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ABSTRACT The accurate parameter extraction of photovoltaic (PV) module is pivotal for determining and
optimizing the energy output of PV systems into electric power networks. Consequently, a Photovoltaic
Single-Diode Model (PVSDM), Double Diode Model (PVDDM), and Triple- Diode Model (PVTDM) is
demonstrated to consider the PV losses. This article introduces a new application of the Forensic-Based
Investigation Algorithm (FBIA), which is a new meta-heuristic optimization technique, to accurately extract
the electrical parameters of different PV models. The FBIA is inspired by the suspect investigation, location,
and pursuit processes that are used by police officers. The FBIA has two phases, which are the investigation
phase applying by the investigators team, and the pursuit phase employing by the police agents team.
The validity of the FBIA for PVSDM, PVDDM, and PVTDM is commonly considered by the numerical
analysis executing under diverse values of solar irradiations and temperatures. The optimal five, seven, and
nine parameters of PVSDM, PVDDM, and PVTDM, respectively, are accomplished using the FBIA and
compared with those manifested by various optimization techniques. The numerical results are compared
for the marketable Photowatt-PWP 201 polycrystalline and Kyocera KC200GT modules. The efficacy of
the FBIA for the three models is properly carried out checking its standard deviation error with that obtained
from various recently proposed optimization techniques in 2020 which are Jellyfish search (JFS) optimizer,
Manta Ray Foraging optimizer (MRFO), Marine Predators Algorithm(MPA), Equilibrium Optimizer (EO),
Heap Based Optimizer (HBO). The standard deviations of the fitness values over 30 runs are developed to be
less than 1× 10−6 for the three models, which make the FBIA results are extremely consistent. Therefore,
FBIA is foreseen to be a competitive technique for PV module parameter extraction.

INDEX TERMS PV parameters extraction, PV single-diode model, double diode model, triple- diode model
forensic-based investigation algorithm, Kyocera KC200GT modules, Photowatt-PWP 201.

I. INTRODUCTION
Myriads of efforts have been developed to adjust the energy
structure and increase renewable energy research in order
to cope with the dramatically increasing of energy shortage
and environment issues. There are many types of renewable
energy technologies, however, solar photovoltaic is catego-
rized to be the most feasible type to overcome the increas-
ing in the energy demands. One of the most important
issues of advancement of PV technology is the parameter
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extraction and accurate modeling which describe the non-
linear characteristics of current–voltage (I–V) of solar cells.
These parameters extraction drew high consideration in sim-
ulation, assessment and maximum energy collected from the
PV systems [1], [2]. Over the past decades, although numer-
ous models have been developed to manifest the parame-
ter equivalent circuit of solar cells, three lumped models
are used practically, which are Photovoltaic Single-Diode
Model (PVSDM), Double Diode Model (PVDDM), three
Diode (PVDDM) Model [3], [4]. In these three models, there
are five, seven, and nine parameters need to be extracted
accurately.
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Three popular methods, which are analytical, nonlinear
optimization, metaheuristics methods, have been elaborated
in the literature to estimate the unknown parameters of
PV cells. The first one is the analytical methods that are
utilized based on the data sheet information or I-V curve
[5]–[7] to illustrate suitable estimation process formula-
tions. Additionally, analytical expressions are presented in
[8] to determine the parameters of the single-diode model
at any operating conditions, whilst a novel three-terminal
measurement technique is used with a Tandem structure to
extract the essential solar sub-cells parameters [9]. An appli-
cation of the direct extraction procedure for the measured
I–V characteristics of an experimental organic solar cells
is introduced in [10] displaying the analytic solution with
the illumination intensity-dependent S-shapes. The second
method is the nonlinear optimization methods in [11], [12].
These two approaches use sets of experimental data for
estimating the unknown parameters of PV cells. The third
method is the metaheuristic optimization methods, which
are demonstrated to solve the optimization problem. In this
context, A data-driven method [13], a modified simplified
swarm optimization (MSSO) algorithm [14], and adaptive
wind-driven optimization (AWDO) algorithm [15] are devel-
oped to extract I–V curve parameters of PVSDM. Accurate
Expressions for PVSDM is proposed in [16] without any
approximation. A reduced computational complexity via a
Reduced-Space Search for PVSDM is introduced in [17].
An explicit nonlinear model, which uses per unit single-
diode model of PV module [18], is proposed to determine
the parameters of PVSDM. Two-step linear least-squares
method is presented in [19] taking into consideration intrinsic
properties of the model equation to extract the parameters
of PVSDM. Other techniques such as Coyote Optimization
Algorithm (COA) [20], evolutionary algorithms (EAs) [21]
and an improved cuckoo search optimization (ICSO) [22]
are presented to extract PVSDM and PVDDM. Additionally,
Bacterial Foraging Optimization (BFO) [23] technique can
extract the optimal parameters when changing the weather
conditions. A triple-phase teaching-learning-based optimiza-
tion (TPTLBO) [24], Coyote Optimization Algorithm (COA)
[25], an interval branch and bound algorithm [26] Tree
Growth Algorithm (TGA) [27], are applied to extract the
parameters of different PV models of the three models. shuf-
fled complex evolution (SCE) [28] technique was developed
for only extracting the intrinsic parameters of the PVTDM.
The marine predators’ algorithm (MPA) [29] and Manta Ray
Foraging (MRF) optimizer [30] are properly employed to
extract the electrical parameters of the PVTDM for different
PV Modules. A detailed overview of the solar cell models
for a common PV panel was evaluated in [31], but only for
PVSDM and PVDDM. In [32], a penalty based-differential
evolution has been extended to the extraction of PVDDM
module parameters under varying environmental conditions
of various forms (mono-crystalline, multi-crystalline and
thinfilm).

