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ABSTRACT The correlation filters tracker allows features from multiple channels. The fusion of features
by simply summing over them in an Euclidean space would destroy the inherent geometry among multiple
features, resulting in the lose of their phase information which is crucial to tracking task. To provide a better
fusion of features frommultiple layers of a convolutional neural network (CNN) in the classical CNNs based
correlation filters algorithm, we introduce spherical manifolds and computing intrinsic mean on spherical
manifolds in the article, so that fusion of features and online update of filter kernels can be implemented
over a spherical manifolds. In addition, we introduce a random projection method, imposed on CNN features
before feature fusion to compress features for the sake of reducing computational complexity and modeling
complexity. Extensive experiments on OTB-50 dataset demonstrate that the proposed algorithm outperforms
state-of-the-art methods with respect to both precision and success rate.

INDEX TERMS Deep features, fusion of multiple kernels, object tracking, random projection, spherical
manifolds.

I. INTRODUCTION
The mainly task of tracking is estimating the location of
a visual target in each frame of an image sequence. It has
various practical applications, especially for human-machine
interactions, visual surveillance and unmanned control sys-
tems [1]–[3]. Despite significant progress has been achieved
in recent years, object tracking is still one of the most chal-
lenging problems in computer vision owing to factors, such as
partial occlusion, deformation, scale variations, illumination
variation, background clutter, in-plane/out-of-plane rotations
and motion blur [4]–[6].

In recent years, Correlation filter (CF) based discrimina-
tive algorithms have gained high attention owning to high
accuracy of object tracking and low computational com-
plexity [7]. To estimate an object’s translation in spatial
domain efficiently, the classical CFmethod exploits the dense
sampling in the target region via a circulant shift matrix,
by which the tracking algorithm can allow an element-wise
operation in the Fourier domain, and the target location is
inferred by searching for the maximum value of the response
map. Meanwhile, CF is proposed to process multi-channel
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hand-crafted features, and shows the better performance in
object tracking [4], [8].

With the rapid development of deep learning, lots of
tracking algorithms [9]–[12] based on the features extracted
from the deep convolutional neural networks (CNNs) were
proposed, and achieved great improvements compared with
traditional methods. It has been shown that the CNNs-based
trackers perform well against methods using hand-crafted
features, such as Scale Invariant Feature Transform(SIFT)
[13], HOG [14] and color histogram. For CNNs based cor-
relation filters, the response map of a layer with D channels
is computed by

r = F−1(
∑D

i=1 x̂
∗
i · ẑi∑D

i=1 x̂
∗
i · x̂i + λ

ŷ) = F−1(
K̂ xz

K̂ xx + λ
ŷ) (1)

where x̂ ∈ CP×Q×D is the target object represented by
CNN features from multiple channels, ŷ ∈ CP×Q denotes
the Gaussian shape label matrix, ẑ ∈ CP×Q×D denotes the
candidate object. They are all in Fourier domain. The operator
F−1 denotes the inverse Fast Fourier Transform(FFT).
In the above CNNs features approaches, an essential

step is computing kernels (i.e., the numerator and denom-
inator in the Eq. 1, we denote the numerator as cross
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correlation kernel, denote denominator as autocorrelation
kernel). To construct the kernel, the CF algorithm allows
simply summing over every kernel built by single channel
feature in the Fourier domain, which is equivalent to fuse the
kernels of the multi-channel features.

Since visual tracking only focus on the trajectory of the
target object, phase information plays a significant role. It is
well known that an object’s translation is only determined by
the phase information of the response map, the corresponding
amplitude information is redundant. Adapting the fusion by
Eq. 1, we will introduce the unwanted energy information of
each feature, which may have no advantage on the tracking
performance.

To address this issue, spherical manifolds is introduced
to fuse the kernels from multiple channels over an unit
hypersphere, allowing a substitution of the mean in a hyper-
sphere for the mean in the normal Euclidean space. Thus,
phase information of the features from multiple channels is
kept, benefiting object tracking task. However, computing the
mean in a hypersphere concerns an iterative process, so com-
putational load would be expensive in case of high dimen-
sional features. To reduce computational complexity, rand
projection algorithm is introduced to compress the dimension
of CNNs features before feature fusion.

The main contributions of this article are listed in the
following items:

1) We propose a novel method to generate random
projection matrix based on spectral graph theory,
which avoids the high time-consuming operation for
Gram-Schmidt orthogonalization during rand projec-
tion process.

