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ABSTRACT Recently, public attention is thoroughly aroused as to the security threats of Wireless Network
Control System (WNCS), which can seriously disrupt the system operation. In order to achieve the attack
effect that each sensor is damaged and maximize the terminal estimation error covariance, it is necessary to
study an attack system from the attacker’s perspective. In this paper, we establish an attack system, which
includes: the multi-sensor importance evaluationmodel, the time allocation of jamming attack, and the attack
rules. Specifically, we firstly establish the wireless network control system model and the jamming attack
model. Then, according to the transmission data and channel parameter information which is intercepted
by the attackers, we establish an evaluation model of sensor based on the Mean Impact Value (MIV)
algorithm. Then, based on the evaluation results of each sensor, we establish a distribution model of the
number of attacks on each sensor. Then, we perform two jamming attack rules(continuous attack rule
and good-sensor-late-attack rule)to attack each sensor. Finally, we use the attack system to conduct digital
simulation experiments in first-order and high-order system. There is no different between the MIV-based
sensor evaluation method in the multi-sensor importance evaluation experiment and sensor performance
evaluation based on estimation error. In the jamming attack time allocation experiment, effect that every
sensor was attacked had been achieved. In the attack rule experiment, we compare the experimental results
of ‘‘continuous attack’’ and ‘‘ discontinuous attack’’, and the result shows that the effect of ‘‘continuous
attack’’ is better than that of ‘‘intermittent attack’’. Similarly, we have conducted comparative experiments
on all attack strategies, and the results show that ‘‘ good-sensor-late-attack ’’ strategy has the best effect. The
effectiveness of the attack system is proved by digital simulation experiment.

INDEX TERMS Wireless networked control systems, jamming attack system, mean impact value algorithm,
CMIV evaluation model, terminal estimation error.

I. INTRODUCTION
Wireless networked control systems (WNCS) are defined
as a spatial distributed system which connects sensors,
remote estimators and controllers by wireless communica-
tion network [1], [2].With the rapid development of Internet
technology, WNCS have been extensively used, such as
smart grid, smart logistics, smart transportation and smart
home [3], [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Byung-Seo Kim .

At present, WNCSs have been increasingly important in
industrial systems. Due to their ‘‘openness’’ characteris-
tics [5], they are prone to be attacked. As a result, the secu-
rity issues of WNCSs have aroused so much interest from
researchers [6], [7]. Attackers study how to attack WNCSs,
while defenders study how to detect attacks [8], [9]. Generally
speaking, there are four types of network attacks [10]: space
hiding-time hiding attacks, such as system simulation attacks,
Stuxnet-type replay attacks, etc.; space non-hidden-time hid-
ing attacks, such as zero dynamic attacks, zero-dynamic
induced attacks, etc.; space hiding-time non-hiding attacks,
such as data Injection attacks, topological attacks, etc.;
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space does not hide-time does not hide attacks, such as DoS
attacks, general replay attacks, etc.

Based on the above categories, the most common attack
methods mainly include: false data injection attack, replay
attack and DoS attack. The false data injection attack is
defined as modifying the integrity data of data packets trans-
mitted between components in the system [11]. Further,
the researcher defines a stealthy fake data injection attack
[12], [13]. As for the replay attack, it first records data from
the system, and then injects the recorded data into the system
to perform the attack [14], [15]. The DoS attack exploits
limited network resources by constantly sending excess data
to attack network. Jamming attack is a typical Dos attack
which can block the transmission of information. Therefore,
this paper mainly considers jamming attack.In the paper [16],
based on the defender’s perspective, the researcher proposed
a scheme, which can detect node compromise attack without
having the need to share a key ring. However, there are few
research results on jamming attacks from the perspective of
attackers. In the paper [17], the attacker studied theDos attack
strategy that maximizes the LOG cost function under energy
constraints. Because the state estimate is obtained on the
sensor, and the state estimation value and the estimated error
covariance are transmitted to the remote estimator through
the wireless network channel. Therefore, it leads to increase
the pressure of network bandwidth, and the sensor must be
a smart sensor. In [18], a necessary and sufficient condition
is established for the scenario where the attacks are unde-
tectable by the detector of the multi-sensor system. But the
point is that it’s difficult to get sensor parameters. In the
paper [19], researcher established a multivariate evaluation
model. Based on this evaluation model, the suitable num-
ber of sensors can be obtained. The work in [20] applies
the idea of cooperative game to design an optimal power
allocation strategy when there are multiple attackers. The
authors in [21] present a probabilistic attack method that
the attacker perceives the channel state and execute the DoS
attack only when the channel is idle. The authors in [22]
investigate optimal attack schedule problems of the wireless
Cyber-Physical Systems with two sensors under DoS attack.
However, the researchers didn’t take it into consideration that
the allocated attack time of each sensor is different because of
the different relative importance. In addition, they also didn’t
take account of the ‘‘universality’’ of the attack.

