. Therefore,
Kafka is more suitable for business scenarios with only a
few topics and consumers [29], while Apache RocketMQ is
a better choice for business scenarios with a large number of
topics and consumers [30]. However, RocketMQ community
is not very active comparing to Kafka and RabbitMQ.

D. ActiveMQ
ActiveMQ [9] is written in Java together with a full Java
Message Service (JMS) client supporting a variety of com-
munication protocols, such as OpenWire, STOMP, REST,
XMPP, and AMQP.

FIGURE 4 shows the ActiveMQ cluster architecture.
Zookeeper is used to manage the registered Brokers. Only
one Broker (i.e., master broker) in the cluster can provide
service, and the other Brokers are slave brokers. Slave brokers
synchronize with the master Broker. Once the master cannot
serve due to a failure, Zookeeper will elect a newmaster from
slaves to provide service. Different from other message sys-
tems, ActiveMQ supports both publish-subscribe mode and
point-to-point mode. The Topic concept (similar to Kafka) in
ActiveMQ corresponds to the publish-subscribe mode, while
the Queue concept (similar to RabbitMQ) corresponds to the
point-to-point mode.
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FIGURE 4. ActiveMQ architecture.

ActiveMQmanages Queue and Topic differently. Themes-
sages ordering in a Queue can be guaranteed by setting Exclu-
sive Queue, while there is no ordering guarantee in Topic.
There is at-least-once delivery guarantee for Queue, while
there is no delivery guarantee for Topic. Messages in a Queue
will be stored on disk file or in database, while messages in
Topic are not persistent by default.

It is easy to install ActiveMQ, but its documentation is not
detailed enough. There is no running samples to help users
learn how to use it. ActiveMQ provides a simple interface
to monitor and manage the system. ActiveMQ provides a
variety of built-in storage engines, but it cannot persist data to
storage systems such as HDFS. ActiveMQ cannot be used as
a data source for Spark. Flink is compatible with ActiveMQ
5.14.0 by the connector flink-connector-activemq-2.11.

1) PROS AND CONS
ActiveMQ provides priority queuing, batch transmission, etc.
It supports transaction message and scales well. However,
its community activity is declining, there are less and less
maintenance records and user feedbacks. RabbitMQ is lack
of sharding function, this is a missing feature, due to JMS
does not specify the sharding mechanism of messaging mid-
dleware, users must implement it their own as needed.

E. PULSAR
Pulsar [10] is an open-source large-scale distributed pub-sub
messaging system originally created at Yahoo and now part
of the Apache Software Foundation, it is developed by Java
based on the TCP protocol.

As FIGURE 5 shows, Apache Pulsar’s design architec-
ture is fundamentally different from that of other messag-
ing solutions, including Apache Kafka. Pulsar was designed
with a layered and fragmented architecture to provide better
scalability, and flexibility. Pulsar separates message storage
from message service and provides good scalability. Broker
receives messages from the producer and pushes it to the
consumer, but the message is stored in Bookies, which are
managed by Bookkeeper [31]. Pulsar stores Topic in logical
units of partition like Kafka. The difference is that Pulsar’s
partition takes Segment as the physical storage unit. Each par-
tition will be divided into multiple Segments, and a Segment
will be stored in different Bookies. Since there is no Topic

FIGURE 5. Pulsar architecture.

data stored in Broker, once a Broker is down, other Brokers
can quickly take over its work. If a Bookie is down, another
Bookie will read data frommultiple Bookies and recover data
on the failed node.

Pulsar has multiple QoS guarantees, including global
ordering guarantee and delivery guarantee, it supports all
the three delivery guarantees we introduced before (the
exactly-once is called effectively-once in Pulsar). In addition,
it supports priority queuing and batch transmission. As Pulsar
is a new generation of message system, the community is
growing and needs to be further tested by the market.

Pulsar provides s very complete and detailed documenta-
tion, covering multiple aspects, such as functions, concepts,
architecture, and deployment. However, it does not provide a
user interface to manage and monitor the system. In addition,
the installation of Pulsar is more complicated because it relies
on Zookeeper and Bookkeeper. The Hdfs Sink Connector
is used to pull messages from Pulsar topics and persist the
messages to a HDFS file. The Spark Streaming receiver for
Pulsar is a custom receiver that enables Spark to receive data
from Pulsar. Currently, Flink cannot use Pulsar as its data
source. There is no official connector or library available.

