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ABSTRACT The accurate and timely online estimation of the alumina concentration in an industrial
aluminum electrolysis cell can improve its feed control performance. By using the proposed marginal
kurtosis (MK), marginal kurtosis dominant frequency (MK-DF), integral feed frequency and sensitive
frequency band (SFB), this study reveals that a normalized cell voltage with different current intensities and
feed schemes has different alumina concentration SFBs and determines the general formula for calculating
the SFB. On this basis, a general algorithm for acquiring the pseudo alumina concentration (PAC) using
translation-invariant filtering is proposed in which the upper limit of the SFB provides the cutoff frequency
of the low-pass filter. The PAC was used to estimate the absolute and relative concentrations of alumina. The
absolute concentrations are validated using measured concentrations. Additionally, improved feed control
performance of the industrial cells is presented using the relative concentration PAC-slope.

INDEX TERMS Aluminum electrolysis, integrated feed frequency, marginal kurtosis, marginal kurtosis
dominant frequency, pseudo alumina concentration, sensitive frequency band.

NOTATIONS
[0, fsens] Alumina concentration sensitive fre-

quency band, SFB.
[g h] Wavelet and scaling filter coefficients of

db2.
[CAE, CThLow] Controllable zone of the alumina concen-

tration.
[gJ0 hJ0 ] J0th level TIDWT wavelet and scaling

filters of db2.
α The loss rate of alumina during feeding.
η Current efficiency.
C Alumina concentration.
g(·) Nonstationary signal.
I Sample cell current.
J , J0 Transform level of the partial TIDWT.
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L Support length of an orthonormal wavelet.
M (1)
K The first derivative ofMK (f ).

M (2)
K The second derivative ofMK (f ).

N Length of the original signal.
r Vanishing moments of an orthonormal wavelet.
s Feed factor.
βo Overfeed percentage.
βu Underfeed percentage.
G(1) The first derivative of G.
G(2) The second derivative of G.
GK0009 The slope obtained by using the multiple filters

method.
G′K0009 The forward shifting of GK0009.
GTffilter The change rate of resulting components filtered

by using the db2 partial TIDWT for the fre-
quency band [0, ffilter ] Hz.
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Puo Slope threshold for transition of underfeed to
overfeed.

s̃feed Default single feed amount.
CAE Critical alumina concentration.
CPAC Pseudo alumina concentration, PAC.
CThLow Alumina concentration corresponding to

UThLow.
Dfeed,FN Duration time vector FN .
Difp,FN (i) Duration of the ith practical-IFP of FN .
DofdMax Maximum overfeed duration.
Dofd Overfeed duration.
DThfeed Theoretical integrated feed period duration,

Theoretical-IFP duration.
DufdMax Maximum underfeed duration.
Dufd Underfeed duration.
Ec Pseudo counter electromotive force.
Fc The rate of alumina consumption per second.
fd Dominant frequency based on the Marginal

kurtosis of g(·), MK-DF.
ffeed,FN Practical-IFF vector of FN .
ffilter Frequency upper limit of the pass-band of the

scaling filter.
fifp,FN (i) The ith practical integrated feed frequency of

FN , ith practical-IFF.
fs Sampling frequency.
fThfeed Theoretical integrated feed frequency,

Theoretical-IFF.
FUj, FN Feed state corresponding to Uj and UN,

respectively, FDS.
GPAC The change rate of PAC, PAC-slope.
gfeed Capacity of the feeder.
hg(x) Hilbert transform of the nonstationary signal

Hilbert transform of the nonstationary signal.
Ib Basic line current.
k1 Transition factor 1.
k2 Transition factor 2.
Lj Length of the jth level TIDWT wavelet and

scaling filters.
Mfeed,FN Practical integrated feed matrix of FN ,

practical-IFM.
MK (f ) Marginal kurtosis of g(·), MK.
nfeed Number of feeders.
nifp, nifp,FN The number of practical-IFPs in FN .
NoThfeed Theoretical overfeed interval.
NThbase Theoretical basic feed interval, theoretical-

BFI.
NuThfeed Theoretical underfeed interval.
R0 Pseudo cell resistance.
sfeed Amount of single feed.
SFN Feed state set.
Tifp,FN (i) The ith practical integrated feed period of FN ,

ith practical-IFP.
toe(i) End position of the ith overfeed period.
tos(i) Start position of the ith overfeed period.
tue(i) End position of the ith underfeed period.
tus(i) Start position of the ith underfeed period.

UN, Uj Normalized cell voltage, NCV.
US Sample cell voltage.
UThLow Minimum value of the theoretical cell voltage.
UTh Theoretical cell voltage.
VJ0 Scale coefficients of the level J0 db2 TIDWT-

based.
Wg(t, f ) Integral wavelet transform of hg(x).
ACD Anode cathode distance.
ARE Average relative error.
BFI Basic feed interval.
DWT Discrete wavelet transform.
IWT Integral wavelet transform.
MRA Multi-resolution analysis.
PSD Power spectral density.
RMSE Root mean square error.
TI Translation invariant.
WPT Wavelet-packet transform.

I. INTRODUCTION
The alumina concentration is a crucial parameter to ensure
efficient and green production during the aluminum electrol-
ysis process [1], [2]. The refined feed control of the alumina
concentration depends on the accuracy and timeliness of the
online estimation of this concentration, which is of great sig-
nificance for improving product quality and reducing energy
consumption and greenhouse gas emissions. Due to the lack
of sensors that can meet the requirements of industrial control
for online measurement of the alumina concentration, fast
online measurement of this concentration is currently not
available.

The cell voltage changes with the alumina concentration.
The slope, which is calculated from the component related
to the alumina concentration extracted from the cell voltage
measured online, is the main basis for alumina feed control
[3]–[5] in an industrial cell. Therefore, whether the extracted
component represents the alumina concentration change in
an accurate and timely manner directly affects the perfor-
mance of control system. In past decades, multiple Kalman
filters [3], [6], [8] and other multiple filters were commonly
used to analyze the cell voltage (or cell resistance). For
example, reference [8] used recursive low-pass digital filters
and multiple Kalman filters to obtain the change rate of the
filtered cell resistance for alumina feed control, in which the
filter coefficients and the number of cascaded filters were
determined by experience or on-site experiments. In [7], the
power spectrum and amplitude spectrum of the normalized
cell voltage (NCV) of a 160-kA prebaked anode cell with
point feeders were studied using the fast Fourier transform,
in which the filter pass-band for alumina concentration online
control is

[
0, 2× 10−3

]
Hz. With increasing electrolysis

intensity, it has appeared diverse sizes (with different current
intensities) of industrial cells have appeared, such as 200-kA,
400-kA, 500-kA and 600-kA cells. Moreover, two cells with
the same cell size may have different feeding schemes. There
is a certain lag in the filtered voltage obtained by the cascade
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of the multiple filter method. Additionally, the filtered volt-
age, which is obtained by using the filter pass-band and
filter coefficients determined by experiment or experience,
still contains much noise. Thus, using the relative alumina
concentration (called the slope) calculated from the filtered
voltage as the primary basis will cause the feed control deci-
sion to lag behind the alumina concentration change, or even
result in incorrect control decisions.