This paper studies the scenario where multiple sensors
transmit measured values to remote estimators through wire-
less channels. We should ensure every sensor being attacked.
Meanwhile, each sensor has a different contribution to the
physical device, and relative importance of each sensor is
different, so the attack time is also different. Therefore,
in order to maximize the terminal estimated error covariance,
the purpose of this article is to design an optimal attack
system from the attacker’s point of view based on the dif-
ferent importance of each sensor under the constraints of
the attacker. The main contributions of this article are as
follows:

(1) We firstly establish a complete jamming attack system,
includingmulti-sensor importance evaluationmodel, the time
allocation of jamming attack and two attack rules.

(2) Then, in the multi-sensor importance evaluation model,
we use the idea of MIV algorithm to analyze the relative
importance of each sensor.

(3) Then, based on the results of sensor importance analy-
sis, we allocate the attack time of each sensor. We guarantee
that every sensor is attacked, and the relatively important
sensor will be attacked for more time.

(4) Then, with the goal of maximizing the terminal esti-
mated error covariance, we formulate two attack rules.

(5) Finally, this paper proves the validity of the conclusion
through digital simulation experiment.

The rest of this paper is organized as follows. Section II
presents the system model and attack model, and proposes a
method for the identification of sensor structure parameter,
and formulates the optimal jamming attack scheduling prob-
lem. Section III constructs an attack system, which includes
multi-sensor importance evaluation, the time allocation of
jamming attack and attack rules. In Section IV, we provide
several numerical examples to validate our theoretical results.
Section V draws conclusions.

Notations: In the whole paper, Z are the sets of all integers.
Rn represents the Euclidean space with n-dimension.
P[X ] and E[X ] refer to probability and expectation for a ran-
dom variable X , whose spectral radius is presented by ρ(X ).

II. PROBLEM FORMULATION
A. SYSTEM EQUATIONS AND OBSERVATION EQUATIONS
As shown in Figure 1, a wireless network control sys-
tem is composed of physical devices, multiple sensors and
remote estimators. It has broader application because of
its characteristics of cheapness, easy deployment and easy
expandability [23].

FIGURE 1. Wireless network control system.

Taking the discrete-time linear time-invariant system as
an example, this paper constructs the system equation and
observation equation of the wireless network control system,
as shown below [24]:

x(k+1) = Ax(k)+ ω(k)
yi(k) = Hxi(k)+ vi(k) i= 1, 2, 3, . . . (1)
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where k ∈ Z is a discrete time series, x(k) ∈ Rnx is the
state value of the system, assuming that the initial state of
the system is x(0), yi(k) ∈ Rmy is the measured value of the
ith sensor, ω(k)is the process noise, assuming it is Gaussian
white noise, the mean is 0, and the variance is Q ≥ 0, vi(k) ∈
Rny is the measurement noise, assuming it is Gaussian white
noise, the mean is 0, and the variance is Ri ≥ 0, A ∈ Rn×n,
H ∈ Rm×n, x(k), ω(k), and vi(k) are mutually independent.