1) PROS AND CONS
The most obvious benefit of the Brokers-Bookies separated
architecture is the scalability. It also provides many useful
function, include delay queuing, batching and priority queu-
ing. Pulsar takes advantage of the multi-core advantage of
modern systems to assign the same task request to the same
thread, avoiding the overhead of switching between threads
as much as possible. However, instead of searching messages
locally, Broker needs to connect to another Bookkeeper clus-
ter, which increases network overhead and has an impact on
performance.

F. SUMMARY
TABLE 1 summarizes the main features of the 5 message
systems. The first three rows depict the number of starts,
the number of forks, and the the number of reported issues
retrieved from GitHub, which imply the popularity of these
systems. We can see that Kafka has attracted much more
attentions than other systems. We classified the other features
into three categories, production features (i.e., 4-12 rows),
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TABLE 1. Message Queuing Systems Comparison

quality-of-service guarantee features (i.e., 13-17 rows), and
the additional functionalities supported by these systems
(i.e., 18-20 rows). In addition to the above message queuing
systems, there are other systems. ZeroMQ [32] acts as a
concurrency framework and carries atomic messages across
various transports like in-process, inter-process, TCP, and
multicast. OpenMQ [33] offers high quality, enterprise-ready
messaging, it is the reference implementation for the JMS
[34]. IronMQ [35] is an easy-to-use highly available mes-
sage queuing service, it is built for distributed cloud appli-
cations with critical messaging needs. ElasticMQ [36]is a
message queue system, offering an actor-based Scala and an
SQS-compatible REST (query) interface. Cherami [37] is a
distributed, scalable, durable, and highly available message
queue system to transport asynchronous tasks.

V. PERFORMANCE EVALUATION RESULTS
In this section, we first build a test framework for fair per-
formance comparison and then measure the performance
features of these message queuing systems under this test
framework.

A. TEST FRAMEWORK
Most of the message queuing systems have provided their
own built-in throughput/latency test tools. However, we do
not use these tools to evaluate performance for the following
two reasons: (1) The parameters that can be adjusted for
each tool are different, so we cannot arbitrarily adjust the
parameters as needed. (2) Each tool tests different metrics and
measures them in different ways.

To ensure unity and fairness, we build our own test frame-
work and write a throughput/latency test tool. FIGURE 6
shows the architecture of our test framework. In our

FIGURE 6. Test framework architecture.

framework, users should customize driver and workload in
the form of command line arguments, which are paths of
the configuration files. The driver file specifies the test mes-
saging system and includes the basic configurations for this
system. The workload file specifies different test conditions.
After reading the arguments, the workloadGenerator will

create dataLoader and driver. According to the driver file,
the driver will create producers and consumers connected to
the specified Broker. The dataLoader is responsible for cre-
ating the Topic and reading the data to generate the message.
The data is a randomly generated text file. We use Java to
generate a random text file with arbitrary size. We provide
datasets with different sizes in the data folder. If these data
cannot meet the test requirements, users can customize the
data generation.

After the producer and consumer are created, the producer
will read themessages in dataLoader and send it to the Broker.
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FIGURE 7. Throughput comparison.

The consumerwill read it from the Broker. During this period,
the workloadGenerator will record information such as the
number of messages and timestamps, and periodically calcu-
late the performance of the system. All the systems are tested
under the same workload for fair comparison. The workload
we used contain the fixed parameters that we will test. Users
can change or add parameter configurations as needed.

Referring to the evaluation methods of [5], [11], [16], [38],
in order to obtain correct and fair results without the effect
of network, we perform benchmarking on a single machine,
with the hardware configuration: 12 cores@3.6GHz, 16GB
memory, and SSD for persistent storage. The versions
of the tested message systems are listed as follows:
Kafka 2.2.1, RabbitMQ 3.8.1, RocketMQ 4.5.1, ActiveMQ
5.15.0 and Pulsar 2.6.0. We use their default recommended
configurations.

In our performance evaluation, we consider three factors:
(i) message size. Message size has significant effect on the
performance. (ii) number of producers/consumers. We vary
the number of producers/consumers to test the performance
under different levels of workload. (iii) number of partitions.
We vary the number of partitions to evaluate the scalability.
For each factor, we measure three different variants.