To estimate the online alumina concentration in an accurate
and timely manner and improve the performance of the feed
control system of industrial cells, this paper combines process
mechanism analysis, signal analysis and material balance
theory and proposes concepts such as the MK, MK-DF, inte-
grated feed frequency (IFF), alumina concentration sensitive
frequency band (SFB) and pseudo alumina concentration
(PAC). Most of these parameters are derived from the cell
voltage. The identification of the SFB using MK provides
the narrower pass-band for filter design and contributes to
reducing the control system complexity and the occurrence
of incorrect control decisions, both of which are caused by
using an experience-based pass-band. The introduction of
translation-invariant filtering can overcome the drawbacks
of frequency aliasing and delay caused by the cascade of
multiple filters. Both the SFB and translation-invariant fil-
tering can improve the accuracy and timeliness of alumina
concentration estimation and feed control performance.

The rest of this study is organized as follows. In section
II, the feature of NCV is analyzed by using MK and MK-
DF. In section III, the SFB is identified by MK-DF and IFF.
In section IV, the general calculation algorithm for the PAC
is proposed, and measured concentrations are used to validate
those estimated by the PAC. In section V, the improvement of
the feed control performance is presented. Finally, section VI
presents the conclusions.

II. ANALYSIS OF NCV
The normalized cell voltage is the practical control signal
in industrial aluminum electrolysis. In this section, by using
the process mechanism knowledge, the ‘‘under-rise and over-
fall’’ relationship between the NCV and the feed state for the
normal alumina concentration condition is verified [3]. After
defining the MK and MK-DF, the frequency corresponding
to the NCV energy peak is obtained. Then, the MK and
MK-DF method are compared with common frequency iden-
tification approaches, such as spectral analysis and spectral
kurtosis [9]–[11].

A. PROCESS MECHANISM ANALYSIS
Reference [12] proposed the relationship between the the-
oretical cell voltage UTh and the alumina concentration C ,
which was described as the U-curve, shown in Fig. 1. On the
U-curve, the theoretical cell voltage has a minimum value
UThLow corresponding to the concentration CThLow. When
the alumina concentration is above or below CThLow, the cell
voltage increases. On the left side of CThLow, the cell voltage
increases significantly as the concentration decreases. When

FIGURE 1. Qualitative relationship among the theoretical cell voltage,
alumina concentration and ACD.

the concentration is lowered to the critical concentration
CAE, the cell voltage rises sharply, and the anode effect will
occur. The interval (CAE,CME) of the alumina concentration
is called the multi-effect zone, which indicates a very low
alumina concentration where anode effects frequently occur;
The interval (CME,CThLow) is called the controllable zone,
which indicates a normal alumina concentration. TheU-curve
shows that the theoretical cell voltage is sensitive to con-
centration changes when the alumina concentration is in the
normal range.

In Fig. 1, an adjustment of the anode-cathode dis-
tance (ACD) may cause the U-curve to drift up and down,
and a temperature change may cause it to shift left and
right. In industrial cells, the ACD, bath temperature and
components change in real time and are thus unavailable
for online measurement and quantitative calculations, result-
ing in the difficulty of establishing accurate mathematical
models suitable for online control of the cell voltage and
alumina concentration. Fortunately, the shape of the U-curve
is basically stable, although its position is variable and cannot
be quantitatively calculated. Therefore, the slope calculated
from the cell voltage (or the cell resistance) is regarded as
the relative alumina concentration, both in academia and
industry, which is further used in alumina feed control [4],
[13], bath temperature control [14], anode effect forecasting
[3], [15] and so on. Thus, the performance of the control
system is directly determined by whether the slope accurately
represents the concentration change.

To eliminate the interference caused by line current
changes, the normalized cell voltage UN(k) is used as the
critical signal in the cell control system, i.e.

UN(k) = R0(k)Ib + Ec =
US(k)− Ec

IS(k)
Ib + Ec (1)

In (1), R0(k) =
U (k)−Ec
I (k) is the pseudo cell resistance at time

tk , US(k) is the sample cell voltage, I (k) is the sample cell
current, Ib is the basic line current, and Ec is the pseudo
counter electromotive force.

Fig. 2(a) shows the NCV U1 (NCV, magenta) and the
feed state FU1 (FDS, red) of a 400-kA cell with the left
side of the U-curve as the target control zone. U1 and FU1
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have a sampling frequency of fs = 1
1t = 0.1 Hz (an

effective frequency band of [0, 0.05] Hz) and a length of
N = 1440. When collecting the data, the cell condition
is normal (referred to as the normal cell condition): there
is no routine operation of metal tapping, anode change or
beam raising, no special operations such as edge processing,
no anode movement, and no anode effect or any other special
cell conditions. A high position ofFU1 indicates an underfeed
period, and a low level indicates an overfeed period; the
labels on FU1 indicate the sequence positions of the under-
feed/overfeed switch. As shown in Fig. 2(a),

1) In the underfeed period, the practical feed amount of
alumina is lower than the theoretical consumption, caus-
ing the concentration to gradually decrease. Then, U1
gradually rises, which illustrates the definition of the
‘‘under-rise’’.

2) In the overfeed period, the practical feed amount of alu-
mina is higher than the theoretical consumption, causing
the concentration to gradually increase. Then, U1 falls,
which illustrates the definition of the ‘‘over-fall’’.

It can be concluded that if the concentration is within the
normal range, the NCV and the feed state have a relationship
of ‘‘under-rise and over-fall’’ [3], which is consistent with
the mechanism analysis in [12], [16], [17]. This study will
use ‘‘under-rise and over-fall’’ as the basis for judging the
normality of the alumina concentration.

Therefore, the NCV contains alumina concentration infor-
mation and can track the concentration change. Unlike the
theoretical cell voltage, the NCV collected from industrial
cells is a complex, nonstationary signal containing multi-
ple frequency components [7], [18]–[20], which cannot be
directly used for alumina concentration estimation.

B. ANALYSIS OF NCV USING MK AND MK-DF
To find the frequency bands related to the alumina concentra-
tion information in the NCV, this subsection takes U1 as an
example to study the frequency characteristics of the NCV
and prepare for the identification of the alumina concen-
tration SFB. Different from the previous approach [7], this
subsection first analyzes the time-frequency characteristics of
the NCV by using the integral wavelet transform (IWT) and
then captures the frequency of the NCV energy accumulation
by defining the MK and MK-DF. Finally, this frequency
identification method is compared with other commonly used
methods of finding the interested frequency, such as power
spectrum density (PSD) and spectral kurtosis (SK).

1) DEFINITION OF MK
The amplitude analysis of the integral wavelet trans-
form (IWT) of U1 in the range of [0, 0.05] Hz shows that
the energy has distinct distributions in the high-frequency
and low-frequency region, and concentrates mainly in the
low-frequency region. Fig. 2(b) presents a zoom-in view of
[0, 0.01] Hz, which shows that there are no obvious singular
values in the low-frequency region.

FIGURE 2. (a) U1 and FU1; (b) Energy distribution of U1 in [0, 0.01] Hz.

To further analyze the NCV and find the determined fre-
quency corresponding to the energy peak of NCV, this study
proposes the MK and MK-DF.

Let h(x) be the Hilbert transform of the nonstationary
signal g(·) ∈ L2(IR); then, the integral wavelet transform of
h(x) is

Wg(b, a) = |a|−
1
2

∫
h(x) · ψ(

x − b
a

) · dx (2)

Define g(·)’s marginal kurtosis as

MK (f ) ≡

∫
+∞

−∞

∣∣Wg(t, f )
∣∣2 · dt∫

+∞

−∞

∫
+∞

−∞

∣∣Wg(t, f )
∣∣2 · dt · df (3)

Let MK (f ) be the marginal kurtosis of g(·) ∈ L2(IR); if
M (1)
K (fd ) = 0 and M (2)

K (fd ) < 0, then fd is the dominant
frequency based on marginal kurtosis of g(·).
Equations (2) and (3) show that marginal kurtosis is the

normalized frequency marginal distribution of the integral
wavelet transform energy of h(x), and the MK-DF is the
frequency corresponding to the local maximum of the MK.