It is clearly observed that the previous survey illustrates
the great effort that has been demonstrated to get the optimal
parameters for each model. In this article, a fewer control-
ling parameter and an adequate time consumption approach
named Forensic-Based Investigation Algorithm (FBIA) [33]
is proposed to estimate the electrical parameters of PV mod-
ules. FBIA can be represented by the investigation stage
employed by the investigators team, and the pursuit phase
applied by the police agents’ team to attain the fitness func-
tion. The quality of FBIA is assessed measuring the exper-
imental datasets under diverse environmental conditions of
temperature and radiation values with handling the parame-
ters of PVSDM, PVDDM and PVTDM models.

These three models are utilized with, two sets of I-V data—
namely, the measurements attained from the Photowatt-PWP
201 polycrystalline module and the KC200 [34]. These
datasets are selected because they are widely employed as
benchmarks to assess the performances of several parameter
extraction methods [35]–[37]. The exact value of each points
and the best results attained by other methods in the literature.
Therefore, these case studies provide fair, wide-reaching,
and referenceable comparisons. The proposed algorithm is
compared with a recent and a well-established algorithm to
illustrate its superiority and effectiveness among these algo-
rithms

It is lucid that the previous survey illustrate that a great
effort has been demonstrated to get the optimal parameters
for each model. Therefore, the noticed features of this article
can be described in the following points:
• A novel optimization technique called FBIA is intro-
duced and tested for estimating the parameters for sin-
gle, double and triple models of PV cells with two
different PV modules.

• The Photowatt-PWP 201 polycrystalline module is emu-
lated via PVTDM model as a practical test solar cell for
the first time in this article.

• The simulation results are compared with many algo-
rithms in the literature when using the same data set.

• To prove the proposed new algorithm ability, many
recent algorithms for the first time as Jellyfish
search (JFS) optimizer [38], Manta Ray Foraging opti-
mizer (MRFO) [39], [40], Marine Predator Algorithm
(MPA) [41], Equilibrium Optimizer (EO) [42], [43], and
Heap Based Optimizer (HBO) [44] are implemented in
this work for the two modules.

• The performance of the proposed FBIA algorithm is
inspected in terms of fitness value and convergence
speed in comparison to other metaheuristics.

• The estimated characteristics of the selected PV cell are
used to simulate both I-V curve and P-V curve, and they
are nearly close to the experimental data.

• The FBIA is assessed with the measured experimental
datasets under diverse environmental conditions of tem-
perature and radiation values with handling the parame-
ters of PVSDM, PVDDM and PVTDM models.
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FIGURE 1. Equivalent circuit for PVSDM.

The paper is arranged in 5 section as follows: The prob-
lem formulation for different three PV models are detailed
in Section II. Then, Section III demonstrates the steps to
FBIA optimization algorithm. The outcomes are discussed
and analyzed in Section VI with comparison and convergence
analyses compared with the recently developed state-of-the
art in literature. Eventually, a conclusion is manifested in
Section V.

II. PROBLEM FORMULATION
A. SOLAR CELL MODELS
The characteristics of the PV have been explored by vari-
ous models. Practically, the most popular ones are PVSDM,
PVDDM, and PVTDM. The output current (I) of the PV
cell is calculated from the output voltage (V) in the three
models. Each model is manifested by an equivalent circuit
with defined operating conditions. Additionally, the entire I
−V curve of amodule is considered as a continuous function.
Furthermore, the temperature and the irradiance are fixed
parameters and can influence on these models. Eventually,
it is required to estimate the simplified inner characteristics
of the PV models depending on the selected model.

The succeeding subsections describe the three model alter-
natives for PV cells.

1) PHOTOVOLTAIC SINGLE-DIODE MODEL (PVSDM)
In Fig. 1, the equivalent circuit of the PVSDM is displayed
It consists of the photo-current source (IPV), the resistance
(RP), that is shunted with the diode and a series resistance
(RS). RP considers the leakage current of PN junction that
involves the semiconductor non-idealities. It arises from the
partial short circuit current path close to the cell’s edges.
Additionally, RS emulates the effects of contact surfaces of
electrodes and silicon, and the passing current resistance, and
electrodes resistance.

The PVSDM is formulated mathematically to calculate the
load output current (I) as follows:

I = IPV − ID1 − IP (1)

where, IPV , ID1, and IP represent the photons current, the
diode current, and the current, which passes throughout the
shunt resistance, respectively.