B. THROUGHPUT RESULTS
Considering the impact of different factors (e.g., the number
of topics/producers/consumers/partitions and the message
size), we test the throughput of the systems with different
parameter settings. FIGURE 7a shows the throughput results
when varying the message size and fixing the the number
of topics/producers/consumers/partitions. With the growth of
message size, the throughput of the systems increase gradu-
ally. These systems all use batch processing technology. That
is, when the messages are accumulated to reach a threshold,
they will be sent uniformly, thereby reducing transmission
overhead and increasing throughput. Therefore, as the mes-
sage size increases, the time waiting for batch processing
decreases, and the throughput increases accordingly.

FIGURE 7b shows how the number of produc-
ers/consumers influences the throughput of these systems.
In Kafka, a consumer subscribes to a topic, and a topic is

consist of multiple partitions. There can be multiple
consumers in a consumer group. At a certain moment,
a message in a partition can only be consumed by a single
consumer instance in the group, this is why the throughput is
decreasing when the number of consumers grows. Ideally,
the numbers of consumers and partitions are equal, i.e., a
consumer corresponds to a partition for maximizing perfor-
mance. In RocketMQ, Pulsar andActiveMQ, all consumers in
the same consumer group process the messages belonging to
a topic in a Round-Robin manner. The throughput varies with
different number of consumers as the number of partitions
is fixed. RabbitMQ can support high concurrency because
of the nature of Erlang language, it performs better with the
increasing number of producers/consumers.

Generally speaking, increasing the number of partitions
can increase concurrency, which in turn improves perfor-
mance. Since there is no partition concept (or similar concept)
in RabbitMQ and ActiveMQ, we only draw the results of
Kafka, RocketMQ and Pulsar. FIGURE 7c shows the effect
of the number of partitions. With the increase of partition
number, the throughput of RocketMQ is increasing gradually.
As we have analyzed in Section IV-C, RocketMQ stores all
messages in the same physical file which is helpful when a
large number of write/read threads exist. When the number
of topics/partitions increases, the policy of deconcentrated
storage of messages to disks will lead to disk IO competition
to cause performance bottlenecks, so the the RocketMQ per-
formance cannot grow linearly with the number of partitions.
As for Kafka and Pulasr, they rely on Zookeeper to maintain
the meta-information about partitions and replicas. However,
due to the capacity and performance of Zookeeper, the num-
ber of brokers and partitions has upper limits, so the through-
put will decrease once the number of partitions exceeds a
threshold.

As these figures show, under various test conditions, Kafka
outperforms other systems in all test cases. This can be
attributed to Kafka’s key optimization techniques as dis-
cussed in Section IV-A, e.g., zero-copy, disk sequential
read/write, and data compression optimizations. Specially,
(1) With zero-copy technology, Kafka can skip the copy of
the user buffer and create a direct mapping of disk space and
memory. The data is no longer copied to the user buffer, which
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FIGURE 8. Latency comparison.

greatly improves its performance. (2) Kafka persists message
records to disk, random read and write on disk can be really
slow. Kafka adopts sequential read/write to improve the speed
of disk I/O. Messages are appended to the end of a local disk
file sequentially instead of randomwrite operations, resulting
in a significant increase in Kafka’s write throughput. (3) If
compressing each message, the compression rate can be quite
low. Kafka employs bulk compression instead of compression
for each individual message, as a result the transfer overhead
is greatly reduced.

C. LATENCY RESULTS
We also test the latency of these message queuing systems
with various parameter settings. Latency measures how long
it takes for a message to be transmitted between endpoints,
which is also a keymetric for messaging systems. The latency
results can be attributed to many factors, such as metadata
processing, packet replication, memory access, and dequeue
operations. FIGURE 8a shows the latency results of different
systems when varying the message size and fixing the num-
ber of topics/producers/consumers/partitions. The latency of
all systems increases with the increasing message size as
the overhead of message transfer and disk I/O is increas-
ing for larger messages. Kafka and RabbitMQ show longer
latency results than the other systems, as Kafka and Rab-
bitMQ employ batch processing to improve throughput at the
expense of latency performance. In addition, RocketMQ dis-
tinguishes itself from other systems for its evident superiority
in latency performance, which will be explained later.

FIGURE 8b shows the effect of the number of produc-
ers/consumers on the latency result. We fix the number of
partitions and the number of topics both as 1, fix the message
size as 4KB, and vary the number of producers/consumers
from 1 to 5. With the number of producers/consumers grows,
the concurrency overhead is increasing. This causes the
increased latency as the figure shows. Similar to the latency
results of previous experiment, we can see that Kafka and
RabbitMQ show longer latency than the other systems, and
RabbitMQ exhibits much better latency performance than the
other systems.