2) We propose a novel CNNs features based CF algorithm
on spherical manifolds.

3) We propose an online update strategy of CF kernels
based on geometry of spherical manifolds.

4) We carry out extensive experiments on a large-scale
benchmark dataset to demonstrate the effectiveness of
the proposed algorithm in comparisons to the state-of-
the-art trackers.

II. RELATED WORKS
This work is closely related to CF algorithms. In this section,
a brief overview concerning CF tracking is presented.

In 2010, Bolme et al. first proposed the Minimum Output
Sum of Square Error (MOSSE) [15] tracking algorithm. The
MOSSE algorithm uses intensity features which is single
channel for object representation to train the filter, converts
the convolution into the product in the frequency domain,
and achieves a tracking speed with 669 frames per second.
In 2012, Henriques et al. proposed the Exploiting the Circu-
lant Structure of Tracking-by-detection with Kernels(CSK)
algorithm [8] based on cyclic structure and ridge regres-
sion, which achieved remarkable results at high processing
speeds. However, CSK algorithm uses intensity features like
MOSSE, which is insufficient in feature selection. In 2014,
Danelljan et al. proposed the Color Name(CN) tracking

algorithm [16], they used color attribute features which is
multiple channels instead of intensity features to achieve
better tracking results. In 2015, Henriques et al. [4] pro-
posed a multi-channel version of the tracker which used
HOG features allowing the representation of objects through
31 dimensional features. Having considered the unwanted
boundary effects which can severely degrade the performance
of the trackingmodel, Danelljan et al. proposed Spatially Dis-
criminative Regularized Correlation Filters(SRDCF) algo-
rithm [7] in the same year.

Due to the rapid development of deep CNNs, in 2016,
several trackers [12], [17], [18] based on Siamese networks
were introduced, and became a new research hotspot because
of their simplicity and competitive performance. In 2017, Val-
madre et al. [19] improved the Fully-Convolutional Siamese
Networks(SiamFC) [12] tracker by integrating discriminative
correlation filters into the Siamese framework. For the meth-
ods which focus on integrating convolutional features from a
fixed pre-trained deep network, in 2015,2016,2017, Danell-
jan et al. proposed Deep SRDCF algorithm [9], Continu-
ous Convolution Operator Tracker(C-COT) algorithm [20]
and Efficient Convolution Operator(ECO) tracking algorithm
[11], these algorithms were all based on the deep CNNs fea-
tures and achieved a remarkable performance compared with
those based on the hand-crafted features. In 2016, Ma et al.
designed an effective correlation filters tracker Hierarchi-
cal Convolutional Features for Visual Tracking(HCFT) [21]
on each CNN layer, and obtained the target location from
the multi-level response maps in a coarse-to-fine fashion.
In 2018, they proposed a robust tracker HCFT* [22], in which
they applied the classifier to two types of region proposals for
scale estimation and target redetection from tracking failures.
In 2016, Qi et al. combined several weak CNNs trackers from
numerous convolutional layers into a stronger one named
Hedged Deep Tracking(HDT) algorithm [23], which intro-
duces an improved Hedge algorithm by considering historical
performance of weak trackers. In 2018, Qi et al. introduce
Siamese network to improve the original HDT algorithm
by defining the loss of each weak tracker for the proposed
hedge method [24]. It has been proved that the CNN model
is very suitable for developing robust appearance model
in the tracking task, due to its powerful ability on feature
extraction [25].

Generally speaking, CF based on hand-crafted features
allows less accurate or robust when faced with more com-
plex scenarios, due to the fact that hand-crafted features are
usually specially designed for certain aim, while it can run at
a high speed. On the other hand, CF using CNNs features can
achieve a great progress in terms of accuracy and robustness,
but it has a limitation in the tracking speed.

III. PREVIEW OF THE CNN BASED CORRELATION
FILTERS
TheCNNbasedCorrelation Filters (TCCF) [10] employedthe
same hedge method to HDT [23], additionally equipped-
witha scale estimation module. It is the baseline of our
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FIGURE 1. The architecture of the TCCF tracker.

TABLE 1. The parameter settings and feature map output size of VGG-16.

proposedtracker, consistingof a Local CorrelationFil-
ter (LCF) and a Scale CorrelationFilter (SCF) as demon-
strated in Fig. 1 [10]. For the LCF, CNN features from
multiple layers of the pre-trained VGG-16 [26] are used to
represent the target appearance. The parameter settings of
VGG-16 are given in Table.1.

