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ABSTRACT Zero-shot learning (ZSL) is an effective method to perform the recognition task without any
training samples of specific classes. Most existing ZSL models put emphasis on learning an embedding
between visual space and semantic space directly. However, few ZSL models research whether the human-
designed semantic features are discriminative enough to recognize different classes. Moreover, one-way
mapping suffers from the project domain shift problem. In this article, we propose to learn a Discriminative
Dual Semantic Auto-encoder (DDSA) based on the encoder-decoder paradigm to solve this problem. DDSA
attempts to construct two bidirectional embeddings to connect the visual space and the semantic space with
the help of the learned aligned space which includes discriminative information of the visual features and
semantic features. Based on the DDSA, we additionally propose a Deep DDSA to capture deep aligned
features that are more conducive to zero-shot classification. The key to the proposed framework is that it
implicitly exact the principal information from visual space and semantic space to construct aligned features,
which is not only semantic-preserving but also discriminative. Extensive experiments on five benchmarks
(SUN, CUB, AWA1, AWA2 and aPY) demonstrate the effectiveness of the proposed framework with state-
of-the-art performance obtained on both conventional ZSL and generalized ZSL settings.

INDEX TERMS Zero-shot learning, discriminative, encoder-decoder, aligned.

I. INTRODUCTION
There are about 30,000 basic object categories and subor-
dinate ones that human can recognize in the world. Human
can even recognize new classes dynamically from few exam-
ples with little effort, but it is not easy for computer-based
machine learning models that usually require thousands of
labelled samples for training. It is well known that collect-
ing enough training samples is time-consuming and labor-
intensive. Motivated by the ability of humans to recognize
unseen examples, the research area of zero-shot learning
(ZSL) has received increasing interests, which aims to make
good use of previously learned knowledge to recognize new
categories without the need for labelled training data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

Compared with the supervised learning, ZSL accomplishes
the recognition task by using the semantic information [1]
to build a relationship from seen classes to unseen classes.
Moreover, test samples can also be considered from both seen
and unseen categories, which is called Generalized Zero-Shot
Learning (GZSL). In real-world applications, seen categories
are usually more common than unseen ones, thus the GZSL is
more realistic and challenging than ZSL for practical recog-
nition tasks.

With respect to the bridge between the visual features and
their corresponding semantics, most existing ZSL methods
focus on building amapping between visual space and seman-
tic space with the seen samples. When classifying unseen
samples, the mapping is used to project images of unseen
class into the same semantic embedding space. Then the
classifier is used in the embedding space to recognize new
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FIGURE 1. Illustration of the DDSA framework. Semantic attributes in green font are not discriminative, but attributes with red front have large
variations.

samples from unseen classes, which is called the testing
process. However, the unseen samples and the seen samples
come from different classes, the mapping has been learned
by seen samples easily generate a strong domain bias prob-
lem [2] when used in the unseen classes. This would lead to
unseen samples being easily misclassified into seen classes.
Moreover, most ZSL models ignore that whether the human-
designed attributes are discriminative enough to recognize
unseen classes. The large variations within each attribute
will make it difficult to learn an appropriate classifier. Thus,
the learned embeddings by these models cannot preserve
the underlying discriminative information hidden in the seen
classes.

In this article, we propose a framework named Discrimi-
native Dual Semantic Auto-encoder (DDSA) to handle these
problems. An example is shown in Figure 1 as the illustration
of our framework. The framework intends to connect the three
spaces i.e. visual space, aligned space and semantic space
together by encoder-decoder paradigm. The learned aligned
space can effectively remove irrelevant information (such as
the background of tiger or zebra in Figure 1) in the visual
space.Moreover, the aligned space can capture discriminative
attribute correlations. For example, in Figure 1, the aligned
space provides the possibility of finding the combinations
of orange+furry and black+hoof, which is discriminative
to recognize different classes. Our main contributions are
summarized as follows:

• The proposed framework can find a aligned space
where irrelevant information in the visual space can
be removed and the the semantic information can be
preserved, which is more constructive to establish a
reconstruction relationship with the semantic space.The
aligned space can preserve the semantic information.

• The seen class classifier and the cross reconstruction
are utilized to make the aligned attributes discriminative
enough to pull the data from the same class together and
push those from different classes away from each other.

• Empirical results on five widely-used data sets show
both DDSA and Deep DDSA outperforms existing ZSL
models on five benchmarks and the convergence analy-
sis also shows the stability of the proposed algorithm.