2) ESTIMATION OF MK-DF
Fig. 3(c) shows the MK of U1. In Fig. 3(c), (1) the energy
of U1 is mainly concentrated in the low-frequency region
of the effective frequency band and gradually decays to the
high-frequency region; (2) in the range of [0, 0.01] Hz, U1
has a local maximum, which is recorded as the MK-DF1,
fd1 = 0.0003 Hz; and (3) above 0.001 Hz, there is also
a local maximum, which is recorded as MK-DF2, fd2 =
0.0002 Hz. These two MK-DFs correspond to the energy
accumulation frequencies below and above 0.001 Hz in
Fig. 2(b), respectively.
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FIGURE 3. Analysis of U1 (a) PSD; (b) Spectral kurtosis; (c) Marginal
kurtosis.

Fig. 3(a) shows the PSD of U1 in the range [0, 0.01]
Hz. Fig. 3(b) shows the spectral kurtosis of U1, based on
spectral kurtosis algorithms. As shown in Fig. 3(a), the PSD
has several peaks below 0.001 Hz, but only one peak is the
same as the MK-DF fd1; there are no apparent spectral peaks
above 0.001 Hz. Fig. 3(b) shows that the SK is insensitive to
the time-frequency characteristics ofU1 and has a large value
(shown in yellow) throughout the low-frequency region.

Since the PSD lacks the statistical properties of the signal
and is prone to generate a pseudo spectral peak, and the SK is
insensitive to the energy aggregation of nonsingular signals,
they are not as suitable for signal analysis as the NCV. The
proposed MK based on the integral wavelet transform can
find the energy aggregation frequencies of the NCV. There-
fore, the MK is more suitable for analyzing complex signals,
which have energy concentrated in nonsingular frequency
components, representing a useful supplement to PSD and SK
analysis.

3) MK-DF OF THE NCV WITH VARIOUS CELL CONDITIONS
This subsection also uses MK and MK-DF to perform sys-
tematic analysis on the NCV under various cells conditions

FIGURE 4. Framework for alumina concentration estimation based on
SFB identification.

and obtains the general frequency characteristics of the NCVs
that basically satisfy the ‘‘under-rise and over-fall’’ relation-
ship. For example, U2 prior to the anode effect and U3
after the metal tapping are analyzed (see Appendix Fig. 16
and Fig. 17). The MK-DFs of many NCVs that basically
conform to the ‘‘under-rise and over-fall’’ relationship with
the previous three cell conditions are calculated. Then the sets
{fd1} and {fd2} are obtained. (see Appendix Table 4, Table 5,
and Table 6.)

The result shows that the vast majority of the NCVs have
MK-DF fd1 below 0.001 Hz and that some NCVs also have
MK-DF fd2 above 0.001 Hz. The MK accurately captures
the frequency characteristics of the NCV, which lays a good
foundation for subsequent SFB identification. In section III,
it is further determined that one of the MK-DFs is related to
changes in the alumina concentration.

C. FRAMEWORK FOR ALUMINA CONCENTRATION
ESTIMATION BASED ON IDENTIFICATION OF THE SFB
Fig. 4 presents the overall framework of this article, which is
divided into three parts: in the first part, MK and MK-DF are
used to identify the SFB of alumina concentration in NCV; in
the second part, the translation-invariant (TI) method is used
to acquire PAC from NCV, which can accurately represent
the alumina concentration; and in the third part, the absolute
concentration and the relative concentration PAC-slope are
estimated based on the PAC, where the relative concentration
PAC-slope is the primary basis for feed control in an industrial
cell. The first part and the second part (in the yellow dotted
box) constitute a sensitive frequency band-based TI method
for acquiring the PAC.

In the SFB identification part, the alumina concentration
change period is analyzed from three different perspectives,
namely, NCV, feed state, and material balance, to determine
the SFB [0, fsens] Hz that is sensitive to the change in alumina
concentration in the NCV. The results of these three analysis
perspectives are as follows:

(1) From the NCV perspective, the first two sections of
this chapter use the proposed MK and MK-DF to analyze the
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frequency characteristics of a large number of NCVs when
the alumina concentration is basically normal under various
operating conditions.

(2) The first section of Chapter 3 defines the formal expres-
sion of the practical integrated feed frequency (practical-IFF)
from the perspective of the feed state controlling the change
in the alumina concentration, and the calculation formula of
the practical-IFF is given.

(3) The second section of Chapter 3 defines the theoretical
integrated feed frequency (theoretical-IFF) from the perspec-
tive of material balance and gives its calculation formula.

According to the subsequent analysis, those of the MK-DF
set, the practical-IFF set and the theoretical-IFF are basi-
cally in the same frequency band (shown in the red dotted
box in Fig. 4). Therefore, instead of by experience or the
on-site experimental method, a formula for calculating the
SFB [0, fsens] is given on the basis of the theoretical-IFF.

In the PAC calculation part, (1) fsens is used as the cutoff
frequency of the low-pass filter that acquires the alumina
concentration information from the NCV (shown by the gray
dashed box in Fig. 4). (2) Based on the properties of the
vanishing moment, compact support, and boundary coeffi-
cients, the optimal wavelet filter is selected. (3) To reduce
the delay of multiple filter cascade filtering, this study uses
translation-invariant filtering in calculating the PAC.

In the alumina concentration estimation part, the estima-
tions of absolute and relative concentration are made. Then,
the relative concentration the PAC-slope obtained in this
study and the slope used in the industrial field are used to
compare the performance of feed control.

III. IDENTIFICATION OF SFB BASED ON MK AND IFF
In this section, the practical integrated feed frequency
(practical-IFF) and the practical integrated feed period
(practical-IFP) of the feed state are proposed, and their formal
representations are given; the theoretical integrated feed fre-
quency (theoretical-IFF) and the theoretical integrated feed
period (theoretical-IFP) calculation formulas are then derived
according to the material balance principle. Then, one of the
MK-DFs is proven to be related to the alumina concentration
from the aspects of NCV, feed state, and material balance the-
ory. Finally, the general formula for calculating the alumina
concentration SFB is given.

A. PRACTICAL-IFF FORMAL REPRESENTATION OF THE
FEED STATE
The alumina feed directly affects the alumina concentration in
industrial cells. To obtain more online alumina concentration
information, this subsection defines the practical-IFF and the
practical-IFP of the feed state.

Normally, the time of the end of underfeed and the begin-
ning of overfeed is the period of the lowest alumina concen-
tration, when the NCV is highly susceptible to a change in
the alumina concentration. To make this susceptive period
the focus of the analysis, the practical integrated feed period
(practical-IFP) is defined as follows. Let FN be the feed state

series with the sample interval of 1t corresponding to UN .
Define the ith underfeed period of FN and the next overfeed
period as the ith practical integrated feed period (practical-
IFP) of FN , denoted by the quaternion

Tifp,FN (i) ≡
(
tus(i) tue(i) tos(i) toe(i)

)
(4)

In (4), tus(i), tue(i), tos(i), toe(i) ∈ N+, tus(i) is the start
position of the ith underfeed period, tue(i) is the end of the
ith underfeed period, tos(i) is the start of the ith overfeed
period, and toe(i) is the end position of the ith overfeed
period. tos(i) = tue(i) + k1 and tus(i + 1) = toe(i) + k2,
k1, k2 ∈ N+. k1 is transition factor 1, indicating the number
of sampling points used in the underfeed tus(i) to transition
to the overfeed tos(i) in the ith practical-IFP; k2 is transition
factor 2, indicating the number of sampling points during the
period from the end of overfeed toe(i) in the ith practical-IFP
to the start of underfeed tue(i + 1) in the (i + 1)th practical-
IFP, where tus(i) < tue(i) < tos(i) < toe(i). Thus, the
alumina concentration is lowest near the switch point in each
practical-IFP when underfeed switches to overfeed.