FIGURE 2. Equivalent circuit for PVDDM.

ID1 can be formulated as:

ID1 = IS1

[
exp

(
V + IRS
η1 VT

)
− 1

]
(2)

where, IS1, I manifest the reverse saturation current and the
output current of the cell, respectively, whereas V, RS and η1
refer to the output voltage of the PV cell, the series resistance
of the PVSDM equivalent circuit, and the ideality factor of
D1, respectively.

Moreover, IP is computed as:

IP =
V + IRS
RP

(3)

The constant VT is calculated as follows:

VT =
KBT
q

(4)

where, KB describes the Boltzmann’s constant, whilst T and
q characterize the absolute temperature and the electron’s
charge, respectively. Consequently, the unknown parameters
of the PVSDM become five which are IPV , IS1, η1, RP and
RS .

2) PHOTOVOLTAIC DOUBLE -DIODE MODEL (PVDDM)
In practical conditions, for the PVDDM, an additional diode
is placed in parallel with the current source considering the
recombination of space charge [31] in comparison with the
PVSDM. The equivalent circuit of the PVDDM is illustrated
in Fig. 2. The additional diode reflects the additional current
term as depicted in the Eq. (5) as:

I = IPV − ID1 − ID2 − IP (5)

where, ID2 gives the second diode current and can be
described with the following equation:

ID2 = IS2

[
exp

(
V + IRS
η2 VT

)
− 1

]
(6)

where, IS2 shows the reverse saturation current, while η2
represents the ideality factor of D2.

There are two extra parameters with respect to the second
model, PVSDM, describing the second diode. Therefore, the
PVDDM will have seven unknown parameters that are IPV ,
IS1, IS2, η1, η2, RP and RS .
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FIGURE 3. Equivalent circuit for PVTDM.

3) PHOTOVOLTAIC TRIPLE -DIODE MODEL (PVTDM)
In this model, the impact of large leakage and recombination
in the defect area are considered. Thus, the third diode is
shunted with the PVDDM as depicted in Fig. 3.

Like PVSDMand PVDDM, the output current is computed
by employing Kirchhoff current law as depicted in the follow-
ing equation:

I = IPV − ID1 − ID2 − ID3 − IP (7)

where, the third diode current (ID3) can be calculated as
follows:

ID3 = IS3

[
exp

(
V + IRS
η3 VT

)
− 1

]
(8)

where, IS3 describes the reverse saturation current, whereas
η3 reflects the ideality factor of D3.

In the previous methods [45]–[47], only seven parameters,
which are IPV , IS1, IS2, IS3, η3, RP and RS , are estimated,
whilst the other parameters remain constants η1 = 1, η2 = 2
and only an additional constraint is added, which is η3 > 3.
However, in this article, the nine parameters of PVTDM have
been examined with different recently developed optimiza-
tion techniques to augment the accuracy of the model.

4) OBJECTIVE FUNCTION FORMULATION
It is pivotal to define firstly an appropriate objective func-
tion in order to effectively apply FBIA for the PV param-
eter extraction problem. The main objective of PVSDM,
PVDDM, and PVTDM is to find their parameter values that
can minimize the errors between both calculated and mea-
sured current. Basically, the greatest accurate group of model
parameters should be slightly more or less than the exper-
imental data. In that context, the broadly accepted scheme,
to measure the difference between two I -V curves, is devel-
oped throughout the root mean square error (RMSE) [20].
Hence, the objective function can be determined as [48]–[50]
as:

RMSE =

√√√√√ 1
M

M∑
j=1

(I jexp − I
j
cal(V

j
exp, x))2 (9)

where, I jexp and V
j
exp illustrate the current and voltage values

of jth experimental point, respectively, while N describes the

number of empirical data points. The variable x indicates
the decision parameters of the optimization problem. On the
contrary, the term (I jcal (V

j
exp, x)) represents the computed

current output.

III. FBIA FOR OPTIMIZED PARAMETERS EXTRACTION OF
SOLAR CELL MODELS
The FBIA, introduced by Chou and Nguyen, is influenced by
the forensic examination techniques of police officers. The
FBIA is stimulated by police personnel who use the investi-
gation, location, and conviction of criminals. The FBIA has
two main phases, which are the investigation phase and the
pursuit phase. While the investigation phase is applied by
the investigators team, the pursuit phase is employed by the
police agents’ team.
XAi represents the ith suspected place to be investigated

during the inquiry process; (i = 1, 2, . . . ,NPA); Whereas
XBi indicates the position of the police officer i at which
police officer continues to pursue the perpetrator, (i =
1, 2, . . . ,NPB). NPA and NPB are related to the pursuit
team which describe the places number that are inspected
and police agents, respectively. The size of population (NP),
in this algorithm, is assumed to equal to NPA and NPB.
Whenever the full number of iterations (gmax) is completed,
the forensic process is terminated. Its main steps are depicted
in Fig. 4.