The rest of the article is organized is follows:
Section 2 reviews the related work. Section 3 describes
the proposed approaches DDSA and Deep DDSA in detail.
Section 4 is reports experimental evaluation with some perti-
nent discussions. Finally, section 5 gives the conclusion.

II. RELATED WORKS
In this section, considering the key procedure in zero-shot
learning, wemainly introduce the related works for ZSL from
two aspects: the semantic information and visual-semantic
embedding.

A. SEMANTIC INFORMATION
Unlike supervised learning, semantic information is a bridge
to connect the seen and the unseen classes and it plays a key
role in ZSL to make the recognition possible. The semantic
information used in most works are attribute [3] and word-
vector [4]. The attribute is characteristic descriptions of a
class or an instance. For example, ‘‘stripe’’ can be shared
between ‘‘zebra’’ and ‘‘hyena’’ and ‘‘horselike’’ can be
shared between ‘‘donkey’’ and ‘‘horse’’. Thus attributes make
it possible for ZSL to recognize novel classes in the world.
Wordvector is a kind of semantic representation extracted
directly from numerous text information such as Wikipedia
articles and so on. Wordvector can also describe the differ-
ences and similarities between categories so it can build up
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the relationship between seen and unseen classes. Recently,
some deep models [5], [6] have been proposed to obtain more
discriminative semantics by deep neural networks.

However, the collected human-designed semantic informa-
tion is limited and redundant, thus the attribute or wordvector
obtained are usually less discriminative to classify unseen
classes. The limitation will create the domain gap among
classes and result in a domain shift problem [2]. In this article,
we propose to construct an aligned space to capture the
discriminative information lying in the visual and semantic
space.

B. VISUAL-SEMANTIC EMBEDDING
Semantic embedding aims to learn the mapping between the
visual feature space and the semantic space with different
semantic representations. According to different mapping
directions, Visual-Semantic Embedding (VSE) framework
can be divided into three types.

(1) Visual→Semantic Embedding aims to learn an
embedding function from the visual feature space to the
semantic space either using deep neural network rank-
ing/regression [7]–[9] or via conventional ones [10]–[12]. For
example, the DEVISE model [2] uses CNN and Word2Vec
features as input to construct a deep zero-shot classification
model. Reed et al. [13] trained an end-to-end framework to
align with the fine-grained and category-specific content of
images. Liu et al. [14] proposed a Graph and Auto-encoder
based Feature Extraction (GAFE) model which brings the
idea of auto-encoder into ZSL.

(2) Semantic→Visual Embedding aims to learn an embed-
ding function from the semantic space to the visual feature
space, such as [15], [16], which can effectively reduce the
hubness problem. The training and testing process are sim-
ilar with the Visual→Semantic Embedding. For example,
DEM [17] projects the semantics of seen samples to the cor-
respondding visual space by a deep embedding model to alle-
viate the hubness problem. Different from directly learning a
mapping in visual space, Sung et al. [18] recently proposed
to compare the visual features with embedded semantics with
the help of a relation network (RN). It is noticed that RN tries
to search for corresponding semantics in a self adaptive way.

(3) Visual→Common Space←Semantic aims to learn a
common space where both the semantic space and the visual
feature space are projected to, such as [19], [20]. In the testing
phase, both attributes and visual features need to be embed-
ded into the common space for classification. For example,
Akata et al. [21] tried to learn a common joint space between
semantics and visual features. Zhang et al. [22] learns a
common embedding for visual and semantic features to get
mixture patterns which are used to measure the similarity.

Different from such existing approaches which learn a
single direction mapping between the visual space and the
semantic space directly, we consider the encoder-decoder
paradigm and try to learn two bidirectional mappings with
the help of the constructed aligned space in this work.

III. APPROACH
A. PROBLEM DEFINITION
Given n labeled images with c seen classes {X , S,Y } and nu
unlabeled images with cu unseen classes {Xu,Su,Yu}. X ∈
Rd×n and Xu ∈ Rd×nu represent d-dimensional seen and
unseen visual features, while their corresponding labels are
denoted by Y and Yu, respectively. The labels of seen and
unseen images do not have overlap, i.e., Y∩Yu = ∅. S ∈ Rk×n

and Su ∈ Rk×nu are k-dimensional semantic representations
of images in the seen and unseen datasets. For the zero-
shot classification, our purpose is to learn a classifier f :
Xu→ Yu, where all unseen visual features Xu are completely
unavailable during training.