Define the length of the ith practical-IFP to be the differ-
ence between the end position of the overfeed and the start
position of the underfeed:

∣∣Tifp,FN (i)∣∣ ≡ toe(i) − tus(i) +
1,
∣∣Tifp,FN (i)∣∣ ∈ N+, then Difp,FN (i) ≡

∣∣Tifp,FN (i)∣∣ · 1t ,
Difp,FN (i) ∈ R+, is the duration of the ith practical-IFP, and
the ith practical-IFF is fifp,FN (i) ≡

1
Difp,FN (i) =

1∣∣Tifp,FN (i)
∣∣·1t ,

fifp,FN (i) ∈ R+. If there are nifp practical-IFPs in FN , define
the practical integrated feed matrix (practical-IFM) of FN as

Mfeed,FN ≡
[
Tifp,FN (1) Tifp,FN (2) · · · Tifp,FN (nifp)

]T
(5)

In (5),Mfeed,FN is an nifp × 4 matrix, nifp ∈ N+.
Define the duration time vector Dfeed,FN and the

practical-IFF vector ffeed,FN of the feed state FN as

Dfeed,FN ≡
[
Difp,FN (1) Difp,FN (2) · · · Difp,FN (nifp)

]T
=1t × (Mfeed,FN ×

[
−1 0 0 1

]T
+ 1nifp×1)

(6)

ffeed,FN ≡
[
fifp,FN (1) fifp,FN (2) · · · fifp,FN (nifp)

]T
=

[
1

Difp,FN (1)
1

Difp,FN (2) · · ·
1

Difp,FN (nifp)

]T
(7)

A large number of feed states, corresponding to those
NCVs with an ‘‘under-rise and over-fall’’ relationship in
section II, are selected to constitute a feed state set SFN .
By using (6) and (7), the practical-IFMs set

{
M (SFN )

}
and

the practical-IFFs set
{
fifp(SFN )

}
are obtained.

B. THEORETICAL-IFF CALCULATION BASED ON MATERIAL
BALANCE THEORY
This subsection analyzes the influencing factors of the alu-
mina concentration from the perspective of material balance
and derives the formula for calculating the theoretical-IFF
under ideal conditions to prepare for the identification of the
SFB.
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Let the current intensity be I , the current efficiency be
η, and the loss rate of alumina during feeding be α. Based
on the electrochemical equivalent and theoretical aluminum
production, the rate of alumina consumption per second is

Fc = 1.7617× I × η × (1+ α)× 10−4 (8)

where η, α ∈ (0, 1], η and α are preset values, e.g. η = 0.93,
α = 0.02.
Let the capacity of the feeder be gfeed ∈ R+ and the number

of feeders be nfeed ∈ N+ and define the amount of single feed
as sfeed ∈ R+,

sfeed ≡
gfeed · nfeed · s
η · (1+ α)

(9)

In (9), s ∈ (0, 1] is the feed factor. For single-point feed, s =
1

nfeed
; for an alternate feed, s = 1

2 ; and for simultaneous feed,
s = 1. The single-feed amount for each feed is determined by
adjusting s according to the operation condition. The default
single-feed amount s̃feed ∈ (0, 1], related to the default feed
factor s̃ is called the feed scheme. Then, the theoretical basic
feed interval (theoretical-BFI) NThbase is defined as

NThbase≡
gfeed · nfeed · s̃

Fc

=
gfeed · nfeed · s̃ · 104

1.7617× I × η × (1+ α)
=

s̃feed · 104

1.7617× I
(10)

Let the underfeed percentage be βu, βu ∈ [0, 1) and the
overfeed percentage be βo, βo ∈ [0, 1]; then, the theoretical
underfeed interval NuThfeed and the theoretical overfeed inter-
val NoThfeed are

NuThfeed =
NThbase
(1− βu)

,NoThfeed =
NThbase
(1+ βo)

(11)

where NuThfeed ,NoThfeed ∈ R+.
In this way, the underfeed duration Dufd and the overfeed

duration Dofd can be defined as

Dufd ≡ NuThfeed · kufeed =
NThbase · kufeed

1− βu
(12)

Dofd ≡ NoThfeed · kofeed =
NThbase · kofeed

1+ βo
(13)

where kufeed , kofeed ∈ N+ are the underfeed coefficient and
the overfeed coefficient; Dufd ≤ DufdMax , DufdMax is the
maximum underfeed duration; and Dofd ≤ DofdMax , DofdMax
is the maximum overfeed duration. Define the theoretical-IFP
duration DThfeed as the sum of the underfeed duration and
the next overfeed duration based on the theoretical basic feed
interval, i.e.,

DThfeed ≡ Dufd + Dofd (14)

Then, the theoretical-IFF fThfeed is

fThfeed ≡
1

DThfeed
(15)

where DThfeed , fThfeed ∈ R+.
Ideally, the theoretical consumption of alumina in the

theoretical-IFP is equal to the cumulative addition, i.e., Fc ·
DThfeed = (kufeed + kofeed ) · gfeed · nfeed , and then,

kofeed =
⌈
kufeed ·

1+ βo
1− βu

⌉
(16)

FIGURE 5. Histograms for two sizes of cells (a) 400-kA; (b) 200-kA.

Substituting (8), (10), (11), (12), (13), (14), and (16), into
(15), then DThfeed = 2 · NThbase ·

kufeed
1−βu

, i.e.,

fThfeed =
1.7617× I × (1− βu)× 10−4

2 · s̃feed · kufeed
(17)

where fThfeed ∈ R+, βu is constant, and kufeed is the number
of feed times in the minimum underfeed period in the feed
state set SFN .

Equation (17) indicates that the theoretical-IFF in the ideal
state is directly proportional to the current intensity I and
inversely proportional to the feed scheme s̃feed .

C. IDENTIFICATION OF THE ALUMINA CONCENTRATION
SFB
This subsection will analyze the NCVs of 400-kA and
200-kA cells, and obtain {fd1}, {fd2},

{
fifp(SFN )

}
and fThfeed

for these two types of cells, respectively. Finally, it is deter-
mined that the SFB covers the sets {fd1} and

{
fifp(SFN )

}
and

varies with the current intensity I and the feed scheme s̃feed .
Fig. 5(a) depicts a histogram of the sets {fd1}, {fd2} and{
fifp(SFN )

}
in a 400-kA cell, where {fd1} is shown by the blue

histogram, {fd2} by the red histogram, and
{
fifp(SFN )

}
by the

yellow histogram. The abscissa fThfeed = 4.9690 × 10−4 Hz
is the theoretical-IFF under ideal conditions determined by
(17). Fig. 5(b) shows the histogram of the sets of the 200-
kA cell obtained by the same method, and the theoretical-IFF
fThfeed = 6.6254× 10−4 Hz under ideal conditions.
Fig. 5 shows the following,
(1) For both the 400-kA cell and the 200-kA cell, the set
{fd1} (MK-DF1, shown in blue) is in almost the same range
as the set

{
fifp(SFN )

}
(IFF, shown in yellow), and both are

distributed around the frequency fThfeed = 4.969 × 10−4 Hz
or fThfeed = 6.6254× 10−4 Hz.
When the cell condition is normal, the feed state deter-

mines the alumina concentration. Because the range of the set{
fifp(SFN )

}
is substantially the same as the set {fd1}, it is the

MK-DF1 that relates to the frequency band, which is associ-
ated with the alumina concentration component in the NCV.