The algorithm consists of four steps which are interpreta-
tion of findings (A1), direction of inquiry (A2), actions (B1)
and extends the process of actions (B2) as will be illustrated
in the following paragraphs.

In (A1), a new suspected location (XA1i) from XAi is
deduced on the basis of XAi and information, which is related
to other suspected locations. It is assumed that each individual
moves underneath the effect of other individuals. Thus, the
movement formula can be expressed as seen in the following
equation:

XA1ij = XAij + ((r − .05) ∗ 2) ∗

( a1∑
a=1

XAaj

)
/a1,

a1 ∈ {1, 2, . . . , n− 1} (10)

where j = 1: D and D indicates the dimensions number,
whilst the term ((r − 0.5)∗2) and the symbols (r) and (a)
represent a random number in the range [−1, 1] and [0,
1], respectively, a1 denotes the number of individuals which
affect the movement of XAij. The updated suspected place
XA1i is shown in Eq. (11). pAi is considered as the possibility
that the suspect is located at XAi, which means that pAi rep-
resents the objective value of location XAi. The investigators
assess the possibility (pA1i) of the new place for suspect in
comparison to the existed one based on the objective value to
reserve the better one.

XA1ij = XAij + ((r1 − .5) ∗ 2) ∗ (XAij − (XAkj + XAhj)/2),

{k, h,i} ∈ {1, 2, . . . ,NP} (11)
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FIGURE 4. Main steps of FBIA.

whereas, h and k indicate random selected places and i refer
to the current placeD and NP are the dimensions number and
the locations number for suspect, respectively. Additionally,
the term ((r1−0.5)∗2) and (r1) characterize random numbers
within ranges [−1, 1], and [0, 1], respectively.

In (A2),investigators direct the inquiry. pworst represents
the lowest possibility, which is the worst objective value,
whereas pbest and Xbest are the highest possibility (the best
objective value) and the best location, respectively. The prob-
ability of each location (Prob(XAi)) can be determined and
consequently, a high probability for the location Prob(XAi)
that equals:

Pr ob(XAi ) = (pworst − pAi )/(pworst − pbest ) (12)

TABLE 1. The boundaries range for Photowatt-PWP 201
moduleparameters [36].

Based on the steps A1 and A2, Thus, the formula of the
movement can be expressed as depicted in the following
equation

XA2i = Xbest +
a2∑
b=1

αb ∗ XAbj a2 ∈ {1, 2, . . . , n− 1} (13)

where, Xbest expresses the best location; a2 represents the
number of individuals which affect the move of XA2i; b =
1, 2, . . . , a2; αb displays the effectiveness coefficient of the
other individuals to the move and it is within the range [−1,
1]). Numerical experiments indicate that a2 = 3. Therefore,
the new suspected location XA2ij is created using Eq. (14).
Then, the possibility (objective) is computed to decide updat-
ing the suspected place or not.

XA2ij = Xbest + XAdj
+r5 ∗ (XAej − XAfi ){f ,d,i,e} ∈ {1, 2, . . . ,NP} (14)

where Xbest describes the best place and r5 represents the
random value between 0 and 1, while e, d, i, and f , denote
four suspected locations.

In Step (B1), everyBi agent is approaching the position that
has the highest value of the objective as illustrated in Eq. (15).
Then, the new position is changed if it finds a better fitness
compared to the existed one (pBi).

XB1ij = r6 ∗ XBij + r7 ∗ (Xbest − XBij) j = 1, 2, . . . ,D

(15)

where Xbest displays the best place provided by the investi-
gators, while r6 and r7 describe numbers that are randomly
specified inside [0, 1].

In Step (B2), each agent Bi coordinates with the others,
and Bi shifts in the direction of the best place. The updated
position (XB2i) of the agent Bi is formalized as manifested in
Eq. (16) if the possibility (pBr ) of another member Br is better
than pBi; Otherwise, it is computed as illustrated in Eq. (17).

XB2ij = XBrj + r8 ∗ (XBrj − XBij )

+ r9 ∗ (Xbest − XBrj ){i, r} ∈ {1, 2, . . . ,NP}

and j = 1, 2, . . . ,D (16)

XB2ij = XBij + r10 ∗ (XBij − XBrj )+ r11 ∗ (Xbest − XBij ),

{i, r} ∈ {1, 2, . . . ,NP} and j = 1, 2, . . . ,D (17)

whereXbest describes the best location given in Step B1, while
(r8),( r9),( r10), and (r11) are random numbers within the
range [0, 1]. The two symbols(i) and (r) reflects two police
agents, and r is selected randomly.
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TABLE 2. The Min, Mean, Max and Std of both recent and reported optmization techniques on PVSDM of PWP 201 polycrystalline Module.

TABLE 3. Parameter estimation extracted of both recent and reported optmization techniques on PVSDM of PWP 201 polycrystalline Module.

TABLE 4. Parameter estimation extracted of additionl reported optmization techniques on PVSDM of PWP 201 polycrystalline Module.

IV. SIMULATION RESULTS
In this section, FBIA is employed on the Photowatt-PWP
201 polycrystalline module and Kyocera KC200GT module
to extract the electrical PVSDM, PVDDM, and PVTDM
parameters accurately.