FIGURE 8c shows the latency result when vary-
ing the number of partitions. We fix the number of

topics/producers/consumers and the message size, and vary
the number of partitions from 1 to 100. As there is no
topic/partition concept in RabbitMQ and ActiveMQ, we omit
their results. From the figure, we observe that as the number
of partitions increased, the latency of Kafka and Pulsar
first decrease and then increase. This is caused by the per-
formance of Zookeeper and the disk competition. In addi-
tion, Kafka still exhibit very poor latency performance than
others.

From these figures, we observe that RocketMQ exhibits
marked superiority on the latency metric. RocketMQ’s
latency does not exceed 10ms, which is great in many
application scenarios. To explore lower latency, RocketMQ
has employed multiple optimization techniques to reduce
the following latencies. (1) Reducing JVM Pause Latency.
The JVM can produce many pauses during its operation,
including GC (Garbage Collection), RedefineClasses, etc.
By means of adjusting stack size, GC timing, and optimizing
the data structure, RocketMQ can reduce the JVM pause
latency significantly. (2) Reducing Lock Latency. Locking
is widely used in the multi-threaded applications and can
cause long thread waiting. RocketMQ uses optimistic lock
to reduce the lock latency. PutMessageSpinLock is used by
default to improve the lock unlocking efficiency for high
contention workloads and to reduce the overhead of thread
context switches. (3) Reduce Page Cache Latency. Page cache
can prompt the read-write speed, but the writeback of dirty
pages can lead to latency. RocketMQ employs memory pre-
distribution, file preheating, and mlock system calls to reduce
the page cache latency.

VI. DISCUSSION ON BEST-SUITED USE CASES
Our comprehensive analysis and test results provide a fair
comparison of these message queuing systems. We sum-
marize our comparison results in a radar chart as shown
in FIGURE 9. Different systems have different pros and
cons. These systems have different design philosophies and
optimization techniques, and are competent in various scenar-
ios. For example, Kafka is endowed with a higher through-
put while RocketMQ distinguish itself for its superiority
in latency performance. We can choose different message
queuing systems according to application requirement. In this
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FIGURE 9. System comparison.

section, we offer several guidelines to choose these system
candidates for different use cases.

A. REQUIRE FOR HIGH THROUGHPUT
Kafka is the best choice for users who need to do large-scale
data collection and analysis. Its high throughput can support
the collection of streaming data, and it can be used as the data
source of many data analysis tools, such as Flink [23], Spark
[22], Storm [39]. In general, Kafka is suitable for web site
activity tracking, streaming data collection and monitoring,
log merging, etc, and play the role of data source of big data
processing frameworks. It is recommended that the number of
consumers in the consumer group be the same as the number
of partitions, and that the appropriate number of partitions
should be set at each Broker to maximize performance.

B. REQUIRE FOR LOW LATENCY
If the message queuing system is used to process online
business, which requires low latency for high quality of ser-
vice, RocketMQ is preferred. Due to its high reliability and
low latency, RocketMQ can be used in order transactions,
recharge, messaging push, real-time analysis and many other
applications. RocketMQ can support large amounts of topics
and message accumulation so that it can also be used in
complex business scenarios.

C. REQUIRE FOR MultiFunction
Users may need message queue to provide multiple func-
tionalities to implement their application systems. In such a
case, Pulsar is usually a good choice because it offers more

functions than other message queuing systems, such as delay
queuing and priority queuing. If Pulsar does not meet the
requirements, it is recommended to select an eligible system
according to TABLE 1.

VII. CONCLUSION
In this article, we comprehensively evaluate five popular
message queuing systems. We compare Kafka, RabbitMQ,
RocketMQ,ActiveMQ, and Pulsar frommultiple dimensions,
including production features, quality-of-service guarantee
features, performance features, and functionality features.
The comparison analysis result of these systems is summa-
rized in TABLE 1. To fairly compare the throughput/latency
performance, we design a test framework with a unified tool
to emulate producer and consumer. Our test results show that
Kafka has a higher throughput while RocketMQ has a lower
latency. Therefore, we can choose different message queu-
ing systems according to different application requirements.
If the message queue is used to process online business,
which requires low latency for quality of service, RocketMQ
is preferred. If the message system is used to process massive
amounts of messages, e.g., log processing, big data analysis,
and stream processing, Kafka is preferred. In addition, Pulsar
is appropriate if some special functionality is required.
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