In Fig. 5, the sets {fd1} and
{
fifp(SFN )

}
are distributed

around the frequency fThfeed . In fact, the practical basic
feed interval (practical-BFI) Nbase is adjusted around the
theoretical-BFI NThbase according to certain cell conditions,
and the change in kufeed depends on the relative concentra-
tion, namely, the slope, which varies with the cell condition.
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Additionally, the cell condition, including the retention of
alumina on the shell surface or the collapse of the shell, the
sludge formation on the cathode, the melting or solidification
of the freeze profile, will all break the material balance so that
kufeed and kofeed cannot strictly satisfy (16). Therefore, the
sets {fd1} and

{
fifp(SFN )

}
are distributed around the frequency

fThfeed .
(2) In the 200-kA cells, {fd1},

{
fifp(SFN )

}
and fThfeed are all

slightly larger than those in the 400-kA cells.
The sets {fd1} and

{
fifp(SFN )

}
of 400-kA cells are mainly

distributed between 1.6 × 10−4 Hz and 6 × 10−4 Hz, while
the corresponding range is between 3×10−4 Hz and 9×10−4

Hz for 200-kA cells. The frequency fThfeed for 400-kA cells
is also less than that of 200-kA cells.

Equation (17) shows that the current intensity and the
feed scheme jointly determine the theoretical-IFF fThfeed . The
different values of fThfeed relate to the different distributive
regions of the sets {fd1} and

{
fifp(SFN )

}
.

Based on the above analysis, the alumina concentration
sensitive frequency band of the NCV is defined as [0, fsens]
Hz, where

fsens ≡
√
2 · fThfeed (18)

In Fig. 5, the frequencies fsens of the 400-kA cell and the
200-kA cell are 7.0272 × 10−4 Hz and 9.3696 × 10−4 Hz,
respectively. The sets {fd1} and

{
fifp(SFN )

}
are both almost

in the range of the SFB, which means that the component
associated with the alumina concentration in the NCV is in
the range [0, fsens]. Therefore, the upper limit, fsens Hz, is the
cutoff frequency for the low-pass filter in section IV.

Equations (17) and (18) show that the frequency band of
the alumina concentration component in the NCV is related to
I and s̃feed , which means that the SFB depends on the current
intensity and the feed scheme. Therefore, different low-pass
filters for feed control should be designed for different SFBs
to obtain the components related to the alumina concentra-
tion in the NCV. This conclusion is more general than the
existing results in [7]; it represents a good foundation for the
subsequent accurate acquisition of the alumina concentration
component.

IV. PAC CALCULATION AND CONCENTRATION
ESTIMATION BASED ON THE SFB
In this section, the general method based on translation-
invariant filtering to acquire alumina concentration informa-
tion in the NCV is given by using the alumina concentration
sensitive frequency band. The optimal alumina concentration
component obtained from the NCV is called the pseudo
alumina concentration (PAC). Then, the estimated absolute
concentration calculated from the PAC is verified by the
measured alumina concentration in an industrial cell.

Since the time-frequency window of traditional filters
(such as Kalman) is fixed, the limited ability of acquiring
the ultralow-frequency signal component in the NCV is one
obstacle. In recent years, multiresolution analysis (MRA)
theory has also been used in the field of cell voltage (or

resistance) analysis, such as the discrete wavelet transform
(DWT) [21] and the wavelet-packet transform (WPT) [22],
[23]. These methods are also not very suitable for analyzing
alumina concentration information from the NCV. Because
translation-invariant DWT (TIDWT) [24], [25] is insensi-
tive to the starting point of the analyzed signal, it ensures
the accuracy of the filtered signal. Its low-frequency and
high-frequency components are both related to the zero-phase
filter, and those components have the same length as the orig-
inal signal, which can increase the low-frequency component
information in itsMRA and retain the corresponding relation-
ship between time and the interesting low-frequency features
in the original signal. Furthermore, TIDWT only performs
the next decomposition with the low-frequency component.
Fortunately, the information associated with the alumina con-
centration corresponds to the low-frequency components in
the NCV (as shown in sections II and III), and the TIDWT,
which requires O(N log2N ) multiplications, has the same
computational burden as the fast Fourier transform. Thus,
TIDWT is more suitable for the acquisition of the alumina
concentration component than DWT and WPT.

A. PAC CALCULATION ALGORITHM USING TIDWT
In this subsection, the SFB is used to determine the transform
level J0 of the partial TIDWT. To overcome the problem of
subjectivity in filter selection, this study chooses the most
suitable scaling filter by analyzing the properties of the
wavelet basis, including vanishingmoment, compact support,
etc.

1) PASS-BAND DETERMINATION FOR THE TIDWT SCALING
FILTER BASED ON THE SFB
The transform level J of the partial TIDWT is determined by
the physical meaning of the original signal in the frequency
domain. The nominal pass-band of the J th-level scaling filter,
which is an approximation of a low-pass filter, is given by [26]

0 ≤ |f | ≤
1

4 · τJ
(19)

where τJ = 2J−1.
Let J0 ∈ N+ be the transform level of the partial TIDWT

for the NCV. J0 is then obtained by Equations (10), (17), (18)
and (19),

NThbase =
sfeed × 10−4

1.7617× I

fThfeed =
(1− βu)(1+ βo)

NThbase · [kufeed · (1+ βu)+ kofeed · (1− βo)]
fsens =

√
2 · fThfeed

ffilter =
fs

4 · τJ0
J0 = argmin(fsens ≤ ffilter )

(20)

where τJ0 = 2J0−1.
The frequency range [0, ffilter ] is the pass-band of the

scaling filter corresponding to the sampling frequency fs.
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TABLE 1. Wavelet comparison.

The 5th formula in (20) denotes that the SFB determines
the pass-band of the scaling filter, and then the level J0 is
obtained. Therefore, the levels of the 400-kA and 200-kA
cells shown in Fig. 5 are J0 = 6 and J0 = 5, respectively.

2) SELECTION OF WAVELET FILTER FOR TIDWT
Vanishing moments and compact support are the impor-
tant properties of a wavelet basis, and they have a close
relationship when the wavelet bases are orthonormal. If an
orthonormal wavelet has r vanishing moments, the support
length is L = 2r − 1 [27]. The more vanishing moments
there are, the better the transition approximates the original
signal. However, an increased number of vanishing moments
will inevitably lead to an increase in support length. TIDWT
uses circular filtering, and the coefficients affected by the
circularity are called boundary coefficients. The lengths of
the jth-level TIDWT scaling and wavelet filters are both Lj =
(2j − 1)(L − 1) + 1; the number of boundary coefficients is
min{Lj − 1,N }, where N is the length of the filtered signal
[24]. Consequently, when N is sufficiently large, the number
of boundary coefficients increases with j and L. Therefore,
when the transform level is fixed, the number of vanishing
moments, support length and the number of boundary coef-
ficients are the main properties that must be considered and
weighed against each other when selecting the scaling and
wavelet filters.