A. LOCATION ESTIMATION
Use xk ∈ RP×Q×D denotes the feature map extracted from
the k-th convolutional layer, the regression target y is defined
by a 2D Gaussian shape label matrix. Let x̂k = F(xk ) and
ŷ = F(y), where F denotes the Discrete Fourier Translation
(DFT). In the Fourier domain, the k-th deserved filter can be
computed by

f̂k = argmin
f̂
‖

D∑
i=1

f̂i · x̂ki − ŷ‖22 + λ
D∑
i=1

‖f̂i‖22 (2)

The solution to Eq.2 can be given by

f̂ki =
ŷ · x̂k∗i∑D

i=1 x̂
k∗
i · x̂

k
i + λ

= α̂k x̂k∗i (3)

where · denote element-wise product, and the division is
also performed element-wise. The x̂k∗i denote the complex

conjugation of x̂ki , α̂
k has the form as

α̂k =
ŷ∑D

i=1 x̂
k∗
i · x̂

k
i + λ

=
ŷ

K̂ xkxk + λ
(4)

Given the testing data zk , having transformed the data to the
Fourier domain by ẑk = F(zk ), we can compute the response
maps by

rk = F−1(α̂k
D∑
i=1

ẑki · x̂
k∗
i ) = F−1(K̂ xkzk α̂k ) (5)

Then the k-th tracker outputs the target position with the
largest response

(xk , yk ) = argmax
x,y

rk (x, y) (6)

Considering that there are K convolutional layers will be
used, the final location (x ′, y′) is obtained by

(x ′, y′) =
K∑
k=1

wk (xk , yk ) (7)

where wk ≥ 0 and
∑K

k=1 wk = 1, which can be determined
according to the performance of each tracker [23].

B. SCALE ESTIMATION AND MODEL UPDATE
According to theDiscriminatiive Scale Space Tracker(DSST),
the SCF can be implemented after the location estimation,
which is independent of the translation filters.

Here, HOG feature is used, a brief comment on the HOG
for scale estimation can be found in [27]. For the SCF,
a set of scale factors are predefined {αj = θ [

j
2−j]|j =

1, 2, . . . , J , θ > 1}. Given a training sample, J image patches
are cropped around the estimated target position, for a scale
factor αj, the corresponding image patch has the size of
αjP×αjQ, where P×Q is the size of the target in the previous
frame. After reshaping these scaled image patches, a one
dimension Correlation Filter will be applied, the deserved
scale can be obtain.

For more details about the scale estimation and model
update, refer to [10], [27].

IV. PROPOSED TRACKER
A. FUSION METHOD OF KERNELS BASED ON SPHERICAL
MANIFOLD GEOMETRY
Since visual tracking focus on the trajectory of the target
object, which is only determined by the phase of the response
map. Therefore, to remove the impact of amplitude of each
kernel, we consider a linear kernel with normalized energy,
which can be expressed as:

K̂ xx′
i =

x̂∗i · x̂
′
i

‖x̂∗i · x̂
′
i‖2

i = 1, 2, · · · ,D (8)

where ‖ · ‖2 denotes the L2 norm, D is the number of the
channels. Since ‖K̂ xx′

i ‖2 = 1, a natural geometry structure
is introduced to these kinds of the kernels with unit norm,
i.e., they are embedded on a unit hypersphere. Taking the
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geometry of spherical manifolds into account, we need to
implement the summations in Eq. 1 in a spherical space,
allowing a substitution of the mean in a hypersphere for that
in the normal Euclidean space.

1) SPHERICAL MANIFOLDS AND OPERATORS ON
SPHERICAL MANIFOLDS
A low-dimension spherical manifolds is embedded in a
high-dimension Euclidean space. LetCN be a N-dimensional
Euclidean space, a unit sphere is given by SN−1 = {p ∈
CN
|‖p‖2 = 1}. Two basic operators, Log and Exp, are

defined for spherical manifolds.
To project a point q ∈ SN−1 to the tangent space of p ∈

SN−1, denoted by TpSN−1, a Log operator is defined as [28]

Logpq = q− 〈p, q〉p (9)

To project g ∈ TpSN−1 into the sphericalmanifolds, an Exp
operator is defined as [28]

Exppg = pcos(‖g‖2)+ g
sin(‖g‖2)
‖g‖2

(10)

From Eq. 9 and Eq. 10, we can know Logpq ∈ TpSN−1,
Exppg ∈ SN−1.