B. DISCRIMINATIVE DUAL SEMANTIC AUTO-ENCODER
Traditional ZSL approaches mainly select the attribute space
to perform the classification. However, there are two prob-
lems that should be considered. At first, the user-defined
attributes are not always the same important for discrimina-
tion. Secondly, there are correlations among attributes, thus it
is not suitable to use each attribute independently. To address
such issue, in this work we build up the relationship between
seen and unseen classes by learning dual auto-encoders: The
first one visual space↔aligned space aims to learn an auto-
encoder between visual space and aligned space. Meanwhile,
the second one aligned space↔semantic space tries to learn
an auto-encoder between aligned space and semantic space.
L ∈ Rm×n is used to represent the aligned space. In order

to remove the irrelevant information in the visual space,
we adopt a linear transformation W ∈ Rm×d to build up the
relationship between aligned space and semantic space. Thus,
the first auto-encoder between visual space and aligned space
aims to solve the following function:

min
W ,L
‖WX − L‖2F +

∥∥W TL − X
∥∥2
F (1)

Moreover, to preserve the original semantic information,
we adopt another linear mapping Q ∈ Rm×k to build up the
relationship between aligned semantics and original seman-
tics. Thus, the second auto-encoder can be formulated as
follows:

min
L,Q
‖QS − L‖2F +

∥∥QTL − S∥∥2F (2)

In order to search discriminative attribute combinations
to classify different classes, we adopt the a classifier of
seen classes to make the learned aligned attributes more
discriminative to zero-shot classification task. Specifically,
an embeddding P ∈ Rc×m is learned from the aligned space to
the label space. Finally, the objective of DDSA can be defined
as follows:

arg min
W ,Q,P,L

‖WX − L‖2F +
∥∥∥W TL − X

∥∥∥2
F

+α(‖QS − L‖2F +
∥∥∥QTL − S∥∥∥2

F
)+ β ‖PL − H‖2F

s.t. ‖pi‖22 ≤ 1, ∀i, (3)
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where H = [h1, h2, · · · , hn] ∈ Rc×n and hi =
[0 · · · 0, 1, 0 · · · 0] ∈ Rc is a one-hot vector which represents
the class label of the seen image xi. P is a classifier in the
aligned space. The last term in the objective tries to let the
aligned attributes discriminative enough to classify different
classes. In other words, it implicitly pull images from the
same class together and pushes those from different classes
away from each other.

1) OPTIMIZATION
Since Eq. (3) is not convex forW ,Q, P and L simultaneously,
it is difficult to the objective of DDSA directly. However,
Eq. (3) is convex for each variable separately. We proposed to
use an alternating optimization method to solve the objective
of DDSA. Specifically, we alternate between the following
subproblems:
Update W:We can updateW by minimizing the following

function:

W ∗ = argmin
W
‖WX − L‖2F +

∥∥W TL − X
∥∥2
F . (4)

By taking the derivative of Eq. (4) and set it to zero, we can
obtain: (

LLT
)
W +W

(
XXT

)
= 2LXT . (5)

We can see that the Eq. (5) is typically a Sylvester equa-
tion [23] that can be efficiently solved by a single line of code
in MATLAB1.
Update Q: Updating Q by minimizing the objective is

equivalent to minimizing the following function:

Q∗ = argmin
Q
‖QS − L‖2F +

∥∥QTL − S∥∥2F . (6)

ThenQ can be optimized by solving the Sylvester function:(
LLT

)
Q+ Q

(
SST

)
= 2LST . (7)

The solution of this problem is consistent with the Eq. (5).
Update P: We can update P by minimizing the following

function:

P∗ = argmin
P
‖PL − H‖2F

s.t. ‖pi‖22 ≤ 1, ∀i.
(8)

The Eq. (8) can be optimized by the Lagrange dual. Thus
the analytical solution for Eq. (8) is:

P =
(
HLT

) (
LLT +3

)−1
, (9)

where3 is a diagonal matrix constructed by all the Lagrange
dual variables.
Update L: We can update L by minimizing the following

function:

L∗ = argmin
L
‖A− BL‖2F , (10)

1W = sylvester(LLT ,XXT , 2LXT );

where

A =


WX
X
αQS
αS
βH

 , B =


I
W T

αI
αQT

βP

 , (11)

and I ∈ Rm×m is the m-dimensional identity matrix. By tak-
ing the derivative of Eq. (10) and set it to zero, we can get the
closed-form solution for L is:

L =
(
NTN

)−1
NTM (12)

In conclusion, The detailed procedure of solving the prob-
lem (3) is outlined in Algorithm 1. The optimization process
always converges after tens of iterations in experiments and
more details can refer to subsection 4.5.