To make the extracted alumina concentration information
in the NCV as accurate as possible, the influence of different
filters on the calculated PAC accuracy is discussed from the
perspective of the properties of the wavelet basis. Table 1
lists the vanishingmoment, support length, and the number of
boundary coefficients (J0 = 6) of the commonly used scaling
andwavelet filters such as Haar, db2, and la4. Fig. 6 compares
the approximation performance and boundary coefficients of
the level J0 = 6 TIDWT for U1 using the filters in Table 1.
(1) Comparison of approximation performance
Fig. 6(b) expands these plots in the region 600 ≤ t ≤

1000. Table 1 and Fig. 6 show that la4 has the highest order
vanishing moments, and the best approximation performance
to U1. Especially when U1 is in the peaks and troughs (as
in the vicinity of the abscissa values 750, 850 and 950 in
Fig. 6(b)), la4 and db2 are significantly better than Haar.

(2) Comparison of boundary coefficients
Fig. 6(a) shows the beginning and end of the boundary

coefficient regions of the filters in Table 1 using two vertical
lines of the same color. For example, the boundary coefficient
regions (yellow vertical lines) of the Haar filter are [0, 63] and

FIGURE 6. Performance comparison of the three filters in Table 1
(a) Comparison of the number of boundary coefficients; (b) expansion of
U1 in the region 600 ≤ t ≤ 1000.

FIGURE 7. Flowchart of PAC calculation.

[1377, 1440]. Fig. 6(a) shows that the number of boundary
coefficients (green vertical lines) of la4 is the largest, and the
number of boundary coefficients (blue vertical lines) of db2
is between that of the Haar and la4 filters.

The transform of la4 is the closest to the original signal,
but the boundary coefficient regions are larger. Although the
boundary coefficient regions are the smallest when using
Haar, they are accompanied by poor approximation perfor-
mance, and serious energy leakage occurs because of the
first-order vanishing moment [28]. Therefore, it is more suit-
able to use the db2 filter with two vanishing moments for the
NCV.

3) ALGORITHM FOR PAC CALCULATION
Based on the above analysis, a general algorithm to obtain the
alumina concentration information from the NCV for current
intensity I , the feed scheme s̃feed and sampling frequency fs
is given. Fig. 7 shows the flowchart for calculating PAC. The
steps in the red box constitute the work of the alumina SFB
identification stage, and the steps in the gray box constitute
the work of the PAC calculation stage using the TI method.

In the algorithm 1, the underfeed coefficient kufeed is
obtained by the subfunction UFeedCoef; the filter coefficient
of db2 is obtained by the subfunction WaveFilter; the sub-
function TIFilter constructs the J0 level TIDWT scaling and
wavelet filters of db2; the subfunction ScaleCoef calculates
the level J0 db2 TIDWT-based scale coefficients; and the
subfunction PAC calculates the PAC from the J0th-level scale
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FIGURE 8. (a) NCV and feed state; (b) Estimation of the alumina
concentration.

TABLE 2. Comparison of estimation errors.

coefficients. The maximum number of multiplications in the
algorithm PseudoAluCon is O(N log2N ) when calculating the
PAC corresponding to an NCV of length N .

Algorithm 1 PseudoAluCon Algorithm
procedure PseudoAluCon(UN ,FN , Ib, fs, s̃feed , βu, βo)

NThbase←
s̃feed×104

1.7617×I
Mfeed ← IntegralFeedPeriod(FN ,NThbase, k1, k2)
kufeed ← UFeedCoef(Mfeed ,NThbase, βu)

fsens←
√
2·(1−β2u )(1+βo)

NThbase·kufeed ·(2−β2u−β2o )

J0← argmin(fsens ≤
fs

2J0+1
)[

g h
]
←WaveFilter(′db2′)[

gJ0 hJ0
]
← TIFilter(g, h, J0)

VJ0 ← ScaleCoef(UN , gJ0 , hJ0 )
CPAC← PAC(VJ0 , gJ0 , hJ0 )
return CPAC F The pseudo alumina concentration

end procedure

B. ESTIMATION OF THE ABSOLUTE CONCENTRATION
In this subsection, the absolute concentrations calculated
from the PAC are validated using measured concentra-
tions of electrolyte samples. The samples were obtained
every 10minutes for 4 hours, and there were a total of 25 sam-
ples. The sampling was performed in a cell for which the
NCV and feed states had an approximate ‘‘under-rise and
over-fall’’ relationship. The sampling process also avoided
routine operation and special cell conditions.

Fig. 1 shows that in the low-concentration region, the
theoretical cell voltage decreases with increasing alumina
concentration. Therefore, after obtaining the PAC, invert the
PAC and benchmark the results with the measured concen-
trations to obtain absolute concentration estimate values.
Fig. 8(a) shows the NCV and feed state during sampling,

where red diamonds denote the electrolyte sampling instant.
In Fig. 8(b), the yellow curve is the measured absolute
concentration, and the blue curve is the estimated absolute
concentration calculated from the PAC. The proposedmethod
can continuously track the alumina concentration without
training, and the requirements on the number of data samples
and the time complexity are lower than those of the methods
in [29] and [30]. Table 2 compares the estimation errors of
the methods of [29] and [30] with the proposed method. The
maximum error is 0.46%, the root mean square error (RMSE)
is 0.13%, and the average relative error (ARE) is 3.19%.
In terms of error, the proposed method is better than that from
[30], and theARE is smaller than that in [29], but the RMSE is
greater. The error of the proposedmethod is within acceptable
limits.

According to themeasured concentration verification, both
in terms of time and accuracy, the PAC can well track
the change in alumina concentration in the cell. There-
fore, the relative concentration calculated from the PAC
can better represent the real-time concentration change. The
following section will illustrate that the relative concen-
tration PAC-slope can improve the performance of feed
control.

V. IMPROVEMENT OF THE FEED CONTROL
PERFORMANCE
To compare the feed control performance using the
PAC-slope with the slope, this section takes the routine feed
control rules as an example for elaboration. The slope is
collected from industrial cells and obtained by the multiple
filter method.

Feed control is the most important component of a cell
control system. Each major aluminum company has its own
feed control strategy [3]–[6], [8]. Most of these feed control
strategies have the routine feed control rules of underfeed
and overfeed switching under normal alumina concentration
conditions. Fig. 9 is a schematic diagram of routine feed
control rules based on the filtered voltage Ufilter and the
slope GK0009. The routine feed control rules can be briefly
described as follows:

1) If G(1) > 0 and G = Puo, B(k) = Nofeed , which
means that the feed interval is switched from underfeed
to overfeed;

2) If G(2) > 0 and G(1)
= 0, B(k) = Nufeed , which

means that the feed interval is switched from overfeed
to underfeed;

3) Otherwise, B(k) = B(k − 1), which means that the feed
interval remains unchanged.

Fig. 10 shows the slope GK0009 and feed state FU1 corre-
sponding toU1, which are collected from a 400-kA industrial
cell. Fig. 10 depicts that, at the time of the rising slope,
if GK0009 = Puo, the feed interval is switched from underfeed
to overfeed, as the sampling points t = 169 and t = 636
show. If the slope reaches a local minimum during the over-
feed period, the feed interval is switched from overfeed to
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FIGURE 9. Schematic diagram of routine feed control rules based on the
slope.

FIGURE 10. GK0009 and FU1.

FIGURE 11. Schematic diagram of routine feed rules based on the
PAC-slope.

underfeed, as the sampling points t = 299 and t = 762 show.
It can be concluded that the number and appearance time
of slopes that meet the switch conditions directly affect the
accuracy and timeliness of feed control. To obtain the filtered
voltage Ufilter , the filter pass-band and filter coefficients are
determined by experience or on-site experiments; the method
of calculating the slope GK0009 from Ufilter is relatively arbi-
trary. Thus, the filtered voltage and slope obtained in this
way introduce certain hidden dangers to the timeliness and
accuracy of feed control.