2) FUSION METHOD OF KERNELS BASED ON SPHERICAL
MANIFOLD GEOMETRY
Let {p1, p2, · · · , pn} ⊂ SN−1 denotes points on a spheri-
cal manifolds, we compute the intrinsic mean to fuse them
together, which is defined as

p̄ = arg min
p∈SN−1

n∑
i=1

d(p, pi)2 (11)

where d(·, ·) denotes Riemannian distance on SN−1. It indi-
cates that the intrinsic mean is a point on spherical manifolds
which has the minimum sum-of-squared distance to all of
given points. In this sense, the intrinsic mean is similar to the
clustering center in clustering methods.

From Eq. 11, computing p̄ is an optimization problem,
by minimizing a sum-of-squared distance function as

f (p) =
1
2n

n∑
i=1

d(p, pi)2 (12)

In addition, given an assumption that all points are confined
in a strongly convex neighborhood, Karcher [29] shown that
the gradient of Eq. 11 was given by

h
f (p) = −

1
n

n∑
i=1

Logppi (13)

The minimum of f (p) is obtained as the gradient`
f (p) = 0, namely the stationary point. According to Eq. 11,

intrinsic mean has the minimum sum-of-squared distance to
{p1, p2, · · · , pn} ⊂ SN−1, so we have the following equation

n∑
i=1

Logp̄pi = 0 (14)

Algorithm 1 The Fusion Method of Kernels based on
Spherical Manifold Geometry
Input: features x̂, x̂′, ε > 0, L.
Output: K̂ xx′

1) Compute each kernel by Eq. 8.
2) Compute initial value K̂ xx′

0 of iteration by Eq. 17.
3) for m = 1 : L
4) Project D kernels onto the tangent space of K̂ xx′

m−1 by
Eq. 9.

5) Compute K̂ xx′∗
m−1 by Eq. 18.

6) Project K̂ xx′∗
m−1 back to the spherical manifold K̂ xx′

m by
Eq. 10.

7) if ‖K̂ xx′∗
m−1‖2 ≤ ε then

8) break.
9) end

10) end

which means

Expp̄(
1
n

n∑
i=1

Logp̄pi) = p̄ (15)

Thus, computing p̄ is to find the stationary point of Eq. 15,
which is an iterative process as [30]

p̄m+1 = Expp̄m (
1
n

n∑
i=1

Logp̄mpi) (16)

where m denotes the number of iterations. Although the
convergence of this process is not guaranteed in a general
manifold, it is well behaved on the hypersphere [31].

Considering the kernels in Eq. 8, we can apply the
same iterative process to fuse them under the constraint of
the spherical manifold structure, the algorithm is given in
Algorithm 1.

The initial value of iteration K̂ xx′
0 can be formulated as:

K̂ xx′
0 =

∑D
i=1 x̂

∗
i · x̂
′
i

‖
∑D

i=1 x̂
∗
i · x̂
′
i‖2

(17)

The summation of vector in tangent space will be gotten

K̂ xx′∗
m−1 =

1
D

D∑
i=1

LogK̂xx′
m−1

K̂ xx′
i (18)

B. RANDOM PROJECTION FOR THE DIMENSION
REDUCTION
As mentioned in the introduction, in visual tracking using
the features extracted by the fine-tuning pre-trained CNNs,
the dimension of these features is usually very high, com-
puting the mean in a hypersphere will be time-consuming.
To conduct a more efficient calculation, we need reduce the
dimension of the CNNs features. Here, the random projection
is considered.

Random projection is a powerful means of dimen-
sionality reduction, where the original high-dimensional
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data is projected into a lower-dimensional subspace
using a random matrix. Unlike most transform-based
dimensionality-reduction techniques which are highly data
dependent, random projection is data-independent and com-
putationally more efficient than other widely used dimen-
sionality reduction methods, such as principal component
analysis and maximum noise fraction transform. Random
projection has been applied to various areas and demonstrated
good performance, including information retrieval, machine
learning, remote sensing, and so on [32]–[35].