2) VERIFICATION
In our experiment, we perform the classification task in visual
space. At first, the semantic prototypes Su are embedded into
the visual space by the learnedW andQ. Then the label of the
testing image X iu can be classified by the Nearest Neighbour
(NN) search with the help of following equation:

predict label (X iu) = argmin
j

d
(
X iu,W

TQS ju
)

(13)

where X iu is the i-th sample of unseen images, and S ju is the
semantic feature of the j-th unseen class. d (·, ·) represents the
Euclidean distance between two vectors.

Algorithm 1 DDSA model for ZSL
Input:
Data matrix X , semantic matrix S, parameter α and
β.

Initialization:
Q,P,L.

While not converged do:
1. Update W by solving Sylvester Eq. (5).
2. Update Q by solving Sylvester Eq. (7).
3. Update P by solving Eq. (9).
4. Update L by solving Eq. (12).
end.
Output:
W ,Q,P,L.

C. DEEP DISCRIMINATIVE DUAL SEMANTIC
AUTO-ENCODER
1) MULTIMODAL VARIATIONAL AUTOENCODER
In our work, VAE, an effective generative prototype,
is employed as the basic building block of the proposed
model. A standard VAE [24] is decomposed into an encoder
that obtains low-dimensional latent variable z from input data
x and a decoder that obtains output x ′ close to x from z.
Typically, variational inference adopted in VAE aims to find
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FIGURE 2. The framework of Deep Discriminative Dual Semantic Auto-encoder. Cross-reconstruction loss encourages the latent distributions to align
(Lcr ). Moreover, distribution alignment in latent space is achieved by minimizing the Wasserstein distance between the latent distributions (Lda).

the true conditional probability distribution pθ (z|x) over the
latent variable z. Due to the intractability of this distribution,
its closest proxy posterior qφ(z|x) acts as the approximation,
through minimizing the distance of qφ(z|x) and pθ (z|x) using
a variational lower bound limit. Thus, the objective function
of a VAE is the variational lower bound on the marginal
likelihood of a given data x, which can be formulated as:

Lvae = Eqφ (z|x)
[
log pθ (x|z)

]
− DKL

(
qφ(z|x)

∥∥ pθ (z)) , (14)

where the former term is the reconstruction error (REC) and
the latter term is the Kullback-Leibler divergence (KL diver-
gence) between qφ(z|x) and pθ (z). pθ (z) is the prior distribu-
tion of zmodeled as the multivariate Gaussian distribution. µ
and

∑
are the mean and variance of the posterior distribution

qφ(z|x) = N
(
µ,
∑)

.
For our proposed method, a multimodal VAE (mVAE)

structure is used to learn a shared latent embedding space
of different modalities (visual features and semantic embed-
dings). As shown in Fig. 2, the encoder E1 and E2 transforms
the visual feature x̃ and the semantic feature s̃ into low-
dimensional latent vectors z1 and z2, respectively. Then, z1
and z2 are reconstructed into x ′(z1) and s′(z2) by decoders D1
and D2, respectively. Formally, our mVAE sums the losses in
the two modality-specific VAEs as:

Lmvae = Lvvae + Lsvae

=

M∑
i=1

Eqϕ (z|x)
[
log pθ (x(i)|z)

]
−DKL

(
qφ(z|x(i))

∥∥∥ pθ (z)) , (15)

where Lvvae and Lsvae represent the VAE losses of visual and
semantic modality, respectively. M = 2 denotes the two
modality data, i.e., visual feature and semantic feature.

2) CROSS-RECONSTRUCTION (CR) WITH LATENT
EMBEDDINGS
In order to make the modality-specific autoencoder further
learn similar representations across modalities, the proposed
mVAE allow reconstructing the modality data of an instance
by decoding the latent embeddings of a different instance
from another modality of the same class. Intuitively, although
the latent embeddings of the same classes come from different
modalities, they should be semantically consistent. Thus,
the cross-reconstruction loss of i-th visual feature xi can be
derived the following cross-modal softmax function:

Lvcr (xi) =
exp(xTi D1(E2(si)))∑c
j=1 exp(x

T
i D1(E2(sj)))

(16)

where E2 is the encoder of semantic features and D1 is the
decoder of visual features.