B. THE IDENTIFICATION OF SENSOR STRUCTURE
PARAMETER
This paper assumes that there are N sensors in total and the
attacker cannot know the structural parameter information
of the sensor,which means that the measurement matrix H
in formula (1) cannot be known, but the attacker can obtain
the data set y as follows by monitoring and recording the
measurement value of each sensor:

y = [y1, y2, . . . , yi, . . . yN ]

yi = [yi1, yi2, . . . . . . , yik ] (2)

where yi represents the ith sensor and yik represents the
measured value of the ith sensor at the kth moment.
It is assumed that the attacker is aware of the knowledge

of system dynamics, that is, the attacker can use the existing
priori knowledge to analyze the measurement equation and
determine model structure. This paper adopted ‘‘Maximum
Exponential Square State Estimator’’ which was proposed in
the papers [25], [26] and [27]. So the objective function is as
follows:

min
H

k∑
i=1

−ωi exp(−
(yi − Hxi)2

2σ 2 ) (3)

where ωi is the weight; σ is the Parzen window width.

Let F =
k∑
i=1
−ωi exp(−

(yi−Hxi)2

2σ 2
), where i represents the

ith sensor. The derivative of F to H is obtained:

∂F
∂H
=

k∑
i=1

−ωi(exp(−
(yi − Hxi)2

2σ 2 ))(−
2(yi − Hxi)(−xi)

2σ 2 )

= −
1
σ 2

k∑
i=1

ωi(exp(−
(yi − Hxi)2

2σ 2 ))((yi − Hxi)xi)

= −
1
σ 2

k∑
i=1

ωi(exp(−
(yi − Hxi)2

2σ 2 ))(yixi)

−ωi(exp(−
(yi − Hxi)2

2σ 2 ))(H (xi)2) (4)

Let ∂F
∂H = 0, then the closed-form solution ofH is as follows:

⇒ 0 =
k∑
i=1

ωi(exp(−
(yi − Hxi)2

2σ 2 ))(yixi)

−ωi(exp(−
(yi − Hxi)2

2σ 2 ))(H (xi)2)

⇒ 0 =
k∑
i=1

ωi(exp(−
(yi − Hxi)2

2σ 2 ))(yixi)

−

k∑
i=1

ωi(exp(−
(yi − Hxi)2

2σ 2 ))(H (xi)2)

⇒

k∑
i=1

ωi(exp(−
(yi − Hxi)2

2σ 2 ))(yixi)

=

k∑
i=1

ωi(exp(−
(yi − Hxi)2

2σ 2 ))(H (xi)2)

⇒

k∑
i=1

yixi = H
k∑
i=1

(xi)2

⇒ H =

k∑
i=1

yixi

k∑
i=1

(xi)2
(5)

C. THE REMOTE ESTIMATOR
The attacker monitors the wireless communication network
and launches a jamming attack to blockmeasurement value of
transmission yi, i ∈ {1, 2, . . . ,N }. This paper use variable θ
to describe the attacker’s attack status, as shown below:

θ =

{
1, Attacker launches an attack
0, other

(6)

Therefore, the function y∗a(k) represents the data received by
the remote estimator, as shown below:

y∗a(k) = θ f (y
∗(k))+ (1− θ )y∗(k) (7)

where f (y∗(k)) = [y1(k)y2(k) . . . yi+1(k)yi−1(k) . . . yN (k)]T .
According to the modified Kalman filter [28], [29],

the optimal estimated value x̂a(k) is obtained in the remote
estimator, as shown below:

x̂a(k|k − 1) = Ax̂a(k − 1) (8)

P̂a(k|k − 1) = AP̂a(k − 1)AT + Q (9)

P̂−1a (k) = P̂−1a (k|k − 1)+
∑
i∈s

(H∗a )
TR−1i H∗a (10)

K̂a(k) = P̂a(k)(H∗a )
T [R−1i , i ∈ s] (11)

x̂a(k) = x̂a(k|k − 1)+ K̂a(k)(y∗a(k)− H
∗
a x̂a(k|k − 1))

(12)

where s represents the attack scheduling of the attacker,
namely: s = (ξ (1), ξ (2), . . . , ξ (T )), ξ (k) = i means that
the attacker attacks the ith sensor at k time, K̂a(k) refers to the
gain of theKalmanfilter,H∗a = H1H2 . . .Hi−1Hi+1 . . .HN ]T .