Random projection is composed of randommatrix creation
and matrix multiplication [34]. The projection matrix is usu-
ally chosen as an orthogonal matrix. For a high-dimentional
feature, Gram-Schmidt orthogonalization would be very
time-consuming [33]. In this work, spectral graph theory is
employed to generate a random orthogonal matrix very fast.
Given a undirected, connected and weighted graphs g =
{v, ε,W}, where v is a finite set of vertices with |v| = D,
ε is a set of edges, and W ∈ RD×D is a weighted adjacency
matrix. The non-normalized graph Laplacian is defined as

L = D−W (19)

where D is a diagonal matrix with Dii =
∑

jWij.
As the graph Laplacian L is a real symmetric matrix,

it has a complete set of orthonormal eigenvectors, From
L, an orthogonal projection matrix can be generated as the
following processings.

1) Generate a random vector R = [r1, r2, · · · , rD]T with
independent identically distributed random variables,
each element is uniformly distributed on [0, 1].

2) Calculate the matrix W = RRT , then get the graph
Laplacian L by Eq.19.

3) Decompose the graph Laplacian L as U3UT . where
U = [u1,u2, · · · ,uD] is a matrix of the Laplacian
eigenvectors, obviously, ui satisfies ‖ui‖2 = 1 and∑

j uij = 0 i = 2, 3, · · · ,D.
4) Calculate the sparse measure of each eigenvector by

Si = ‖ui‖1 =
D∑
l=1

|uil | i 6= 1 (20)

5) Choose the eigenvectors with the top d(d � D) sparse
measures to construct the random projection matrix

p = [u(1),u(2), · · · ,u(d)] ∈ RD×d (21)

where S(1) ≥ S(2) ≥ · · · ≥ S(d) ≥ S(D−1).
After getting the projection matrix, we can implement the

random projection by Algorithm 2 [36].

C. UPDATING CORRELATION FILTERS ON THE GEOMETRY
OF SPHERICAL MANIFOLDS
In a video sequence, the target can often change appearance
by changing its rotation, pose or lighting conditions. The
strategy to update filter plays an important role during the
tracking process.

Algorithm 2 The projection algorithm

Input: the feature X ∈ RP×Q×D, projection matrix P ∈
RD×d (d � D).
Output: the feature Y after random projection.

1) Reformate the feature into a feature matrix denoted as
X = [x1, x2, · · · , xD] ∈ RL×D L = P× Q.

2) Compute the average feature by X̄ =
1
D

∑D
i=1Xi.

3) Centralize the features in X′ by X′i = Xi − X̄(i =
1, 2, · · · ,D).

4) Project the centered features into the random subspace
by Y′ = X′P = [y′1, y

′

2, · · · , y
′
d ].

5) Obtain a reduced set of features by Y = [y′1 + x̄, y′2 +
x̄, · · · , y′d + x̄].

6) Reformat Y into a tensor P× Q× d .
7) end

Algorithm 3 The update strategy of filter

Input: K̂ xt−1xt−1 , K̂ xtxt , learning rate η.
Output: K̂

′xtxt

1) Project K̂ xtxt onto the tangent space of K̂ xt−1xt−1 by
Eq. 9 and get K̂ xtxt∗.

2) Project ηK̂ xtxt∗ back to the spherical manifolds by
Eq. 10 and get the Updated autocorrelation kernel
K̂
′xtxt .

3) Compute the Updated filter by using Eq. 24.
4) end

The classical correlation filters algorithm allows the filter
to be updated by weighting them in the normal Euclidean
space:

α̂′t = (1− η)α̂t−1 + ηα̂t (22)

where t is the number of frames, η > 0 is the learning rate.
Since the autocorrelation kernel (i.e., the denominator in

the Eq. 1) has been embedded in a spherical manifold, update
strategy can be divided into two steps: update the autocorre-
lation kernel and then compute the filter.
K̂
′xtxt can be updated as:

K̂
′xtxt = ExpK̂xt−1xt−1 (ηLogK̂xt−1xt−1 K̂

xtxt ) (23)

where K̂ xt−1xt−1 denotes the autocorrelation kernel of t − 1
frame, K̂ xtxt denotes the autocorrelation kernel of t frame,
η > 0 is learning rate, this procedure is illustrated in Fig. 2.

Hence, the updated filter α̂t can be learnt as below:

α̂t =
ŷ

K̂ ′xtxt + λ
(24)

D. WHOLE FRAMEWORK FOR THE PROPOSED TRACKER
Putting above the algorithms together, we will first obtain the
weak tracker of k-th convolutional layer and its correspond-
ing target position estimation as Algorithm 4.
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FIGURE 2. Illustration of the procedure for updating the autocorrelation
kernel on the hypersphere.