Similarly, he cross-reconstruction loss of i-th semantic
feature si can be derived the following cross-modal softmax
function:

Lscr (si) =
exp(sTi D2(E1(xi)))∑n
j=1 exp(s

T
i D2(E1(xj)))

(17)

where E1 is the encoder of visual features and D2 is the
decoder of semantic features.

Our goal is to maximize the above probabilities in both
the visual and semantic spaces, which can be formulated by
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TABLE 1. Details of Datasets, Where s/u Means Seen/Unseen.

minimizing the following multi-modal cross-entropy loss:

Lcr = −
∑n

i=1
Lvcr (xi)−

∑c

i=1
Lscr (si) (18)

3) DISTRIBUTION-ALIGNMENT (DA) IN LATENT SPACE
Generated images should match with the semantic features
by minimizing their distance. In this model, 2-Wasserstein
distance [25] is used as the alignment criterion between the
latent Gaussian distributions of visual features and semantic
features. Thus, the distance can be represented by:

Wij =

[∥∥µi − µj∥∥22
+tr(

∑
i
)+ tr(

∑
j
)− 2(

∑ 1
2

i

∑
i

∑ 1
2

j
)

1
2
] 1

2

, (19)

where i and j represent different features. As the diagonal
covariance matrices predicted by an encoder is commutative,
we further rewrite Eq. (19) in the following form:

Wij = (||µi − µj||22 + ||
∑ 1

2
i −

∑ 1
2
j ||

2
F )

1
2 (20)

where ‖·‖F is the Frobenius norm. Finally, the distribution
alignment loss function is derived as:

Lda =
M∑
i

M∑
j 6=i

Wij (21)

4) OVERALL OBJECTIVE FUNCTION
By taking the introduced above into account, the overall
objective function of the Deep DDSA is formulated as fol-
lows:

L = Lmvae + γ1Lcr + γ2Lda, (22)

where γ1 and γ2 are trade-off parameters chosen based on the
validation dataset.

IV. EXPERIMENTS
In this section, We validate our proposed specific linear and
deep methods on five widely-used data sets and compared
with some state-of-the-art models.

A. DATASETS DESCRIPTIONS
SUN Attribute (SUN) [26] consists of 14,340 images to
describe 717 scene classes where 645 classes are selected
as seen samples and the remaining 72 classes are unseen

samples. For each class, a 102-dimension continuous attribute
vector is provided.

Caltech-UCSD Birds-200-2011 (CUB) [27] contains
11,788 images of 200 fine-grained bird classes. A standard
split divides these bird species into 150 classes for seen
dataset and 50 for unseen dataset. A 312-dimension attribute
vector is used for each class as semantic description.

Animals with Attributes 1 (AWA1) [3] contains
30,745 images of 50 classes of animals where 40 classes are
selected as seen samples and the remaining 10 classes are
unseen samples. A 85-dimension continuous attribute vector
is used for each class as semantic description.

Animals with Attributes 2 (AWA2) [28] consists
of 37,322 visual features and 85 class-level attributes. Simi-
larly, 40/10 classes are selected for seen samples/unseen sam-
ples and all of the 50 categories are the same as AWA1 data
set.

A Pascal and Yahoo (aPY) [29] is a small-scale coarse-
grained data set with 64 attributes. It contains 32 classes,
where 20 Pascal classes and 12 Yahoo classes are used for
training and testing, respectively.

For all datasets, we follow the settings in [28] to split
each dataset for training and testing. Moreover, for fair com-
parison, the visual feature of each sample is represented by
2048-dim vector extracted by 101-layered ResNet [30]. The
statistics of all five datasets are given in Table 1.

B. IMPLEMENTATION DETAILS
For DDSA, parameters α and β in our objective function
are fine-tuned in the range [10(−3), 103] using the validation
splits. Finally, we set the dimension of the aligned space is
1200, i.e. m = 1200. More details about the parameters can
be seen in last subsection.