D. THE JAMMING ATTACK MODEL
There is an attacker in the scenario considered in this paper.
Since wireless communication signals can only be transmit-
ted over one channel at a time, the attacker can only attack
one channel at once [30]. ξ (k) = i means that the attacker
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FIGURE 2. CMIV model.

attacks the communication channel of sensor i at the time kth,
so 1ξ (k) =1 + 1ξ (k) =2 + · · · .+ 1ξ (k) =N ≤ 1 [31].
In order to make the attack broader, it is required that each

sensor must be subject to jamming attacks, namely:

τ1 > 0, τ2 > 0, τ3 > 0, . . . . . . , τN > 0 (13)

where τi represents the attack time of the ith sensor.
The accuracy of the measurement data varies because of

the quality differences of sensors. Therefore, the assigned
attack time is relevant to the relative importance of each
sensor. In this paper, the relatively important sensors get more
jamming attack time, and the relatively less important sensors
get less jamming attack time, namely:

ηi > ηj ⇒ τi > τj (14)

where ηi represents the relative importance of the ith sensor
and τi represents the attack time of the ith sensor.
Due to P̂a(k) = E[(x(k) − x̂a(k))(x(k)− x̂a(k))T ] [32],

as mentioned in [34], the estimation error P̂a(T ) at the end
time T is an important indicator to measure the estimation
performance. Therefore, this paper solves the following prob-
lems:

Problem 2.1.

max Tr[JT (s)] (15)

s.t. 1ξ (k) =1 + 1ξ (k) =2 + · · · .+ 1ξ (k) =N ≤ 1 (16)

τ1 > 0, τ2 > 0, τ3 > 0, . . . . . . , τN > 0 (17)

ηi > ηj ⇒ τi > τj (18)

where JT (s) = P̂a(T ) is the estimated error at the end time
under the attack strategy s.

III. THE SYSTEM OF JAMMING ATTACK
A. MULTI-SENSOR IMPORTANCE EVALUATION BASED ON
CMIV MODEL
This paper establishes a CMIV (Centralized-Mean-Impact-
Value) model. This model is used to evaluate the relative
importance ofmulti-sensor. And themodel employs theMean
Impact Value (MIV) algorithm, as shown in Figure 2. The
MIV algorithm was first applied to Neural Network to reflect
the influence of feature input in each dimension, on at the
output of Neural Network. Later, the researcher uses the MIV
algorithm to evaluate the influence weight of the network
feature input on the network output [33].

Assuming that there are N sensors. The first layer of the
model, input the data of sensor measurement yi and get y1±δ
through the function Z (yi), as shown below:

Z (yi) = y1±δ = [y1, y2, . . . . . . (1± δ)yi]

yi = [yi(1), yi(2), . . . , yi(k)] (19)

where Z (yi) represents the self-increment and self-decrement
of the measured value of the evaluated ith sensor.
The second layer of the model takes the output y1±δ of

the first layer as input, and get xattack+(k|k) and xattack−(k|k)
through the function G(y1±δ), as shown below:

G(y1±δ) =



xattack (k|k − 1) = Axattack (k − 1|k − 1)
Pattack (k|k − 1) = APattack (k|k − 1)AT + Q
xattack±(k|k) = xattack (k|k − 1)+
Kattack [y1±δ − hxattack (k|k − 1)]

Kattack =
Pattack (k|k − 1)hT

(hPattack (k|k − 1)hT+R)
Pattack (k|k)= (I−Kattackh)Pattack (k|k − 1)

(20)

where I represents the identity matrix, hT represents the
transpose of matrix h and AT represents the transpose of
matrix A.
In the third layer of the model, the outputs xattack+(k|k)

and xattack−(k|k) of the second layer are used as inputs,

and the outputs
∧

Y
i,+

and
∧

Y
i,−

are generated through the func-

tion L(xattack±(k|k)) first, and then the output MIVi can be

obtained by the functionM (
∧

Y
i,+
,
∧

Y
i,−

), as follows:

∧

Y
i,+
=

1
K
∗

K∑
k=1

∥∥xi,attack+(k|k)− xattack (k)∥∥2
∧

Y
i,−
=

1
K
∗

K∑
k=1

∥∥xi,attack−(k|k)− xattack (k)∥∥2 (21)

MIVi = (
∧

Y
i,+

)− (
∧

Y
i,−

)

=
1
K
∗ (

K∑
k=1

∥∥xi,attack+(k|k)− xattack (k)∥∥2
−

K∑
k=1

∥∥xi,attack−(k|k)− xattack (k)∥∥2) (22)
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where ‖.‖2 represents the two-dimensional norm, let
0.1 ≤ δ ≤ 0.3, i = 1, 2, . . . . . .N .

In summary, the final output MIVi of the model is the
average impact value of the ith sensor which need to be
evaluated. In the same way, the average influence value
MIV = [MIV1,MIV2, . . . . . . ,MIVN ] of each sample in the
data set y = [y1(k), y2(k), . . . . . . yN (k)] could be calculated
according to the above steps. The absolute value of MIVi is
regarded as the relative importance of each sensor, namely:{

ηi > ηj |MIVi| >
∣∣MIVj∣∣

ηi < ηj |MIVi| <
∣∣MIVj∣∣ (23)

where ηi represents the importance of the ith sensor, and
|.| represents the absolute value.

B. THE TIME ALLOCATION OF JAMMING ATTACK
From the perspective of the attacker, the allocation of attack
time is relevant to the relative importance of each sensor.
The attack time of the relatively important sensor should
be more than the attack time of the relatively unimportant
sensor. At the same time, in order to ensure each sensor being
attacked, this paper allocates the attack time of each sensor
based on the sensor evaluation result of the CMIV model,
as shown below:

τi =
MIVi
N∑
j=1

MIVj

∗ τ ′ (24)

where τ ′ represents the total attack time allocated by the
attacker, τi represents the attack time allocated by the ith
sensor and N means there is a total of N sensors.

C. JAMMING ATTACK RULE
As described in formula 1:

x(k + 1) = Ax(k)+ w(k)

yi(k) = Hx(k)+ vi(k) (25)

where w(k) and vi(k) are zero-mean Gaussian white noise,
and their variances are Q and Ri respectively, and they are
independent of each other.

Rewrite Equation (10) as:

P̂(k + 1) =
1

h−1 + g
(26)

where h = AP̂(k)AT + Q, g =
∑
i∈s
HTR−1i H .

Theorem 1: With the goal of maximizing the estimated
error P̂(T ) at the terminal, the optimal strategy for solving
problem 2.1 is: continuous attack is better than discontinuous
attack.

Proof: Suppose that the attacker has T attack time,
attack strategy 1 is s1 = {1, 1, 1, 1, . . . , 1}, number(1) =
T and attack strategy 2 is s2 = {1, 0, 1, 0, 1, 0, . . . , 1},
number(1) = T . When the first attack is completed, the esti-
mation error of attack strategy 1 is the same as attack

strategy 2, namely: P̂s1 (1) = P̂s2 (1);When the second attack
is completed, the estimated error of attack strategy 1 is P̂s1 (2),
attack strategy 2 did not attack at this time: g(10)s2 > gs1 (2),
hs2 (10) = hs1 (2), as shown in formula (26), P̂(k+1) is
proportional to h and inversely proportional to g, so P̂s1 (2) >
P̂s2 (10). When attack strategy 2 completes the second attack,
P̂s1 (2) > P̂s2 (10), so hs1 (2) > hs2 (2) and g(2)s2 > gs1 (2).
Similarly, we get: P̂s1 (2) > P̂s2 (2); We can get P̂s1 (T ) >
P̂s2 (T ) in a similar way.
Theorem 2: With the goal of maximizing the estimated

error P̂(T ) at the terminal, the optimal strategy to solve
problem 2.1 is: the attacker follows the ‘‘good-sensor-
late-attack’’ strategy.