Fig. 11 shows a schematic diagram of routine feed rules
based on the PAC-slope GPAC. The orange boxes in Fig. 11
correspond to the orange dotted boxes in Fig. 4.
To elaborate the performance of feed control, the slopes

of 400-kA and 200-kA cells collected on-site were compared
with PAC-slopes. Moreover, the following provisions were
made:

1) The PAC and its rate of change obtained from the NCV
according to the SFB are represented by the PAC and
PAC-slope GPAC, respectively.

2) The NCVU1 of the 400-kA cell and the NCVU4 of the
200-kA cell using the frequency band

[
0, 2× 10−3

]
Hz

obtained in [7] are subjected to translation-invariant fil-
tering, and the filtered results and change rates are repre-
sented as T002 and GT002, respectively. This frequency
band is obtained by performing a Fourier transform on
the cell voltage of a 160-kA cell.

FIGURE 12. Timeliness improvement of feed control by using the
PAC-slope.

3) Utilize SFB
[
0, 9.3696× 10−4

]
Hz of the 200-kA cell

to perform translation-invariant filtering forU1 andU4.
Here, the filtered results and change rates are repre-
sented as T0009 and GT0009, respectively.

4) The slopes corresponding to U1 and U4 are recorded as
GK0009. To facilitate subsequent performance compar-
isons, GK0009 is shifted forward to obtain G

′

K0009.
5) G(1) and G(2) are the first and second derivatives of G,

respectively.
6) Puo is the slope threshold for the switch of underfeed to

overfeed.

In short, GPAC, GT0009 and GT002 are obtained by
translation-invariant filtering, and the slope GK0009 is
obtained by the multiple filter method.

A. TIMELINESS IMPROVEMENT OF ROUTINE FEED
CONTROL BY INTRODUCING TRANSLATION-INVARIANT
FILTERING
The method of cascading multiple filters to obtain the filtered
voltageUfilter has a delay and contains too much noise. Using
such a filtered voltage to calculate the slope, the calculation
method is relatively complicated, further exacerbating the
delay. The green dashed line in Fig. 12 is the slope GK0009,
and the solid blue line is the PAC-slope GPAC. Fig. 12 shows
that, if the PAC-slope is used instead of the slope, at the
sampling point t = 99 (corresponding to t = 169 in Fig. 10),
the feed interval can switch from underfeed to overfeed; at
the sampling point t = 229 (corresponding to Fig. 10 at t =
299), the feed interval can switch from overfeed to underfeed.
Because translation-invariant filtering can reduce the delay in
extracting ultralow-frequency information components from
the original signal, the PAC can better track the alumina
concentration information in the NCV, and the rate of change
of the PAC (PAC-slope) GPAC is simple to calculate and can
also track the alumina concentration change in industrial cells
in time. Therefore, with the PAC-slope used as the basis for
feed control, the alumina concentration change can be tracked
in time, and the 400-kA cell’s feed control can be advanced
by approximately 700 seconds. Similarly, it can advance the
200-kA cell’s feed control by approximately 500 seconds (see
Fig. 19 in the appendix).
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FIGURE 13. Accuracy improvement of feed control by using the
PAC-slope.

Therefore, the introduction of translation-invariant filter-
ing can alleviate the filtered signal lag caused by the multiple
filter method, so that the PAC-slope can track the alumina
concentration change in time, and thus the timeliness of
the feed control can be improved. This makes feed control
more sensitive, which in turn improves current efficiency
and makes the alumina concentration fluctuate in a narrower
range.

B. ACCURACY IMPROVEMENT OF ROUTINE FEED
CONTROL BY INTRODUCING THE SFB
Fig. 12 shows that after the fifth slope peak, there are two
local minimums GK0009(t = 1147) (yellow box label) and
GK0009(t = 1186) (purple box label), which satisfy the switch
condition of overfeed to underfeed. To ignore the effect of
delay, GK0009 and FDS are moved forward by 70 sampling
points to obtain G

′

K0009 and FDS’ (square curve shown by the
red dotted line), which is shown in Fig. 13. Fig. 13 shows that
the local minimum value of GPAC(t = 1116) (red box label)
on the PAC-slope corresponds to G

′

K0009(t = 1116) (Fig. 13)
and GK0009(t = 1186) (Fig. 12) of the purple box label on
the slope. From section IV’s ‘‘B Estimation of the alumina
absolute concentration,’’ it can be known that the PAC can
better track the change in alumina concentration, and the
PAC-slope can represent the change in alumina concentration
in the industrial cell. Therefore, the local minimum associated
with the alumina concentration is GK0009(t = 1186) (purple
box label) in Fig. 12, not GK0009(t = 1147) (yellow box
label). Thus, it appears that when multiple points meet the
underfeed/overfeed switch rule, the feed state switch is prone
to being performed at the wrong time. Table 3 counts the
number of sampling points that meet the underfeed/overfeed
switch rule in the six IFPs in Fig. 13. From the above analysis,
it can be inferred that the fewer the number of sampling
points that meet the switch conditions, the more stable the
feed control is. Fig. 13 and Table 3 show that
1) the change rate of GT002 is the most oscillating and

cannot be directly used for feed control.
2) there are still significant oscillations in GT0009 and

G
′

K0009, resulting inmultiple points of the change rates in
Fig. 13 and Table 3 satisfying the switch condition. For
example, only one point in the practical-IFP of Tifp,U1(1)

TABLE 3. Number of points that meet the underfeed/overfeed switch
rule.

and Tifp,U1(5) satisfies the switch condition. In the other
four practical-IFPs, there are multiple points that sat-
isfy the switch. In particular, Tifp,U1(3) and Tifp,U1(6)
have 3 such points.

3) GPAC has no significant oscillation, so only one point
satisfies the switch condition in each of the practical-
IFPs.

The reason that multiple pointsmeet the switch condition is
that the filter has a wider pass-band, which causes the filtered
result and its change rate to still contain excessive noise.
Because the proposed SFB can yield a narrower pass-band
of the filter, the use of SFB can filter out the components that
are not related to the alumina concentration in the NCV as
much as possible. Thus, the PAC and PAC-slope can reduce
the complexity of the feed control algorithm and can better
track the changes in the alumina concentration in an industrial
cell, making feed control more accurate.

C. UNIVERSALITY IMPROVEMENT OF THE RELATIVE
CONCENTRATION ESTIMATION BY INTRODUCING THE SFB
This subsection takes the NCV U4 of a 200-kA cell as an
example (see Fig. 18 in the appendix) and then compares it
with the result of the NCV U1 of the 400-kA cell to analyze
the influence of the SFB on industrial cells of different current
intensities and feed schemes.

By using the same method as above with a 200-kA cell,
the slope GK0009 collected from an industrial cell is lagging
the PAC-slope GPAC (GT0009) by approximately 50 sampling
points (see Fig. 19 in the appendix). Therefore, the FDS and
slope GK0009 corresponding to the NCV U4 of the 200-kA
cell are shifted forward by 50 sampling points to obtain the
FDS’ (square curve shown by the red dashed line) and G′K0009
in Fig. 14. Table 7 counts the number of sampling points that
meet the underfeed/overfeed switch rule. The magenta curves
in Fig. 13 and Fig. 14 are obtained by translation-invariant
filtering with

[
0, 9.3696× 10−4

]
Hz as the pass-band. The

difference is that
[
0, 9.3696× 10−4

]
Hz is only the SFB of

the 200-kA cell, not the SFB of the 400-kA cell. In Fig. 14,
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FIGURE 14. GPAC of 200-kA.