A. PHOTO WATT-PWP 201 PV MODULE
The first test system, which is Photo watt-PWP 201 PVMod-
ule, has 36 series polycrystalline silicon cells that were tested
to get the measured data which consists 25 pairs of I and V
values at an irradiance of (1000 W/m2) and a temperature of
(45 ◦C) [34]. The parameters search ranges are set according
to other related works [35], [36], as depicted in Table 1.
The three-model system, which are PVSDM, PVDDM, and
PVTDM are illustrated below as follows.

1) CASE 1: PVSDM
For this case, FBIA is employed on, where the optimal
solution, which is the minimum error, is compared with
respect to those manifested by various reported and recently
developed optimization techniques as shown in Table 2. The
stopping criteria is reached when the maximum number of
iterations (gmax) of 2000 is achieved. On the one hand,
it is apparently seen that the FBIA and finds a minimum

standard deviation of 2.02E-06, which is lower than EO,
HEAP, JFS, MPA, and MRFO, where they acquired Std
of 2.75E-05, 2.42E-05, 2.37E-06, 0.003134, 1.58E-05, and
2.02E-06, respectively. Added to that, the computational cost
of the executed time per each iteration are compared for the
performed algorithms. As shown, the lower computational
cost is related to FBIA with 0.076966 seconds whilst, EO,
HEAP, JFS, MPA and MRFO records 0.08592, 0.09257,
0.08876, 0.08291 and 0.082004 seconds.

In addition, Tables 3 and 4 illustrate the parameter estima-
tion extracted of both recent and reported optimization tech-
niques on PVSDM of PWP 201 polycrystalline Module. The
reported optimization techniques, that are employed in this
study, are particle swarm optimization (PSO) [51], grey wolf
optimization (GWO) [52], particle swarm optimization based
grey wolf optimization (PSOGWO) [53], slime mould opti-
mization (SMA) [54], RAO optimizer [55], CS [56], JAYA
Algorithm [57], performance-guided JAYA (PGJAYA) [58],
teaching–learning–based artificial bee colony (TLABC) [59],
simplified TLBO (STLBO) [60], covariance matrix based
migration with biogeography- based optimization (CMM-
BBO) [61], eagle based hybrid adaptive Neld-Mead sim-
plex (EHA-NMS) [62], improved teaching learning based
optimization (ITLBO) [63], self-adaptive TLBO (SATLBO)
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FIGURE 5. RMSE of FBIA compared to recent optmization techniques on PVSDM of PWP 201 polycrystalline Module.

[64], grey wolf optimizer with cuckoo search (GWOCS) [65],
hybrid Firefly and Pattern Search (HFAPS) [66], and Ant lion
optimizer (ALO) [67].

Fig. 5 displays the RMSE of FBIA compared to recent
optmization techniques, which are JFS, MRFO, HEAP, EO,
MPA on PVSDM of PWP 201 polycrystalline Module. The
RMSE data were obtained depending on 30 Runs for all
recent algorithms. Fig. 5 illustrtaes that the proposed FBIA
achives the lowest RMSEvalue among the recently developed
techniques in the literature where the RMSE value for FBIA
accounts for 0.002425 in the 30 run processes. Therefore, the
convergence characteristics of the FBIA are stable and the
arrival of the optimal solution is faster than the other recent
optmization techniques depicting in Fig. 6.

Figs. 7 and 8 illustrate the simulated behavior of the PV
using the MSD result compared with respect to the data that
used for the parameter estimation. The current–voltage (I–V)
and the power-voltage (P-V) curves of the PV are depicted in
Fig. 7 and Fig. 8, respectively.

Table 5 illustrates the points of experimental, simu-
lated current values, and the absolute errors between them.

FIGURE 6. Convergence charactrictics of FBIA versus other recent
optmization techniques on PVSDM of PWP 201 polycrystalline.

Moreover, it manifests the experimental, simulated power
values, and the absolute errors between them when employ-
ing the FBIA on PVSDM of PWP 201 polycrystalline.

VOLUME 9, 2021 7
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TABLE 5. Experimental and simulated current and power of FBIA on PVSDM of PWP 201 polycrystalline and the absolute errors among them.

FIGURE 7. I-V curve of experimental and simulated current of FBIA on
PVSDM of PWP 201 polycrystalline.

In addition, Figs. 9 and 10 demonstrate the absolute errors
of experimental and simulated current of FBIA on PVSDM
of PWP 201 polycrystalline module when applying 25 runs
according to the standard of the module benchmark.