Proof: The smaller the measurement noise in for-
mula (26), the more accurate the sensor’s measurement value
generally is. Suppose the variances of the measurement
noises of the three sensors are r1, r2, r3 and r1 < r3,
so 1

r1
+

1
r2
> 1

r3
+

1
r2
,then get HT ( 1r1 +

1
r2
)H > HT ( 1r3 +

1
r2
)H = (HT 1

r1
H +HT 1

r2
H ) > (HT 1

r3
H +HT 1

r2
H ), namely

gr1r2 > gr3r2. As shown in formula (26), P̂(k+1) is inversely
proportional to g, so P̂r1r2(k+1) < P̂r3r2(k+1). Therefore,
the attacker follows the ‘‘ good-sensor-late-attack ’’ strategy
to maximize P̂(T ).

IV. ILLUSTRATIVE EXAMPLES
A. SIMULATION ANALYSIS OF MULTI-SENSOR
IMPORTANCE EVALUATION
Assuming that the wireless network control system consists
of three sensors. The followings are measured values of the
three sensors in Figure 3-5. In these figures, the x-axis repre-
sents time in seconds, and the y-axis represents the measured
value of the sensor.

FIGURE 3. The first sensor measurement.

1) THE SIMULATION OF IMPORTANCE EVALUATION OF
SENSORS BASED ON CMIV MODEL
This paper evaluates relative importance of 3 sensors accord-
ing to the CMIV sensor evaluation model proposed earlier
in the paper. The main parameters of the CMIV sensor
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FIGURE 4. The second sensor measurement.

FIGURE 5. The third sensor measurement.

evaluation model are as follows: A = 1, Q = 0.5, x0 = 0,
k = 50, δ = 0.2. The measured values of the three sensors
(Figure 3-Figure 5) are taken as the model input, and the
output of themodel is obtained in turn:MIV1,MIV2,MIV3,as
shown in the following table:

Table 1 shows, the MIV1 is 0.0467, the MIV2 is 0.0912,
the MIV3 is 0.1375. TheMIV1 is smaller than theMIV2 and
the MIV2 is smaller than theMIV3.

TABLE 1. CMIV model output MIV value.

2) THE SIMULATION OF IMPORTANCE EVALUATION OF
SENSOR BASED ON REAL SYSTEM MODEL
The system state equation parameters and the measurement
equation parameters of these three sensors are as follows:

A = 1,Q = 0.5, H1 = H2 = H3= 1,

R1 = 1, R2 = 0.5, R3 = 0.2, δ = 0.2

Use the MIV algorithm to evaluate the relative importance
of the three sensors and obtain successively: MIV1, MIV2,
MIV3, as shown in the following table:

TABLE 2. MIV value based on real system.

The table 2 shows, theMIV1 is 0.0547, theMIV2 is 0.1166,
MIV3 is 0.1542.The MIV1 is smaller than the MIV2, and the
MIV2 is smaller than theMIV3.

3) THE SIMULATION OF SENSOR IMPORTANCE EVALUATION
BASED ON ESTIMATION ERROR OF REAL SYSTEM
The system state equation parameters and the measurement
equation parameters of the three sensors are as follows:

A = 1,Q = 0.5, H1 = H2 = H3= 1,

R1 = 1, R2 = 0.5, R3 = 0.2

Use the Kalman filter algorithm to simulate the three sensors,
and obtain the one-dimensional norm of the estimated errors
of three sensors in turn, as follows:

TABLE 3. Estimated error based on real system.

According to Table 3, the average estimation error of
sensor 1 is greater than that of sensor 2, and the average
estimation error of sensor 2 is greater than that of sensor 3.

The comparison of the simulation results in Table 1 and
Table 2 shows that the sensor importance evaluation method
based on sensor structure parameter identification, and the
sensor importance evaluation method based on the real sys-
tem have the same MIV value order of the three sensors.
According to Kalman filtering algorithm, the smaller the
estimation error, the better the performance of the sensor.
From Table 3, it can be concluded that the performance of
sensor 3 is better than that of sensor 2, and the performance
of sensor 2 is better than that of sensor 1. The importance of
the sensors obtained by the MIV value sorting is the same as
the sensor performance evaluation results obtained in Table 3.