For Deep DDSA, the encoders (E1 and E2) and decoders
(D1 and D2) are all implemented as multilayer perceptron
(MLP) with only one hidden layer. In detail, 1560 and
1450 hidden units are used for the encoder E1 and E2, respec-
tively. Meanwhile, 1660 and 660 hidden units are used for
D1 and D2, respectively. Moreover, the latent embedding
size is set to 90 in all datasets. We train the model for
100 epochs by the Adam optimizer and a batch size of 50 for
all datasets. After training, the discriminative visual features
and semantics from the seen samples and unseen samples are
transformed into a shared latent space where the training and
test set of the final classifier is performed. Finally, the pro-
posed model is implemented in the deep learning toolkit
‘‘TensorFlow 1.3.0’’.

C. EVALUATION METRICS AND COMPARISON METHODS
The average per-class Top-1 accuracy is used for the evalua-
tion criteria, which is formulated by

acc (ϒ) =
1
‖ϒ‖

‖ϒ‖∑
c=1

#correct predictions in c
#samples in c

(23)
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TABLE 2. ZSL Results on SUN, CUB, AWA1, AWA2 and aPY Datasets. The
Results Report Average Per-Class Top-1 Accuracy in %.

where ϒ and ‖ϒ‖ are defined as the set of categories and
number of categories respectively. In other words,ϒ consists
of all the unseen classes, i.e. the testing classes.

The generalized zero-shot learning (GZSL) is another eval-
uation criteria, whose search space at testing time is not
restricted to only testing categories (ϒ ts), but consists of the
training ones (ϒ tr ). In this case, we can compute acc

(
ϒ ts

)
and acc

(
ϒ tr

)
by Eq. (23). In addition, the harmonic mean

can be computed as follows

H =
2 · acc

(
ϒ ts

)
· acc

(
ϒ tr

)
acc (ϒ ts)+ acc (ϒ tr )

(24)

In the experiment, we compare the proposed model
with many competitive or representative methods, includ-
ing shallow methods: DAP [3], IAP [3], SSE [22],
SJE [21], ESZSL [31], LatEm [32], SYNC [33], SAE [34],
LESAE [35], GAFE [14] and some deep methods:
DEVISE [2], CMT [4], CONSE [36], SP-AEN [11],
PSR [7], DCN [37], CCSS [38], f-CLSWGAN [39],
cycle-CLSWGAN [40], CADA-VAE [41], CCGN [42],
MAAE [43].

D. EFFECTIVENESS OF THE PROPOSED FRAMEWORK
In order to demonstrate the effectiveness of each compo-
nent in the objective function, we compare four different
approaches and give the ZSL results on SUN dataset in Fig-
ure 3. (1) Only learn one auto-encoder between visual space
and the aligned space with the help of discriminative con-
straint (VD) (i.e. 1, 2, 5 term in Eq. (3)); (2) Only learn
one auto-encoder between semantic space and the aligned
space with the help of discriminative constraint (SD) (i.e. 3,
4, 5 term in Eq. (3)); (3) Learn two auto-encoders between

FIGURE 3. Comparisons of four approaches on SUN data set.

FIGURE 4. Confusion matrices of unseen classes for Deep DDSA on the
aPY data sets. The Top-1 accuracy is between 0 and 100 (%).

FIGURE 5. Visualization of prototypes and projected samples for Deep
DDSA on the AwA2 data set in the semantic space by t-SNE.

visual/semantic space and the aligned space but without dis-
criminative constraint (VS) (i.e. 1, 2, 3, 4 term in Eq. (3)); (3)
Learn two auto-encoders between visual/semantic space and
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TABLE 3. GZSL Results on SUN, CUB, AWA1, AWA2 and aPY Datasets. ts = Top-1 Accuracy of the Test Unseen-Class Samples, tr = Top-1 Accuracy of the
Test Seen-Class Samples, H = Harmonic Mean (CMT*: CMT With Novelty Detection). We Measure Top-1 Accuracy in %.

the aligned space with discriminative constraint (DDSA) (i.e.
Eq. (3)).

Figure 3 gives the performance of different strategies.
By comparing the ZSL results ofVD, SD andDDSA, we con-
clude that using dual auto-encoders is successful for the ZSL
task. Moreover, by comparing the performance of VS and
DDSA, we can see that imposing the discriminative constraint
in the objective function can also improve the recognition
accuracy.