2) CASE2: PVDDM
FBIA is employed on PVDDM, in this case, where the opti-
mal solution is compared with respect to the other optimiza-
tion techniques in Table 6. It is clearly seen that the FBIA
finds a minimum standard deviation of 4.75E-06, which is
less than EO, HEAP, JFs, MPA, and MRFO, where they
acquired Std of 9.14E-06, 2.52E-05, 5.25E-06, 0.000704,
1.36E-05, and 1.36E-05, respectively. Table 7 character-
izes the parameter estimation extracted from the recent and
reported optimization techniques on PVDDM of PWP 201

FIGURE 8. P-V curve of experimental and simulated current of FBIA on
PVSDM of PWP 201 polycrystalline.

polycrystalline module, where the proposed FBIA achieves
the most accurate results for these parameters with respect
to the other techniques. Table 6 also manifests the parameter
estimation extracted of reported optimization techniques on
PVSDM of PWP 201 polycrystalline module, which are par-
ticle swarm optimization (PSO) [51], grey wolf optimization
(GWO) [50], Lightning Attachment Procedure Optimization
(LAPO) [66] particle swarm optimization based grey wolf
optimization (PSOGWO) [51].

Fig. 11 illustrates the RMSE of FBIA compared to the
recent optmization techniques, which are JFS,MRFO,HEAP,
EO, MPA on PVDDM of PWP 201 polycrystalline Mod-
ule. The RMSE data were obtained depending on 30 Runs
for all recent algorithms. It is seen that the proposed FBIA
achives the lowest RMSEvalue among the recently developed
techniques in the literature where the RMSE value and the
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FIGURE 9. The absolute errors of experimental and simulated current of FBIA on PVSDM of PWP 201 polycrystalline.

FIGURE 10. The absolute errors of experimental and simulated power of FBIA on PVSDM of PWP 201 polycrystalline.

TABLE 6. The Min, Mean, Max and Std of both recent and reported optmization techniques on PVDDM of PWP 201 polycrystalline Module.

TABLE 7. Parameter estimation extracted from of both recent and reported optmization techniques on PVDDM of PWP 201 polycrystalline Module.

standard deviation of FBIA accounts for 0.002425 and 4.75E-
06, respectively, in the 30 run processes. Then, the conver-
gence characteristics of the FBIA are stable and the arrival of
the optimal solution is faster than the other recent optmization
techniques in Fig. 12.

Figs. 13 and 14 manifest the simulated behavior of
the PVDDM result compared with respect to the data

for the parameter estimation. The two figures show he
current–voltage (I–V) and the power-voltage (P-V) curves of
the PVDDM.

Table 8 gives the points of experimental, simulated current
values, and the absolute errors between them. Moreover,
it manifests the experimental, simulated power values
and the absolute errors between them when employing
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FIGURE 11. RMSE of FBIA compared to recent optmization techniques on PVDDM of PWP 201 polycrystalline Module.

FIGURE 12. Convergence charactrictics of FBIA versus other recent optmization techniques on PVDDM of PWP 201 polycrystalline.

the FBIA on PVSDM of PWP 201 polycrystalline.
In addition, Figs. 15 and 16 demonstrate the absolute
errors of experimental and simulated current of FBIA on

PVSDM of PWP 201 polycrystalline module when apply-
ing 25 runs according to the standard of the module
benchmark.
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TABLE 8. Experimental and simulated current and power of FBIA on PVSDM of PWP 201 polycrystalline and the absolute errors among them.

FIGURE 13. I-V curve of experimental and simulated current of FBIA on
PVDDM of PWP 201 polycrystalline.

TABLE 9. The Min, Mean, Max and Std of both recent and reported
optmization techniques on PVTDM of PWP 201 polycrystalline Module.

3) CASE3: PVTDM
FBIA is employed on PVTDM for the first time, in this case,
where the optimal solution is compared with respect to those
manifested by various reported and recently developed opti-

FIGURE 14. P-V curve of experimental and simulated current of FBIA on
PVDDM of PWP 201 polycrystalline.

TABLE 10. Parameter estimation extracted from of both recent and
reported optmization techniques on PVTDM of PWP 201 polycrystalline
Module.

mization techniques as in Table 9. It is apparently seen that
the FBIA finds a minimum standard deviation of 1.06E-05,
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FIGURE 15. The absolute error of experimental and simulated current of FBIA on PVDDM of PWP 201 polycrystalline.

FIGURE 16. The absolute error of experimental and simulated power of FBIA on PVDDM of PWP 201 polycrystalline.

which is less than EO, HEAP, JFS, MPA, and MRFO,
where they acquired standard deviation of 1.11E-05,
3.01E-05, 5.04E-06, 0.20E-04, 1.36E-05, and 2.3E-05,
respectively. Table 10 describes the parameter estima-
tion extracted from both recent and reported optimiza-
tion techniques on PVTDM of PWP 201 polycrystalline
module, where the proposed FBIA achieves the most
accurate results for these parameters with respect to other
techniques

Fig. 17 illustrates the RMSE of FBIA compared to recent
optmization techniques, which are JFS, MRFO, HEAP, EO,
MPA on PVDDM of PWP 201 polycrystalline Module. The
RMSE data were obtained depending on 30 Runs for all
recent algorithms. The proposed FBIA achives the lowest
RMSE value among the recently developed techniques in the
literature. The RMSE value of FBIA accounts for 0.002425.
For this case, the convergence characteristics of the FBIA
are stable and the arrival of the optimal solution is faster
than the other recent optmization techniques in Fig. 18. Figs.
19 and 20 provide the simulated behavior of the PVTDM
result compared with respect to the data that used for the

parameter estimation. These figures show he current–voltage
(I-V) and the power-voltage (P-V) curves of the PVTDM.
Table 11 demonstrates the points of experimental, simulated
current values, and the absolute errors between them. More-
over, it manifests the experimental, simulated power values,
and the absolute errors between them when employing the
FBIA on PVSDM of PWP 201 polycrystalline. In addition,
Figs. 21 and 22 give the absolute errors of experimental and
simulated currents for FBIA on PVSDM of PWP 201 poly-
crystalline module for 25 runs according to the standard
benchmark module.