FIGURE 15. Energy distribution of U1 in [0, 0.05] Hz.

GPAC (GT0009) of the 200-kA cell has only one point that
satisfies the switch condition in each IFP, while GT0009 of the
400-kA cell shown in Fig. 13 has multiple points in each IFP
that satisfy the switch condition. For example, after the third
peak in Fig. 13, GT0009 has three local minimums, GT0009(t =
664), GT0009(t = 709) and GT0009(t = 750), among which
only GT0009(t = 709) is related to the alumina concentration
that coincides with the PAC-slope local minimumGT0009(t =
709). Therefore, the other two local minimums significantly
interfere with the judgment of the feed state switch point.
Obviously, GPAC obtained from the 400-kA cell with an SFB
of
[
0, 7.0272× 10−4

]
Hz has only one point in each IFP that

satisfies the switch rule.
The SFB is more universal than the pass-band obtained

from experience, which can significantly reduce the incorrect
decision of the feed control system of different current inten-
sity cells without changing the control rules. The introduction
of translation-invariant filtering can significantly decrease
the delay caused by the multiple filter method. Therefore,
compared with the filtered voltage Ufilter and slope GK0009,
the PAC and PAC-slope can control the feed operation with
more accuracy and timeliness, which can stabilize the cell
condition and improve the current efficiency at the lowest
cost.

VI. CONCLUSION
This study proposes an alumina concentration estimation
method based on sensitive frequency band identification
using marginal kurtosis, which adapts to the frequent cell
condition changes in an industrial cell. As verified by the
measured concentration, the average relative error of the

estimated absolute concentration is 3.19%. Compared with
the slope obtained by the previous method, the PAC-slope
can advance the feed control operation by 500 to 700 seconds
and significantly reduces the number of points that satisfy the
underfeed/overfeed switch rules. The main contributions, all
of which have improved the feed control performance, are as
follows.
1) Marginal kurtosis and the marginal kurtosis dominant

frequency are proposed and used to accurately capture
the frequency band in which the normalized cell volt-
age energy accumulates. Comparative experiments show
that marginal kurtosis is more suitable than the power
spectrum density and spectral kurtosis to analyze com-
plex signals with energy concentrated in nonsingular
signal components, which is a useful supplement to the
last two methods.

2) The practical integrated feed frequency and its formal
expression are proposed, providing the tools for auto-
matic analysis of a large number of feed states.

3) The theoretical integrated feed frequency is proposed,
and its calculation formula is derived. Equation (17)
shows that the theoretical integrated feed frequency
under ideal conditions is directly proportional to the
current intensity I and inversely proportional to the feed
scheme s̃feed .

4) Usingmarginal kurtosis and integrated feed frequency to
identify the sensitive frequency band of the alumina con-
centration, a general conclusion related to feed control
of industrial cells can be made: the sensitive frequency
bands of the alumina concentration vary with the current
intensity and the feed scheme, which means that differ-
ent filter pass-bands should be used to filter the NCV to
obtain the critical parameters for feed control.

5) Based on the SFB of the alumina concentration, the cal-
culation formula of the filter pass-band used to filter the
NCV is obtained, the application of which can change
the current situation of obtaining the filter pass-band
through experience or on-site experiments.

6) Based on the alumina concentration SFB, vanishing
moments, compact support and boundary coefficients,
etc., the most suitable translation-invariant filter is deter-
mined, and a general algorithm for acquiring the PAC
is designed. Using the PAC, the absolute and relative
concentrations of alumina can be estimated.

7) The relative concentration PAC-slope for feed control
has been obtained by using the PAC, which greatly
decreases the serious delay of the filtered voltage and
slope caused by the multiple filter method, so that the
feed control can closely keep up with the changes in the
alumina concentration.

APPENDIX
A. THE ENERGY DISTRIBUTION OF NCV U1 WITHIN THE
EFFECTIVE BAND [0, 0.05] HZ IN A 400-kA CELL
Fig. 15 corresponds to subsection ‘‘1) Definition of MK’’ in
the text. Fig. 15 shows the integral wavelet transform ampli-
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FIGURE 16. Analysis of U2 (a) U2; (b) Marginal kurtosis.

FIGURE 17. Analysis of U3 (a) U3; (b) Marginal kurtosis.

tude of U1 in the effective band [0, 0.05] Hz. The amplitude
is small in [0, 0.05] Hz, while high in the low-frequency band
[0, 0.01] Hz. Fig. 2(b) in the text is a partial view of U1 in
[0, 0.01] Hz. Fig. 15 and Fig. 2(b) show that U1 has distinct
time-frequency properties in the high- and low-frequency
bands. The energy is concentrated in the low-frequency
region, and the amplitude has no obvious singular value.

B. ANALYSIS OF U2 PRIOR TO THE ANODE EFFECT IN A
400-kA CELL
Fig. 16 corresponds to subsection ‘‘3) MK-DF of the
NCV with various cell conditions’’, in the text. Fig. 16
is an analysis of the NCV U2 and feed state before the

FIGURE 18. U4.

TABLE 4. MK-DFs of the NCVs under normal cell conditions.

TABLE 5. MK-DFs of the NCVs prior to the anode effects.

anode effect, which satisfies the ‘‘under-rise and over-fall’’
relationship. In Fig. 16(b), there is only one maximum
at fd1 = 0.0006 Hz.

C. ANALYSIS OF U3 AFTER THE METAL TAPPING
OPERATION IN A 400-kA CELL
Fig. 17 corresponds to subsection ‘‘3) MK-DF of the NCV
with various cell conditions’’, in the text. Fig. 17 is an anal-
ysis of the NCV U3 and feed state after the metal tapping
operation, which satisfies the ‘‘under-rise and over-fall’’ rela-
tionship. In Fig. 17(b), there is only one maximum at fd1 =
0.0003.

D. MK-DFs OF THE NCVs PRIOR TO THE ANODE EFFECT
AND AFTER THE METAL TAPPING OPERATION IN 400-kA
CELLS
These tables correspond to subsection ‘‘3) MK-DF of the
NCV with various cell conditions’’, in the text. Tables 4, 5,
and 6 show that almost all NCVs analyzed have an MK-DF
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TABLE 6. MK-DFs of the NCVs after the metal tapping operation.

TABLE 7. Number of points that meet the underfeed/overfeed switch
conditions.

FIGURE 19. Change rates of the components of U4 obtained by various
filter bands.

below 0.001 Hz, and some NCVs have a second MK-DF
above 0.001 Hz.

E. NCV OF THE 200-kA CELL
This is related to subsection ‘‘C. Universality improvement of
the relative concentration estimation by introducing the SFB’’
in the text. Fig. 18 shows the NCV U4 and FDS of a 200-
kA cell where the sampling frequency is 0.1 Hz and N =
1440, which have the ‘‘under-rise and over-fall’’ relationship.
Fig. 18 shows there are eight complete practical-IFPs.
In Fig. 19, GPAC is the change in PAC with time. The

other notations in Fig. 19 and Table 7 have the same meaning
as in Fig. 13 and Table 3, except they are associated with
U4. A separate analysis of Fig. 19 and Table 7 reveals a
similar conclusion regarding the 400-kA cell, especially in
Tifp,U4(7), where there are two points that satisfy the switch

rule of underfeed to overfeed for G
′

K0009, but only one point
for GPAC.
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