Algorithm 4 Tracking algorithm
Input: the initial state of the target.
Output: the estimated location of target yt of the k-th weak
tracker in the t-th frame.
1) Initialize the image patch x1 and get CNNs feature xk1 ∈

CP×Q×D.
2) Compute the dimensionality reduction features x̂kr1 ∈

CP×Q×d by Algorithm 2.
3) Compute kernel K̂ xkr1 xkr1 of training samples x̂kr1 by

Algorithm 1.
4) Learn a filter α̂k1 by Eq. 4.
5) for t = 2 : N
6) Generate target candidate region zt and get CNNs

feature zkt ∈ CP×Q×D according to the location of yt−1.
7) Compute the dimensionality reduction features ẑkrt ∈

CP×Q×d by Algorithm 2.
8) Compute K̂ xkrt−1z

kr
t by Algorithm 1.

9) Compute a response map over the candidate regions
by Eq. 5.

10) Compute the estimated location by the candidate
with the maximum filter response.

11) Update the filter by Algorithm 3.
12) end

The final location estimation can be achieved by using
weighted sum of the target positions of the weak trackers,
which can be found in [10]. Meanwhile, the scale CF can be
implemented after the location estimation, For more details
about the scale estimation, refer to [27]. An overview of our
overall architecture is given in Fig. 3.

V. EXPERIMENTAL RESULTS
The proposed algorithm is based on the TCCF , in which some
modules are added. We denote TCCF with our graph based
Random projection as TCCFrp, and denote TCCFrp on the
spherica manifolds as TCCFrps.

The TCCFrp and TCCFrps is implemented in MATLAB
2016a with Caffe framework [37] and runs on an Intel(R)
Core (TM) i7-8750H CPU @2.20GHz 2.21GHz CPU and a
NVIDIA GeForce GTX 1070 GPU. According to the HDT,
VGG-Net adopts very small convolutional filters (3Ã-3 pixel
size), the feature maps from shallower layers have limited
representation strength [23], therefore, for the VGG-16 [26],
the deep part, including conv4-1, conv4-2, conv4-3 and

TABLE 2. The features and experimental setup of proposed algorithm
and baseline trackers.

conv5-1, conv5-2, conv5-3 convolutional layers, is used to
extract features for location estimation [10], the dimension
of the original deep features from each layer is 512, while,
the combined features is 40 after random projection. The
initial response weights of CNNs layer are 1, 0.5, 0.5, 1,
0.5 and 0.5, J = 33 and θ = 1.02 in the scale estimation.
In addition, To show more advantage in the fusion of the

kernels, we also apply the the proposed fusion method to
classical Dual Correlation Filter (DCF) [4], denoted asDCFs.
The proposed algorithm DCFs is implemented in MATLAB
2016a and runs on the same CPU with the standard parame-
ters provided by the authors.

We perform the experiments on OTB-50 [38] benchmark
and compare with baseline trackers and the state-of-the-art
methods. The features and experimental setup of proposed
algorithm and baseline trackers are listed in Table. 2.

A. QUANTITATIVE ANALYSIS
Here we provide a quantitative comparison of our approach
with the state-of-the-art trackers. Two criteria for evaluations
of tracking performance are used on the OTB 50 benchmark:
the precision plot and the success plot. The precision plot
measures center location Euclidean distance between esti-
mated position of the target and ground-truth, plotted over
a range of thresholds. The success plot contains the percent-
age of frames over a range of overlap precision thresholds
between estimated position box of the target and ground-truth
box.

Overall performance evaluation: Fig. 4 show the results
of precision plot and success plot, respectively. TCCFrps has
performed the bast in both precision and success rate on
OTB 50. As for the TCCF tracker, the proposed algorithm
TCCFrps has the outperformance by 9.6% and 13.4%. The
TCCFrp tracker also bring a gain in success and precision
both compare with TCCF even using the features with less
than one tenth of the dimensions of the original deep features.

As for the HOG features, DCFs compared with DCF
tracker, the above two performances are improved 2.6% and
1.4% respectively.