B. KYOCERA KC200GT PV MODULE
The second test system, which is Kyocera KC200GT PV
Module, 57 mm diameter silicon solar cell, were tested to get
the measured data with variation of both irradiance and tem-
perature. In this section, FBIA is employed on the Kyocera
KC200GT module to show the I-V characteristics of the
KC200GT module experimented and simulated by the three-
model system, which are PVSDM, PVDDM and PVTDM as
illustrated below.
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FIGURE 17. RMSE of FBIA compared to recent optmization techniques on PVTDM of PWP 201 polycrystalline Module.

FIGURE 18. Convergence charactrictics of FBIA versus other recent optmization techniques on PVTDM of PWP 201 polycrystalline.
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TABLE 11. Experimental and simulated current and power of FBIA on PVTDM of PWP 201 polycrystalline and the absolute errors among them.

FIGURE 19. I-V curve of experimental and simulated current of FBIA on
PVTDM of PWP 201 polycrystalline.

1) CASE 1: PVSDM
This part explains the I-V and P-V characteristics of the
KC200GTmodule that are experimented and simulated when
using PVSDMwith variation of both irradiance and tempera-
ture. FBIA is implemented on this type to simulate 15 points
with different values of current and voltage. There are vari-
ations in the values of currents and voltage when vary-
ing the values of irradiance and temperature as depicted in
Figs. 23 and 24.

Fig. 23 manifests I-V curve of the KC200GT module
experimented and simulated by the PVSDM for irradiance of

FIGURE 20. P-V curve of experimental and simulated current of FBIA on
PVTDM of PWP 201 polycrystalline.

1000W/m2 and varied temperature, where the voltage values
of the three curves under different temperature values are
decreased when the values of temperature increases. On the
other hand, the values of currents are dramatically increased
when rising the irradiance values, while the temperature value
is constant at 25 ◦C as illustrated in Fig. 24.
Similarly, the P-V characteristics of the KC200GT module

are experimented and simulated when using PVSDM with
variation of both irradiance and temperature as described in
Figs. 25 and 26 where the irradiance has changed from 200,
400, 600, 800, and 1000 W/m2 and the temperature accounts
for 25, 47, 50, and 75◦C. These variations in the temperature
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FIGURE 21. The absolute error of experimental and simulated current of FBIA on PVTDM of PWP 201 polycrystalline.

FIGURE 22. The absolute error of experimental and simulated power of FBIA on PVTDM of PWP 201 polycrystalline.

FIGURE 23. I-V characteristics of the KC200GT module experimented and
simulated by the PVSDM for irradiance of 1000W/m2 and varied
temperature.

and irradiance values can change the values of power of the
model versus the voltage. Fig. 25 manifests P-V curve of
that module experimented and simulated by the PVSDM for

FIGURE 24. I-V characteristics of the KC200GT module experimented and
simulated by the PVSDM for temperature of 25 ◦C.

irradiance of 1000 W/m2 and varied temperature, where the
voltage values of the three curves under different temperature
values decreased when the temperature increased from 25,
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FIGURE 25. P-V characteristics of the KC200GT module experimented and
simulated by the PVSDM for irradiance of 1000W/m2 and varied
temperature.

FIGURE 26. P-V characteristics of the KC200GT module experimented and
simulated by the PVSDM with fixed temperature of 25 ◦C and varied
irradiance.

FIGURE 27. I-V characteristics of the KC200GT module experimented and
simulated by the PVDDM with irradiance of 1000W/m2.

50, and 75◦C, respectively. However, the values of power are
sharply increased when rising the irradiance values, while the
temperature value is constant at 25 ◦C as in Fig. 26.

FIGURE 28. I-V characteristics of the KC200GT module experimented and
simulated by the PVDDM for temperature of 25 ◦C.

FIGURE 29. P-V characteristics of the KC200GT module experimented and
simulated by the PVDDM for irradiance of 1000W/m2.

2) CASE 2: PVDDM
This part introduces the I-V and P-V characteristics of the
KC200GT module that are experimented and simulated with
variation of both irradiance and temperature when using
PVDDM. In this case, FBIA is employed on this type to sim-
ulate 15 points with different values of current and voltage.
It is apparently clear that there are variations in the values of
currents and voltage when varying the values of irradiance
and temperature as depicted in Figs. 27 and 28. Fig. 27 mani-
fests I-V curve of the above mentioned module experimented
and simulated by the PVDDM for irradiance of 1000 W/m2

and varied temperature, where the voltage values of the three
curves under different temperature values are decreased when
the values of temperature increases. On the other hand, the
values of currents dramatically increased when rising the
irradiance values, while the temperature value is constant at
25◦C as in Fig. 28.