E. ZSL AND GZSL RESULTS
Table 2 gives ZSL results of different methods. For DDSA,
it achieves the best results on all datasets except the CUB
dataset. Especially on the aPY dataset, the accuracy of DDSA
increase 1.8% compared the strongest shallow competitor
GAFE [14]. On the other three datasets (SUN, AWA1 and
AWA2), the advantage of the DDSA is also obvious. The
reason why DDSA does not achieve the highest recognition
rate on the CUB database is that CUB is a fine-grained
dataset where most classes are very similar, so less discrim-
inative structure could be obtained by the DDSA. For deep
DDSA, it consistently performs better than compared deep
ZSL models on all datasets. Especially on the SUN dataset,
the accuracies increase of 1.8% compared to the strongest
deep competitor CCGN [42]. The promising performance of
both DDSA and Deep DDSA suggests the the classification
performance of unseen classes can be improved with the help
of discriminative aligned attributes.

The GZSL results on five small-scale attribute datasets is
shown in Table 3. According to the GZSL results, we get
following observations:

(1) Compared with the ZSL results in Table 2, the GZSL
classification accuracy (‘‘ts’’ value) are lower than ZSL

results. The reason is that all of the seen samples are included
in the search space as interferences of test images.

(2) Low accuracy on ‘‘ts’’ value but high accuracy on ‘‘tr’’
implies some ZSL models such as DAP [3] and SYNC [33]
perform well on seen classes but fails to generalize for novel
(unseen) classes. On the other hand, the classification accu-
racy of most ZSL models on seen classes is higher than the
accuracy on unseen classes, i.e., tr > ts. The reason is that
although these ZSL models are trained with the help of visual
features of seen samples, but the predictability for unseen
samples is still very poor.

(3) Table 3 shows that both DDSA and Deep DDSA
achieve best results on the ‘‘ts’’ value and ‘‘H’’ value on
all five datasets. Specifically, for ‘‘H’’ value, DDSA obtains
42.6% on AWA2 dataset and 30.7% on aPY dataset, which
is better than the next best shallow model GAFE by 2.6%
and 5.0%, respectively. In addition, compared with the clos-
est baseline CADA-VAE [41], the accuracy difference is as
follows: 41.8% vs 40.6% on SUN, 53.0% vs 52.4% on CUB,
64.9% vs 64.1% on AWA1, 65.4% vs 63.9% on AWA2. This
demonstrates the superiority of Deep DDSA for the GZSL
task.

F. VISUALIZATION OF CLASS STRUCTURE
We provide the visualized results and confusion matrix to
make the result more understandable. The column and the row
of the confusion matrix respectively represents the ground
truth and the predicted results. According to Figure 4, it is
clear that our Deep DDSA algorithm can identify most of
unseen categories, except ‘‘horse’’, ‘‘person’’, ‘‘cow’’ and
‘‘statu’’ on the AWA2 data set.

t-SNE [44] is used to project samples and prototypes from
semantic space to a 2-D plane. Its function is to display
the distance between samples and the corresponding class
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FIGURE 6. ZSL result of DDSA under different dimensions of aligned
space on four data sets.

FIGURE 7. Convergence curve of DDSA on four datasets.

prototypes. Figure 5 shows that most samples locate near the
prototypes of the corresponding classes, which demonstrates
the proposed Deep DDSA algorithm can learn a proper pro-
jection from the visual feature space to the semantic space.

G. DIMENSION SETTING AND CONVERGENCE ANALYSIS
According to Figure 6, the selection of the aligned
space’dimension has an influence on the recognition rate.
Furthermore, the proposed model performs better when the
dimension of the aligned space is 1200. In Figure 7, the F(k)
represents the F-norm of the objective function Eq. (3) after
k-th iteration by Algorithm 1. It is easy to see the proposed
linear model converges within only 7 steps on all data sets.
On the other hand, the complexity of Eq. (5) and Eq. (7)
depend on the dimension of aligned attributes i.e. O

(
m3
)

instead of the number of samples. Thanks to the low com-
plexity and good convergence, the proposed model has a

better practical application than most deep and shallow ZSL
algorithms.

V. CONCLUSION
A novel ZSL framework named Discriminative Dual Seman-
tic Auto-encoder (DDSA) is proposed in this work. This
framework aims to learn an aligned attribute space where
the irrelevant information hidden in the visual space can
be removed and the semantic information can be preserved.
Moreover, we proposed a Deep DDSA in order to capture
deep features in the aligned attribute space. Empirical results
on five widely-used data sets show both DDSA and Deep
DDSA outperforms existing ZSLmodels on five benchmarks
and the convergence analysis also shows the stability of the
proposed algorithm.
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