Attribute-based evaluation:We also compare three trackers
for every attribute, namely illumination variation(IV), scale
variation(SV), occlusion(OCC), deformation(DEF), motion
blur(MB), fast motion(FM), in-plane rotation(IPR), out-
of-plane rotation(OPR), out-of-view(OV), background clut-
ters(BC) and low resolution(LR). The results are shown
in Table. 3. Fig. 5 and 6 show the results of distance pre-
cision and success rate over eight attributes respectively.
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FIGURE 3. Full architecture of the tracking algorithm, which consists of three proposed sub-modules: random projection, fusion of
the kernels and online update based on the geometry of spherical manifolds.

TABLE 3. The distance precision scores of our tracker and baseline
trackers on different attributes.

FIGURE 4. Comparison among the proposed algorithm, several baselines
and state-of-the-art methods on success and precision.

Shown from the results of the attribute-based evaluation, for
the trackers using CNNs feature, TCCFrps achieves the best
performance among the all trackers in these 11 attributes.
ComparedDCFs withDCF andKCF , the proposedDCFs has
a overall outperformance in the three trackers using HOG fea-
ture. It can be seen that the performance is indeed improved,
as the difference in the energy of each channel feature is
eliminated.

FIGURE 5. Attribute-based comparison with baseline trackers on
precision.

FIGURE 6. Attribute-based comparison with baseline trackers on success.

B. QUALITATIVE ANALYSIS
We present some tracking results in Fig. 7, where challenging
frames among 51 image sequences are selected, including
Ironman, Shaking, Jogging2, Lemming, Subway, Couple,
MotorRolling and Coke. In most complex scenes, our algo-
rithm can locate the target more accurately than baseline
algorithms, which shows that it is helpful for the improvement
on tracking to introduce the geometric structure of each kernel
component.

2776 VOLUME 9, 2021



M. Zhang et al.: Tracking With CNN-Based Correlation Filters on Spherical Manifolds

FIGURE 7. A visualization of the tracking results of proposed trackers and
state-of-the-art visual trackers.

FIGURE 8. Tracking result and response maps of DCFs (red box, third row)
and DCF (green box, second row).

FIGURE 9. Tracker result and response maps of TCCFrps (red box, third
row) and TCCF (green box, second row).

For example of the trackers using HOG feature,
Fig. 8 shows the results and response maps of DCFs and
DCF in the jogging video sequence. It can be seen that the
pedestrian is occluded by the background. DCFs can keep
a robust tracking of the target in the video sequence, while
DCF fail.
For example of the trackers using CNNs feature, video

sequences subway characterized by OCC, BC and DEF,
which is shown in Fig. 9, It can be also seen that TCCFrps
can also perform tracking successfully.

It is well known that to estimate the target location more
accurately, the response map need to be sharper at the peak.
Shown from the Fig. 8 and Fig. 9, DCFs and TCCFrps have
less distraction in response map than DCF and TCCF due to
the geometry constraint of spherical manifolds.

FIGURE 10. A frame-by-frame comparison of center location error with
DCFs and baseline trackers on example sequences.

FIGURE 11. A frame-by-frame comparison of center location error with
TCCFrps and baseline trackers on example sequences.

TABLE 4. Tracking speed of the different algorithms with hand-crafted
features.

TABLE 5. Tracking speed of the different algorithms with CNN features.

In addition, a frame-by-frame comparison of our proposed
algorithm on example sequences is presented, showing the
center location error in pixels. The results came from the
trackers using HOG feature and CNNs feature are presented
in Fig. 10 and Fig. 11, respectively. It can be seen that our
tracker can still identify the target stably when approaching
the end of the video sequence.

We also compare the mean frames per second (FPS) of
each method, the result is shown in Table. 4 and Table. 5.
It can be seen from Table. 4 that despite some decline in
frames per second, our tracker still operates beyond real-
time. Meanwhile, it also demonstrates from Table. 5 that
dimensional reduction by random projection is essential to
enhance the computational efficiency.

VI. CONCLUSION
In this article, we propose a novel correlation filtering
tracking algorithm based on spherical manifold geometry.
By embedding each kernel on the spherical manifold, we have
a substitution of the mean in a hypersphere for the mean
in the normal Euclidean space, by which a fusion of mul-
tiple kernels is achieved. To maintain consistency of our
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approach, a corresponding online update strategy is also pro-
posed based on the geometry of spherical manifolds. The
experiments show that fusion kernels with the normalized
amplitude through the geometry of spherical manifolds does
have a contribution to dealing with these challenges more
effectively. It has been proved that our approach is generic
and can be extended to many CF based tracking methods with
multiple channels features.
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