Equally, the P-V characteristics of the KC200GT mod-
ule are experimented and simulated when using PVDDM
with variation of temperature and irradiance as reflected in

16 VOLUME 9, 2021



A. M. Shaheen et al.: Forensic-Based Investigation Algorithm for Parameter Extraction of Solar Cell Models

FIGURE 30. P-V characteristics of the KC200GT module experimented and
simulated by the PVDDM at 25 ◦C and varied irradiance.

FIGURE 31. I-V characteristics of the KC200GT module experimented and
simulated by the PVTDM for irradiance of 1000W/m2.

Figs. 29 and 30, where the irradiance has changed from 200,
400, 600, 800, and 1000 W/m2 and the temperature accounts
for 25, 47, 50, and 75◦C. These variations in the temperature
and irradiance values can change the values of power of the
model versus the voltage. Fig. 29 displays the P-V curve of
that module experimented and simulated by the PVDDM for
irradiance of 1000 W/m2 and varied temperature, where the
voltage values of the three curves under different temperature
values decreased when the temperature increased from 25,
50, and 75◦C, respectively, whereas the values of power is
sharply increased when rising the irradiance values, while the
temperature value is constant at 25 ◦C as in Fig. 30.

3) CASE 3: PVTDM
This case elaborates the I-V and P-V characteristics of the
KC200GTmodule that are experimented and simulated when

FIGURE 32. I-V characteristics of the KC200GT module experimented and
simulated by the PVTDM for temperature of 25 ◦C.

FIGURE 33. P-V characteristics of the KC200GT module experimented and
simulated by the PVTDM for irradiance of 1000W/m2.

using PVTDM with variation of both irradiance and temper-
ature. The proposed FBIA is applied on this type to sim-
ulate 15 points with various values of current and voltage.
There are variations in the values of currents and voltage
when varying the values of irradiance and temperature as
characterized in Figs. 31 and 32. Fig. 31 manifests I-V curve
of the KC200GT module experimented and simulated by the
PVTDM for irradiance of 1000W/m2 and varied temperature,
where the voltage values of the three curves under different
temperature values decreased when the values of temperature
increased. On the other hand, the values of currents dramat-
ically increased when rising the irradiance values, while the
temperature value is constant at 25 ◦C as illustrated in Fig. 32.
Similarly, the P-V characteristics of the KC200GT module
are experimented and simulated when using PVTDM with
variation of both irradiance and temperature as described in
Figs. 33 and 34 where the irradiance has changed from 200,
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FIGURE 34. P-V characteristics of the KC200GT module experimented and
simulated by the PVTDM at 25 ◦C and varied irradiance.

TABLE 12. Parameter estimation extracted from FBIA on PVSDM, PVDDM,
and PVTDM of KC-200GT Module.

400, 600, 800, and 1000 W/m2 and the temperature accounts
for 25, 47, 50, and 75◦C. These variations in the temperature
and irradiance values can change the values of power of the
model versus the voltage. Fig. 33 manifests P-V curve of
that module experimented and simulated by the PVTDM for
irradiance of 1000 W/m2 and varied temperature, where the
voltage values of the three curves under different temperature
values decreased when the temperature increased from 25,
50, and 75◦C, respectively. However, the values of power are
sharply increased when rising the irradiance values, while the
temperature value is constant at 25 ◦C as in Fig. 34.

Table 12 shows the standard deviation and the RMSE
errors of the module KC-200GT characteristics attained by
PVTDM are 7.81E-06, and 0.000721, respectively, that are
less than the obtained by PVSDM as 8.08E-06, 0.000734, and
by PVDDM, as 1.39E-05, 0.000962, respectively.

V. CONCLUSION
FBIA is a new meta-heuristic optimization technique and
implemented on the PV parameter extraction problem. This
article has presented a novel application of the FBIA
approach to properly extract the five, seven, and nine
parameters of PVMSD, PVMDD, and PVMTD of both

Photowatt-PWP 201 polycrystalline and Kyocera KC200GT
PV modules. The delivered solutions for the PVMSD,
PVMDD, and PVMTD of both Photowatt-PWP 201 poly-
crystalline and Kyocera KC200GT modules test system are
compared with respect to the recent optimization techniques
that have developed in this article and the reported ones
in literatures. The three models are inspected to depict the
superiority of the FBIA. The proposed FBIA algorithm is
successfully implemented to design optimally the parame-
ters of two Photowatt-PWP 201 polycrystalline and Kyocera
KC200GT modules. The optimal parameters using the FBIA
model are coherent compared to the other diverse algorithms.
The FBIA approach has recorded less optimal fitness values
for Photowatt-PWP 201 and Kyocera KC200GT modules.
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