B. THE SIMULATION ANALYSIS OF OPTIMAL JAMMING
ATTACK
1) THE TIME ALLOCATION OF JAMMING ATTACK
Assume that the attack time provided by the attacker is
τ ′ = 15, and according to formula 24 the calculated attack
time of the three sensors is as follows:

τ1 =
0.0467

0.0467+ 0.0912+ 0.1375
× 15 = 3
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τ2 =
0.0912

0.0467+ 0.0912+ 0.1375
× 15 = 5

τ3 =
0.1375

0.0467+ 0.0912+ 0.1375
× 15 = 7

2) COMPARATIVE SIMULATION ANALYSIS OF CONTINUOUS
ATTACK AND DISCONTINUOUS ATTACK
Considering only to attack sensor 3, assume that the
attack strategy 1 is a continuous attack, namely: r1 ={
1 1 1 1 1 1 1

}
and suppose attack strategy 2 is an inter-

mittent attack, namely:

r2 =
{
1 0 1 0 1 0 1 0 1 0 1 0 1

}
.

where {.} is attack rule, ‘‘1’’ means to launch an attack,
‘‘0’’ means no attack.

Figure 6 shows the variation curve of the estimation error,
‘‘O’’ represents attack strategy1 and ‘‘*’’ represents attack
strategy2. In attack strategy 1, when the attack is completed,
the estimation error is 0.2287. In attack strategy 2, when
the attack is completed, the estimated error is 0.2151. The
estimation error of terminal time in attack strategy 1 is larger
than that in strategy 2.

FIGURE 6. Comparison of continuous and intermittent attacks.

3) SIMULATION ANALYSIS OF ‘‘attacking GOOD SENSOR
LATER’’ STRATEGY
For three sensors, there are six feasible attack strategies.
According to the attack time allocated by B.1, as shown
below:

s1 =

 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1


s2 =

 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 0 0 0 0 0


s3 =

 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1



s4 =

 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0


s5 =

 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0


s6 =

 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1


where {.} is attack rule, the first line represents the attack
strategy for the first sensor, the second line represents the
attack strategy against the second sensor, and the third line
represents the attack strategy against the third sensor, ‘‘1’’
means to launch an attack, ‘‘0’’ means no attack.
Figure 7 shows the changes of estimated error of six attack

strategies. The figures show that the attack strategies with the
largest estimated error performance at the end time k = 60
are attacking strategy s1 and attack strategy s3. When the
estimated error performance at the end point of the two attack
strategies is the same, we reversely compare the estimated
error at each point from the end point. In the time period
k = 54 to k = 60, the estimation error of attack strategy s1
and attack strategy s3 is the same.When k = 53,the estimated
error performance of attack strategy s1 is greater than that
of attack strategy s3, so one of the optimal attack rules for
problem 2.1 is s1.

C. SIMULATION ANALYSIS OF MULTI-SENSOR
IMPORTANCE EVALUATION BASE ON HIGH-ORDER
SYSTEM
1) THE SIMULATION OF IMPORTANCE EVALUATION OF
SENSORS BASED ON CMIV MODEL
This paper evaluates the relative importance of 2 sensors
according to the CMIV sensor evaluation model proposed
earlier in the paper. Consider the system (1) with

A =
[
1 0
0 1

]
, H =

[
0.5 1

]
,

Q = 0.5, R1 = 10, R2 = 2

Use the MIV algorithm to evaluate the relative importance
of the two sensors and obtain successively: MIV1, MIV2,
as shown in the following table:

TABLE 4. MIV value based on high-order system.

Table 4 shows, the MIV1 is 0.2174, the MIV2 is 0.3579.
TheMIV1 is smaller than theMIV2.
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FIGURE 7. Comparison of estimation error performance of 6 attack strategies.

2) THE SIMULATION OF SENSOR IMPORTANCE
EVALUATION BASED ON THE ESTIMATION ERROR
Use the Kalman filter algorithm to simulate the two sensors,
and obtain the one-dimensional norm of the estimated errors
of two sensors in turn, as follows:

TABLE 5. Estimated error.

According to Table 5, the average estimation error of sen-
sor 1 is greater than that of sensor 2.

According to Kalman filtering algorithm, the smaller the
estimation error, the better the performance of the sensor.
According to Table 5, the performance of sensor 2 is better
than that of sensor 1. The sensor importance obtained by
sorting the MIV value in Table 4 is the same as the sensor
performance evaluation result obtained in Table 5.

D. THE SIMULATION ANALYSIS OF JAMMING ATTACK
RULE BASE ON HIGH-ORDER SYSTEM
1) THE TIME ALLOCATION OF JAMMING ATTACK
Assume that the attack time provided by the attacker is
τ ′ = 15, and according to formula 24 the calculated attack
time of the two sensors is as follows:

τ1 =
0.2174

0.2174+ 0.3579
× 15 = 6

τ2 =
0.3579

0.2174+ 0.3579
× 15 = 9

FIGURE 8. Comparison of continuous and intermittent attacks in the
high-order system.

2) COMPARATIVE SIMULATION ANALYSIS OF CONTINUOUS
ATTACK AND DISCONTINUOUS ATTACK
Considering only to attack sensor 2, assume that the attack
strategy 1 is a continuous attack, namely: v1 = {111111} and
suppose the attack strategy 2 is an intermittent attack, namely:

v2 =
{
1 0 1 0 1 0 1 0 1 0 1

}
.

where {.} is attack rule, ‘‘1’’ means to launch an attack, ‘‘0’’
means no attack.

Figure 8 shows the variation curve of the estimation error.
‘‘O’’ is attack strategy 1 and ‘‘*’’ is attack strategy 2. In attack
strategy 1, when the attack is completed, the estimated error
is 1.0345. In attack strategy 2, when the attack is completed,
the estimated error is 1.0129. The estimation error of terminal
time in attack strategy 1 is larger than that in strategy 2.
So, one of the optimal attack rules for problem 2.1 is v1.
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FIGURE 9. Comparison of estimation error performance of 2 attack strategies.

Therefore, the validity of theorem 3.1 in this paper can be
proved.

3) SIMULATION ANALYSIS OF ‘‘attacking GOOD SENSOR
LATER’’ STRATEGY BASE ON HIGH-ORDER SYSTEM
According to the attack time allocated by D.1, there is a total
of 2 attack strategies, as shown below:

m1 =

{
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

}
m2 =

{
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

}
where {.} is attack rule, the first line represents the attack strat-
egy for the first sensor, the second line represents the attack
strategy against the second sensor, ‘‘1’’ means to launch an
attack, ‘‘0’’ means no attack.

Figure 9 shows the curve of estimation error covariance
over time. As can be seen from the figure, the attacker did
not launch attack from k = 1 to k = 45. From k = 46 to
k = 60, attacker launched attack. Comparing the estimation
error covariance of the two attack strategies, the estimation
error covariance of attack strategy 1 is 2.684 at the end point
k = 60, and that of attack strategy 2 is 1.319. At the end point,
the estimation error covariance of attack strategy 1 is larger
than that of attack strategy 2.

V. CONCLUSION
In this paper, we establish an attack system. Specifically,
the attack system consists of three layers: the multi-sensor
importance evaluation based on CMIV model, the time
allocation of Jamming attack and attack rules. The sensor

importance evaluation model based on CMIV can accurately
evaluate the relative importance of each sensor. The allocation
model of the number of sensor attacks can ensure that each
sensor is attacked and themore important sensors are attacked
for more time. The attack criterion can ensure that the estima-
tion error covariance of the remote estimator is maximized at
the end point, when sensor is attacked. We proved its effec-
tiveness by simulation experiments. Future works include the
study of attack rules for maximizing the average estimation
error of remote estimator, jamming attack rules for wireless
networked control systems with network delay, and jamming
attack rules for non-Gaussian white noise scenarios [35].
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